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Abstract

The integration of retrieved passages and large
language models (LLMs), such as ChatGPTs,
has significantly contributed to improving open-
domain question answering. However, there is
still a lack of exploration regarding the optimal
approach for incorporating retrieved passages
into the answer generation process. This paper
aims to fill this gap by investigating different
methods of combining retrieved passages with
LLMs to enhance answer generation. We begin
by examining the limitations of a commonly-
used concatenation approach. Surprisingly, this
approach often results in generating “unknown”
outputs, even when the correct document is
among the top-k retrieved passages. To address
this issue, we explore four alternative strate-
gies for integrating the retrieved passages with
the LLMs. These strategies include two single-
round methods that utilize chain-of-thought
reasoning and two multi-round strategies that
incorporate feedback loops. Through compre-
hensive analyses and experiments, we provide
insightful observations on how to effectively
leverage retrieved passages to enhance the an-
swer generation capability of LLMs. On three
open-domain question answering datesets, NQ,
TriviaQA and SQuAD, our multi-round ap-
proaches outperform traditional concatenation
approach, achieving over a 10% improvement
in answer EM.

1 Introduction

Large Language Models (LLMs), such as
GPTs (Brown et al., 2020; Bubeck et al., 2023),
have found extensive applications, but often strug-
gle with limited knowledge representation, result-
ing in inaccuracies and insufficient specificity in
open-domain question answering. To overcome
these limitations, the integration of retrieval-based
techniques (Izacard et al., 2022; Borgeaud et al.,
2022; Meng et al., 2024) has emerged as a promis-
ing solution. By incorporating relevant passages
during the answer generation, LLMs can leverage
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Figure 1: Top: Illustration of Concatenation v.s. Post-
Fusion strategies. Bottom-a: percentage of unknown
responses using the Concatenation strategy. Bottom-b:
by varying the number of retrieved passages, (green)
percentage of unknown responses, and (red) error rate
by majority voting (when the correct answer is in the
answer pool, the majority selects a wrong answer).

external information to provide more accurate and
detailed responses. Nevertheless, effective strate-
gies for incorporating retrieved passages into the
LLMs remains a challenging and relatively under-
studied area.

Our analysis (Fig. 1), conducted under the oracle
setting where one of the top-k retrieved passages
contains the answer, reveals that a simple concate-
nation of the passages into LLMs often leads to
“unknown” responses — instances where the pro-
vided context fails to answer the question — ac-
counting for about 20% of all responses. An alter-
native method, where the passages are individually
provided as input to LLMs and the majority vote
determines the final answer, reduces the rate of
“unknown” generation to 2-7% depending on the
number of passages. However, this method intro-
duces a new challenge: the correct answer does
not align with the majority vote in the answer pool.
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Particularly, when more passages are incorporated
from 5 to 50, the error rate of the majority vote in-
creases from 12% to 22%. Thus, both of the meth-
ods have their own weaknesses and more suitable
approaches for the integration of retrieved passages
and LLMs remain to be investigated.

Transformer-based LLMs have shown the ca-
pability to utilize attention mechanisms (Vaswani
et al., 2017) for discovering token-level relevance.
However, they may not always attend to the rele-
vant parts within the context, leading to a poten-
tial oversight of important information present in
the retrieved passages (Clark et al., 2019; Zhao
et al., 2019). This challenge becomes more pro-
nounced when dealing with extensive corpora like
Wikipedia, which contains over 21 million pas-
sages, making it a formidable task to identify the
most relevant passages for a question. Furthermore,
retrieved passages that are closely related to the
question’s topic can act as distractors, potentially
misleading the model (Asai et al., 2019). If the
model mistakenly directs its attention towards these
distractor passages, it can introduce noise that neg-
atively impacts the answer prediction process.

In this paper, we explore the integration of re-
trieved passages with LLMs like ChatGPTs to en-
hance their ability to generate correct answers. In
particular, we examine situations where the re-
trieved passages contain the correct answer, yet
the model fails to generate the correct response, in-
dicating areas for improvement. Initially, we focus
on two chain-of-thought (CoT) (Wei et al., 2022;
Wang et al., 2022; Trivedi et al., 2022a) strategies
that incorporate in-context learning. We introduce
a pruning strategy and a summarization strategy for
the retrieved passages to guide the answer genera-
tion process of the LLMs.

Subsequently, we investigate two multi-round
methods with feedback: Post-Fusion as the Fall-
back: In the initial round, this method employs the
Concatenation approach to generate an answer. If
the LLM generates “unknown” responses with the
inputs, it proceeds to use Post-Fusion in the second
round, generating candidate answers. The final an-
swer is chosen via majority vote. Concatenation
as the Distiller: This approach starts by leveraging
Post-Fusion to produce a pool of potential answers
and to identify relevant passages. In the subsequent
round, only the unfiltered passage is concatenated
with the question and answer candidates from the
first round. This consolidated input is then fed into

the LLM to derive the final answer.
Through extensive experiments on three single-

hop open-domain question-answering datasets, we
showcase the enhanced performance of our pro-
posed methods, achieved with a minimal additional
resource cost. Our findings provide a foundation
for the development of more advanced retrieval-
integration methods aimed at further enhancing the
capabilities of these models.

2 Problem Setup

This study focuses on the question answering task
under the open-domain setting. It remains a open
problem to retrieve the most relevant context for
question answering. Therefore, a common practice
is to include multiple top ranked passages, which
serves as the supplementary context for the LLMs.
The number of supplementary passages, denoted
as k, can vary based on the desired input length M
of the LLM. Typically, k can be set to 5, 10, or 20,
ensuring that the total length of k passages, each
having a maximum length of L, remains within
the maximum input length M of the LLM (i.e.,
k ∗ L < M ). By incorporating these supplemen-
tary passages, the LLM is provided with a more
comprehensive and informative context, which has
the potential to enhance its accuracy.

3 Methods

We adopt a two-stage pipeline for open-domain QA.
It consists of two black-box components, a retriever
and a LLM such as ChatGPT and LLama2 (Tou-
vron et al., 2023). We aim to methodically investi-
gate the optimal methods for transferring the top-k
retrieval results to the LLMs for generating fac-
toid answers. Our investigation begins with a focus
on various single-round strategies, wherein the re-
trieved passages are directly fed into the LLMs.
Subsequently, we delve into several multi-round
approaches, involving the initial supply of retrieved
passages to the LLMs, gathering feedback, and then
modifying the interaction process with the LLMs
based on that feedback.

3.1 Definition of Unknown Output

LLMs are not universally capable. Their effective-
ness relies on being trained on relevant data, storing
essential knowledge within their weights. When an
LLM cannot provide an answer directly, a common
strategy is to use retrieval to fetch pertinent context.
However, there may be instances where the model
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discerns that the retrieved context is insufficient for
a response. In such cases, the LLM might produce
outputs like “The provided input does not contain
the context to answer the question.” We interpret
this behavior as the LLM’s self-awareness of its
inability to confidently produce an answer based
on the top-k retrieved passages. To standardize the
model’s response in these situations and prevent
varied output formats, we prompt the model to gen-
erate “unknown” when it believes the given context
is inadequate for an answer. To be specific, we
add the following sentence in the prompt: “If don’t
know the answer, just say Unknown.”

3.2 Single-Round Approaches

In this section, we explore single-round strategies
where retrieved passages are directly sent to the
LLM. We first examine a zero-shot approach, pro-
viding only the task definition and desired output
format, without demo examples. Then, we study a
one-shot strategy, utilizing a single demo example
to guide the LLM’s answer generation.

3.2.1 Zero-shot Prompt
Our first line of investigation pertains to a zero-
shot setting. In this setting, we only provide the
task definition and the desired answer format as
the prompt, excluding any demonstration examples
that elucidate how to generate an answer from the
question and the Top-k passages.

Concatenation Prompt. We begin our explo-
ration with a straightforward and commonly used
method that involves concatenating the question
and the retrieved passages. These passages are ar-
ranged in the order they were retrieved and com-
bined into a single text string. This composite text
is then fed into the language model to generate
the final answer, which can be represented by the
below equation:

a = LLM(q, p1, p2, ..., pk) (1)

From our experimental results, we observe that
this approach can potentially lead to “unknown”
output, even when one of the retrieved passages
contains the ideal context necessary to answer the
question. This stems from the LLM possibly be-
coming confused due to the complexity or abun-
dance of input, subsequently generating an unsatis-
factory response.

Post-Fusion Prompt. We also explored an alter-
native approach where each of the Top-k retrieved

passages is independently fed to the LLM. After
generating an answer for every passage, the col-
lective responses form an answer pool. A majority
voting mechanism is then applied to this pool to
determine the final answer, which can be denoted
by the following equation:

a1 =LLM(q, p1), · · · , ak = LLM(q, pk)

majority = argmax
i

ai
(2)

Our experimental findings suggest that while this
approach can decrease the likelihood of indetermi-
nate output, it presents a distinct challenge. Specif-
ically, the correct or “gold” answer may indeed be
presented within the generated answer pool, but it
might not be the majority answer, thus resulting in
an incorrect final response.

3.2.2 Few-shot Prompt
We introduce two distinct prompts, with one-shot
example, to guide the LLMs in fusing answers from
potentially relevant passages. Examples of these
two prompt types are provided in Fig. 8 and 9 in
the Appendix A, respectively.

Given the significant enhancements chain-of-
thought brings to multi-hop question answering, we
aim to adapt this approach for single-hop retrieval-
augmented generation. Our method uses demon-
strative examples to guide answer generation strate-
gies. We employ two techniques for this: One ap-
proach involves pruning irrelevant passages and
using the few remaining relevant ones for answer
generation. The other one is to initially identify the
relevant information and then summarize the rele-
vant information like chain of thought and generate
the final answer.

Pruning Prompt. This prompt requires the LLM
to effectively identify answerable passages through
a process of selective elimination. As a result, The
demonstration involves differentiating irrelevant
passages from the ones that can provide an answer,
and subsequently generating the final response
based on the few relevant passages.

Summary Prompt. Summarization represents a
strategy that extracts the central information from
the Top-k passages. Based on this synthesized sum-
mary, the LLM can produce the final answer. We
posit that summarization could serve as a guid-
ing mechanism for the LLM to more effectively
respond to the question. To illustrate this, we pro-
vide a demonstration example that exhibits how the
model selects useful information from the passage
before delivering the final response.
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Figure 2: Diagram of Post-Fusion as the Fallback on top
and Concatenation as the Distiller at bottom.

3.3 Multi-Round Approaches

In our exploration of multi-round strategies, we
first provide the retrieved passages to the LLM.
Based on the initial feedback received either “un-
known” or a list of candidate answers, we adjust
our interaction process with the LLM accordingly.

Post-Fusion as the Fallback (Concat+PF). Ini-
tially, we employ the concatenation method as il-
lustrated in upper box of Fig. 2 to obtain an answer
predicted by the LLM. If the LLM determines that
the input passages are unable to provide an answer
to the question (i.e., “unknown” responses), we
then proceed to the second round where we utilize
the Post-Fusion approach to produce an answer
pool. Finally, we employ a majority vote to select
the final answer.

Concatenation as the Distiller (PF+Concat).
To begin with, we leverage the Post-Fusion strat-
egy to curate a pool of potential answers shown in
lower box of Fig. 2. Instead of performing a major-
ity vote, a passage selection process (Lewis et al.,
2020) is adopted to discard passages that yield an
“unknown” output by the LLM. In the second round,
the LLM is prompted with the concatenation of the
unfiltered passages, along with the question and an-
swer candidates generated from the first round. The
purpose is to guide the LLM in effectively extract-

ing (distilling) the correct answer from the pool of
candidates.

4 Experiments

Evaluation Benchmarks. We conduct evaluations
on multiple datasets of open-domain question an-
swering to assess the performance of the proposed
integration approaches.

The datasets used include Natural Ques-
tions (NQ) (Kwiatkowski et al., 2019), Trivi-
aQA (Trivedi et al., 2022b), and SQuAD-Open (Ho
et al., 2020) are all datasets designed for training
and evaluating single-hop question answering mod-
els. NQ is sourced from Google Search queries
and their corresponding Wikipedia answers. Trivi-
aQA offers a broader domain with trivia questions
and their answers derived from web and Wikipedia
sources. Conversely, SQuAD-Open is a variant of
the original SQuAD dataset that requires the model
to extract answers from open-domain Wikipedia
content, without any pre-specified passage.

Evaluation Metrics We adhere to traditional
QA dataset evaluation methods (Yang et al., 2018;
Ho et al., 2020), contrasting with the recent LLM
evaluations on QA tasks detailed in (Liu et al.,
2023), which assess whether the generated answer
includes the ground truth. Importantly, our evalu-
ation criteria are more rigorous than these recent
LLM evaluations (Liu et al., 2023), given that we
mandate the LLM to adhere strictly to the given
prompt in generating an entity-specific answer. In
detail, predicted answers are evaluated with the
standard answer exact match (EM) and F1 met-
ric (Rajpurkar et al., 2016; Liu et al., 2022). A
generated response is considered correct if, after
normalization, it matches any candidate in a list of
acceptable answers. The normalization process en-
tails converting the text to lowercase and omitting
articles, punctuation, and redundant whitespaces.

We also evaluate the percentage of “unknown”
responses (%Unk) which gauges the proportion of
times the LLM indicates it cannot answer based on
the given input. Additionally, we measure the error
rate through majority vote (%NM), representing
instances where the correct answer is within the
generated answer list but isn’t the majority selec-
tion.

Dataset Filter To mitigate the influence of spe-
cific training datasets on the LLM (Aiyappa et al.,
2023), we initially prompt the LLM to answer ques-
tions without any provided context. This process
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NQ TriviaQA SQuAD
EM F1 %Unk %NM EM F1 %Unk %NM EM F1 %Unk %NM

With gold passage
LLama2
Concatenation 26.9 36.9 12.9% - 38.5 44.9 8.3% - 37.0 39.3 10.8% -
Post-Fusion 27.5 38.6 2.8% 27.8% 38.8 45.2 4.4% 19.2% 38.3 42.3 6.8% 8.9%
Pruning Prompt 27.8 37.8 10.9% - 39.3 45.9 7.8% - 35.3 41.7 8.4% -
Summary Prompt 28.1 37.9 9.8% - 39.2 45.2 7.5% - 38.5 42.6 7.9% -
Concat + PF 30.3 40.5 1.7% 3.8% 40.4 46.0 0.8% 2.6% 41.5 45.1 3.6% 6.3%
PF + Concat 29.6 39.8 2.7% 2.3% 40.7 46.6 3.9% 1.5% 40.2 44.3 4.8% 5.6%
ChatGPT
Concatenation 38.1 45.4 19.9% - 51.6 57.9 18.1% - 53.1 64.9 13.6% -
Post-Fusion 40.1 50.4 7.4% 12.0% 51.4 57.3 9.1% 10.2% 57.1 71.2 2.1% 4.3%
Pruning Prompt 39.0 50.5 6.9% - 52.7 59.5 8.1% - 47.7 62.6 6.7% -
Summary Prompt 40.5 53.3 5.1% - 51.6 60.1 6.4% - 50.4 67.0 4.7% -
Concat + PF 42.9 53.9 6.5% 3.8% 55.9 62.8 7.5% 4.3% 60.6 74.0 1.7% 2.2%
PF + Concat 43.2 54.5 5.4% 3.6% 54.0 61.7 6.2% 3.1% 63.9 76.9 2.1% 2.0%
GPT4
Concatenation 41.9 52.9 14.9% - 54.1 61.8 12.7% - 57.0 63.9 9.8% -
Post-Fusion 39.7 51.7 5.5% 13.4% 55.0 63.2 8.9% 11.8% 58.2 64.5 3.5% 6.7%
Pruning Prompt 41.2 52.3 6.2% - 55.2 62.8 4.5% - 57.2 63.1 7.5% -
Summary Prompt 40.6 52.6 7.4% - 54.8 62.5 5.9% - 57.8 62.7 6.5% -
Concat + PF 44.3 55.1 6.4% 2.1% 58.3 67.4 7.1% 3.2% 66.2 78.4 3.8% 1.1%
PF + Concat 43.8 54.6 7.3% 4.2% 57.8 66.2 9.5% 7.3% 65.3 77.9 4.2% 3.6%

Table 1: Exact match (EM) and F1 scores on filtered DEV split of the NQ, TriviaQA and SQuAD using Top-5
passages under with gold passage setting. %Unk denotes the percentage of Unknown responses. %NM denotes the
error rate by majority vote. Concat refers to the Concatenation strategy and PF refers to Post-Fusion strategy.

enables us to filter out questions that the LLM can
accurately answer independently, thereby eliminat-
ing the need for additional external contextual infor-
mation. The remaining questions, which the LLM
couldn’t answer independently, are the focus of our
study. This filtering ensures our evaluation strin-
gently reflects the LLM’s ability to utilize external
context from retrieved passages.

We use the development set of NQ, TriviaQA,
and SQuAD, initially containing 5,892, 6,760,
5,928 questions, respectively. After removing ques-
tions that can be answered without context, we are
left with 3,459 questions in NQ, 1,259 in TriviaQA,
and 3,448 in SQuAD.

Retriever and LLM model. We use the
Wikipedia dump from Dec. 20, 2018 for NQ and
TriviaQA and the dump from Dec. 21, 2016 for
SQuAD. We apply preprocessing steps follow-
ing Chen et al. (2017); Karpukhin et al. (2020);
Liu et al. (2021), which involve generating non-
overlapping passages of 100 words each. Similar to
(Izacard and Grave, 2021), passages are retrieved
with DPR (Karpukhin et al., 2020) for NQ and Triv-
iaQA and with BM25 (Robertson et al., 1995) for
SQuAD. We consider two different settings for this
study. The first utilizes the top-k retrieved passages
directly (gold passage is not necessarily included).

In contrast, the second setting concerns the situa-
tion that the gold-standard passage is included in
the context. If the gold passage is not within the
top-k passages, we randomly insert it into the top-k
list.

We use both open and close LLMs.
For Llama2 (Touvron et al., 2023),
we use the instruction-tuned version
Llama-2-7b-chat-hf model and apply
greedy decoding with the temperature pa-
rameter set to 0. For ChatGPT, we use the
gpt-3.5-turbo-16k model. For GPT4 (Ope-
nAI, 2023), our choice is gpt-4-0613.

4.1 Results

The results using the gold passages setting are pre-
sented in Table 1, while those without incorporating
gold passages are in Table 2. Initially, we obtain
the Top-5 retrieved passages, representing the set-
ting without added gold passages. If these passages
don’t contain the answer, we randomly integrate the
gold passage among the Top-5 candidate passages,
corresponding to the setting with gold passages.

Table 1 reveals that among the single-round
zero-shot methods, Post-Fusion consistently sur-
passes the traditional concatenation approach in
both EM and F1 metrics across all three bench-
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NQ TriviaQA SQuAD
EM F1 %Unk %NM EM F1 %Unk %NM EM F1 %Unk %NM

Supervised 40.9 - - - 55.2 - - - 35.8 - - -
Without gold passage
LLama2
Concatenation 24.6 34.6 18.2% - 35.8 40.9 14.6% - 20.1 28.9 21.8% -
Post-Fusion 24.9 36.3 13.8% 15.3% 35.9 43.8 10.5% 14.5% 21.5 29.5 16.2% 18.3%
Pruning Prompt 25.7 35.4 12.7% - 36.2 43.9 9.8% - 23.5 30.4 10.4% -
Summary Prompt 26.3 35.7 10.3% - 36.2 42.0 8.5% - 23.8 30.2 10.9% -
Concat + PF 28.0 38.9 3.2% 3.6% 37.7 43.2 4.2% 3.5% 26.5 34.9 3.2% 2.6%
PF + Concat 27.9 38.5 8.7% 4.8% 38.2 43.6 8.9% 2.8% 24.2 35.8 12.8% 2.3%
ChatGPT
Concatenation 34.5 43.8 23.1% - 49.3 55.5 19.9% - 28.1 34.8 28.5% -
Post-Fusion 38.3 48.3 10.1% 9.0% 49.7 55.7 10.7% 7.4% 32.1 40.3 13.9% 12.3%
Pruning Prompt 36.2 46.3 9.1% - 49.3 56.5 9.5% - 36.1 40.6 12.7% -
Summary Prompt 36.3 48.4 8.6% - 48.3 56.5 7.7% - 34.1 40.0 13.7% -
Concat + PF 39.9 49.7 9.3% 5.3% 52.7 59.5 9.1% 2.8% 40.1 43.8 5.7% 2.3%
PF + Concat 38.9 50.1 9.1% 4.3% 50.5 57.7 6.7% 3.2% 38.5 41.2 9.9% 5.4%
GPT4
Concatenation 36.9 50.6 18.9% - 51.3 60.7 16.7% - 29.7 30.9 25.8% -
Post-Fusion 37.7 49.7 6.5% 9.9% 51.5 59.0 13.2% 8.9% 33.1 37.8 12.8% 12.5%
Pruning Prompt 38.3 48.4 9.2% - 51.2 58.2 12.5% - 32.7 39.8 13.6% -
Summary Prompt 38.5 49.6 8.3% - 50.8 58.5 13.9% - 35.9 39.2 12.5% -
Concat + PF 41.5 52.1 5.4% 3.1% 55.7 63.7 8.1% 3.8% 41.8 44.7 5.6% 3.2%
PF + Concat 40.6 51.6 6.9% 9.2% 54.3 62.8 12.5% 6.4% 42.1 44.9 9.7% 8.4%

Table 2: Exact match (EM) and F1 scores on filtered DEV split of the NQ, TriviaQA and SQuAD using Top-5
passages on without adding gold passage setting. %Unk denotes the percentage of Unknown responses. %NM
denotes the error rate by majority vote. Concat refers to the Concatenation strategy and PF refers to Post-Fusion
strategy.

marks. This indicates that the model may become
distracted when faced with a combination of rel-
evant passages. Compared to zero-shot and few-
shot approaches, both Pruning Prompt and Sum-
mary Prompt show a marked enhancement over
the concatenation method, though the margin of
improvement is modest. The use of the CoT, which
elicits a potential reasoning process, can guide the
model in attending to relevant passages. However,
this approach does not greatly enhance single-hop
question answering as compared to prior multi-hop
reasoning studies (Wei et al., 2022; Trivedi et al.,
2022a).

Compared to single-round methods, multi-round
strategies consistently deliver superior perfor-
mance, showcasing significant improvements. For
instance, on the NQ dataset, Concat + PF exceeds
the Concatenation method by over 10% on average
across three distinct LLMs. It suggests the effi-
cacy of integrating model uncertainty as feedback.
Among the multi-round approaches, Concat + PF
demonstrates better performance compared to PF +
Concat on most of cases. Comparing PF + Concat
with Post-Fusion, it is evident that PF + Concat,
leveraging LLM to select the best answer from a
candidate pool, outperforms the majority vote ap-
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Figure 3: The token usage of different approaches using
top-5 passages.

proach.
In the realm of open-domain question-answering,

as evidenced by Table 2, the performance metrics
(EM and F1) under settings without the addition of
a gold passage are comparatively lower. This is pri-
marily attributed to the reduced recall of Top-k re-
trieval, resulting in a higher propensity to generate
“unknown” responses. Notably, our proposed multi-
round methodologies, when leveraging GPT4 as
the LLM, deliver performance figures that are on
par with supervised outcomes.
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Figure 4: The answer EM performance with the increase
of Top-k retrieved passages.

4.2 Usage Analysis

Striking a balance between enhancing the quality
of generated answers and optimizing resource uti-
lization is essential. As depicted in Figure 3, differ-
ent methodologies vary in their token usage. The
Concatenate method is the most resource-efficient,
whereas the Concat + PF method, albeit being the
second most efficient, has an additional 90.5 tokens
on average when compared to Concatenate. Given
the significant performance boost of Concat + PF
over Concatenate (a 15.6% increase in EM as pre-
sented in Table 2), we advocate for the adoption of
Concat + PF. This offers a more efficient means of
integrating retrieved passages with LLMs.

4.3 Effect of different Top-k passages from
the retriever

Figure 4 showcases open-domain QA results using
the Top-k retrieved passages on NQ dataset. As k
increases, we observe a corresponding increase in
retrieval recall. Our multi-stage methods, Concat
+ PF and PF + Concat, both benefit from increas-
ing k values, showing enhancements of 1.5 and
0.7 points, respectively, when moving from Top 5
to 20. In contrast, the conventional concatenation
method experiences a 0.8 EM performance decline
from Top 5 to 20. This suggests that the concate-
nation prompt can become counterproductive with
the inclusion of more passages, potentially because
it struggles to identify the correct passage and gets
distraction by incorrect ones. However, our multi-
stage approaches remain undeterred with the addi-
tion of passages, demonstrating greater robustness.

4.4 Effect of different Decoding Strategies

Instead of the traditional greedy decoding strategy,
a newer method known as self-consistency (Wang
et al., 2022) has been introduced and employed in
the chain-of-thought prompting (Wei et al., 2022).
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Figure 5: The answer EM performance with the increase
of the number of decode output.

This method begins by sampling from the language
model’s decoder to produce a diverse set of answers.
The optimal answer is then obtained by marginaliz-
ing the samples’ reasoning paths.

For the concatenation prompt, we opt for tem-
perature sampling (Ackley et al., 1985; Ficler and
Goldberg, 2017) as our decoding strategy, yielding
p outputs, rather than generating a singular answer
via greedy decoding as detailed in section 4.1. In
the case of the post-fusion prompt, each passage
employs a sampling decoding strategy, generating
p outputs for every k passages. This results in a
total of p× k outputs. It’s important to distinguish
between post-fusion prompts and self-consistency.
The former pertains to using different inputs, while
the latter is about the decoding sampling strategy.

Figure 5 presents an ablation of results with a
temperature of 0.7 and varying values of p in Top-p
sampling on ChatGPT, using the Top-5 retrieved
passages from the NQ dataset. The data suggests
that small sampling outputs, ranging from 1 to 10,
significantly enhance performance. However, as p
increases from 10 to 50, the degree of improvement
diminishes. And Concate + PF approach could ben-
efit more from the increase of p.

4.5 Effect of the order of the gold passage

In this section, we aim to assess how the placement
of the gold passage within the Top-k passages influ-
ences the ability of the LLM to generate accurate
answers. We examine three different placements:
(1) consistently positioning the gold passage at the
start of the Top-k passage list; (2) consistently plac-
ing the gold passage at the end of the Top-k passage
list; (3) maintaining the original sequence produced
by the retrieval model.

As the results depicted in Fig. 6, it is evident
that the placement of the gold passage significantly
affects the quality of the generated answers. Consis-
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Figure 6: The impact on the position of gold passage on
Combination method.

tently placing the gold passage in the same position
tends to improve performance compared to using
the retrieval order. Among the constant placement
options, positioning the gold passage at the bottom
tends to yield better results than placing it at the
top. This outcome might be tied to our prompt de-
sign, where we present the Top-k passages first,
followed by the question. Consequently, keeping
the gold passage closer to the question seems to
enhance performance to the greatest extent. More-
over, this observation is aligned with the (Liu et al.,
2023), where they find that a distinctive U-shaped
performance, as performance peaks when key in-
formation is at the start or end of the input, but
drops significantly for mid-context information.

5 Related Work

The recent proliferation of LLM-powered appli-
cations, such as ChatGPT/GPT4 (OpenAI, 2023),
Bing Chat, and CoPilot, has highlighted both the
impressive performance and certain limitations of
LLMs. These limitations include a high compute
and data demand, making it a challenge to con-
tinually update LLMs both efficiently and effec-
tively (Scialom et al., 2022). LLMs also tend to gen-
erate plausible yet non-factual texts, a phenomenon
known as “hallucination” (OpenAI, 2023; Zhao
et al., 2024). In response to these issues, the field
is witnessing a trend towards augmenting LLMs
with specialized tools (Schick et al., 2023; Paran-
jape et al., 2023), such as code interpreters (Zhang
et al., 2021; Gao et al., 2023; Shao et al., 2023) or
search engines (Park and Ryu, 2023). The goal is to
delegate specific tasks to more proficient systems
or to enrich the LLMs’ input context with more
pertinent information.

Augmentation of language models with pertinent

data retrieved from diverse knowledge bases has
demonstrated its effectiveness in enhancing open-
domain question answering performance (Lazari-
dou et al., 2022; Izacard et al., 2022; Chen et al.,
2023). The process typically involves using the in-
put query to (1) command a retriever to fetch a
document set (essentially, token sequences) from
a corpus, after which (2) the language model inte-
grates these retrieved documents as supplemental
information, guiding the final prediction.

The interleaving between the retriever and LLM
could be considered a reciprocal process. Vari-
ous studies have been conducted on generation-
augmented retrieval (GAR), which involves re-
vising or supplementing queries with generated
background information to enhance the retrieval
of relevant content. Well-known examples of this
approach include GAR (Mao et al., 2021) and
HyDE (Gao et al., 2022). With regard to com-
plex multi-step reasoning questions, work involv-
ing LLMs often necessitates the retrieval of seg-
mented knowledge (Meng et al., 2022; Trivedi
et al., 2022a; Khattab et al., 2022). This chain-of-
thought reasoning process (Wei et al., 2022; Jiang
et al., 2023; Nguyen et al., 2023) is followed by
conducting partial reasoning to generate the next
question, then retrieving further information based
on the outcome of that partially formed next ques-
tion, and repeating this cycle as needed (Yao et al.,
2022; Press et al., 2023).

Our work primarily focuses on a specific scope:
once the output from the retriever is determined,
we aim to identify the most effective method of in-
putting this data into LLMs for answer generation.

6 Conclusion

In this study, we identified two key challenges
associated with integrating LLMs and retrieved
passages: the occurrence of “unknown” responses
when feeding LLMs with concatenated passages
and the erroneous majority when using the Post-
Fusion approach. To overcome these challenges,
we proposed four improved approaches, including
two CoT-related strategies and two multi-round
methods incorporating LLM’s feedback. Through
our experimental results and token usage analysis,
we observed that it is advantageous to first employ
a concatenation strategy to generate an answer. In
the case of an “unknown” response, we recommend
transitioning to the Post-Fusion approach to obtain
the final answer through a majority vote.
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Limitations

Our evaluation is primarily constrained to three
open-domain QA datasets to align better with the
supervised state-of-the-art approach cited in (Izac-
ard and Grave, 2021). To ensure the broader appli-
cability and robustness of our findings, it’s essential
to evaluate the proposed methods on other bench-
marks, including MS MARCO and WebQuestions
datasets (Nguyen et al., 2016; Berant et al., 2013).

Currently, our evaluation focuses predominantly
on textual QA. While the proposed approach seems
generalizable to other modalities like tables (Pasu-
pat and Liang, 2015; Zhu et al., 2021) and knowl-
edge bases (Berant et al., 2013; Bao et al., 2016),
we have yet to empirically test and validate this
claim. Future studies could delve into exploring
its effectiveness on diverse modalities like UniK
QA (Oguz et al., 2022).

We haven’t thoroughly evaluated how our ap-
proach scales with larger datasets or more complex
queries (Trivedi et al., 2022b). This could be an
avenue of exploration, as scalability is vital for
real-world applications.
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Given the relevant background contexts, answer the current question using one of the context 
in short factoid phrase manner.
---
Question: Who produced the album that included a re-recording of \"Lithium\"?
Answer: Butch Vig
Question: What city was the victim of Joseph Druces working in?
Answer: Boston, Massachusetts
Question: In what year was the star of To Hell and Back born?
Answer: 1925
---
Try your best to guess an extractive answer. If don't know the answer, just say unknown.
Context:
{retrieved_topk_context}
Question:
{question}
Answer:

Concatenation

Answer Format Example

Task Description

Uniform the response
like “no context
provide to answer the
question”

Figure 7: The Prompt used in Concatenation and Post-Fusion.

A Prompt used in Different Approaches

The prompts used in the Concatenation
and Post-Fusion approaches are illustrated
in Fig. 7. In the Concatenation approach,
retrieved_topk_context represents the
concatenation of the top-k retrieved passages.

Conversely, in the Post-Fusion approach, it
represents a single passage at a time.

The Pruning Prompt’s specific prompt is pre-
sented in Fig. 8, while the Summary Prompt’s
prompt is depicted in Fig. 9.
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Answer questions with short factoid answers.
---
Question: Who produced the album that included a re-recording of \"Lithium\"?
Answer: Butch Vig
Question: What city was the victim of Joseph Druces working in?
Answer: Boston, Massachusetts
Question: In what year was the star of To Hell and Back born?
Answer: 1925
---
Follow the following format.
Context:
sources that may contain relevant content
Question:
the question to be answered
Rationale: Let's think step by step. a step-by-step deduction that identifies the correct response, which will be provided below
Answer: a short factoid answer, often between 1 and 5 words. Make sure generate  \"Answer\": in the end!
If don't know the answer, just say unknown as answer.
---
Context:
[1] Peter Outerbridge | Peter Outerbridge Peter Outerbridge (born June 30, 1966) is a Canadian actor…..
[2] Except the Dying | 2008. On March 3, 2015, Acorn Media announced a re-release for all three movies, set for May 26, 2015…..
[3] «Saw VI | Saw VI Saw VI is a 2009 American horror film directed by Kevin Greutert from a screenplay written by Patrick Melton 
and Marcus Dunstan. It is the sixth installment in the \"Saw\" franchise and stars Tobin Bell……
Question: Which 2009 movie does Peter Outerbridge feature as William Easton?
Rationale: Let's think step by step.
The question is asking for the 2009 movie that Peter Outerbridge was in as William Easton. We can use process of pruning to 
figure this out. Source 1 doesn’t contain the information. In source 2, it talks about a made-for-TV movie in 2004. In source 3, it 
talks about the sixth installment in the \"Saw\" franchise. This must be the movie we are looking for.
Answer:
Saw VI
---
Context: 
{retrieved_topk_context}
Question:
{question}
Rationale: Let’s think step by step. 

Elimination Reasoning Demo

Answer Format Example

Reasoning and Output 
Format

Figure 8: The Pruning Prompt.
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Answer questions with short factoid answers.
---
Question: Who produced the album that included a re-recording of \"Lithium\"?
Answer: Butch Vig
Question: What city was the victim of Joseph Druces working in?
Answer: Boston, Massachusetts
Question: In what year was the star of To Hell and Back born?
Answer: 1925
---
Follow the following format.
Context:
sources that may contain relevant content
Question:
the question to be answered
Rationale: Let's think step by step. a step-by-step summary that identifies the correct response, which will be provided below
Answer: a short factoid answer, often between 1 and 5 words. Make sure generate  \"Answer\": in the end!
If don't know the answer, just say unknown as answer.
---
Context:
[1] Peter Outerbridge | Peter Outerbridge Peter Outerbridge (born June 30, 1966) is a Canadian actor…..
[2] Except the Dying | 2008. On March 3, 2015, Acorn Media announced a re-release for all three movies, set for May 26, 2015…..
[3] «Saw VI | Saw VI Saw VI is a 2009 American horror film directed by Kevin Greutert from a screenplay written by Patrick Melton 
and Marcus Dunstan. It is the sixth installment in the \"Saw\" franchise and stars Tobin Bell……
Question: Which 2009 movie does Peter Outerbridge feature as William Easton?
Rationale: Let's think step by step.
The question requires information on the 2009 movie that Peter Outerbridge was in as William Easton. Going through the provided 
sources, we can narrow down our focus to Source 3 and Source 4 that mention \"Saw VI\", a movie released in 2009, in which 
Peter Outerbridge starred. By summarizing these details, the movie from 2009 featuring Peter Outerbridge is \"Saw VI\”.
Answer:
Saw VI
---
Context: 
{retrieved_topk_context}
Question:
{question}
Rationale: Let’s think step by step. 

Summary

Reasoning and Output 
Format

Summary Reasoning Demo

Answer Format Example

Figure 9: The Summary Prompt.
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