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Abstract

This survey analyses how external knowledge
can be integrated into language models in the
context of retrieval-augmentation. The main
goal of this work is to give an overview of:
(1) Which external knowledge can be aug-
mented? (2) Given a knowledge source, how to
retrieve from it and then integrate the retrieved
knowledge? To achieve this, we define and
give a mathematical formulation of retrieval-
augmented knowledge integration (RAKI). We
discuss retrieval and integration techniques
separately in detail, for each of the following
knowledge formats: knowledge graph, tabular
and natural language.

1 Introduction

In natural language processing (NLP), external
knowledge or information refers to information
that is not explicitly present in the language model
(LM) input yet helpful for LMs to produce target
output (Zhu et al., 2022). Traditional methods to
integrate knowledge, especially those before large
language models (LLMs) (Touvron et al., 2023;
Chowdhery et al., 2023), include pre-training over
a knowledge corpus (Beltagy et al., 2019; Huang
et al., 2019; Chalkidis et al., 2020), and fine-tuning
in the domain that the knowledge is concerned
with (Huang et al., 2019). Despite improved per-
formance of the resulting models (Yin et al., 2022),
such methods typically require (re-)training on the
whole (without filtering) knowledge. This is not
efficient, as the ever-growing size of language mod-
els (Chowdhery et al., 2023) raises hardware and
energy issues (Bannour et al., 2021; Treviso et al.,
2023) of applying these training-intensive methods
originally proposed for smaller models.

As an alternative to traditional pre-training and
fine-tuning to integrate knowledge into LLMs,
retrieval-augmented (RA) methods (Karpukhin
et al., 2020; Yu et al., 2023) have become more
and more popular in recent years. RA methods

leverage pre-trained internal knowledge already
parameterized in LMs as well as retrieved exter-
nal knowledge (Lewis et al., 2020). In the set-
ting of retrieval augmentation, LMs access for
instance only the most relevant, top-k retrieved
items without seeing the entire external sources,
thus enabling efficiency (Cai et al., 2022). Previ-
ous works also demonstrate decoupling knowledge
and language model can lead to better adaptabil-
ity (Long et al., 2023), straightforward knowledge
edit (Zheng et al., 2023; Ovadia et al., 2023) and
improved explainability (Samarinas et al., 2021).

To track the research intersection of retrieving
knowledge to augment LMs, we study the topic of
retrieval-augmented knowledge integration (RAKI)
in this survey. In RAKI, the retrieval base is some
specific external knowledge (Baek et al., 2023b)
(e.g. a knowledge graph or a set of Wikipedia arti-
cles), where the knowledge is typically written by
experts and thus enjoys higher factuality than gen-
eral texts. This survey is mainly based on recent
(2018-2024) publications (See Appendix A.1, A.2
for more details of literature). Inspired by Hu et al.
(2024), we categorize the published works in this
line of research based on the format of knowledge
source: knowledge graph, tabular and natural lan-
guage. For each knowledge source, we start by in-
troducing the source format using the annotations
proposed in Section 2. Then, we discuss in detail
the retrieval and integration techniques proposed
in the reviewed methods. Finally, we point out the
challenges of RAKI and list some relevant work
to deal with them. We would like to point out that
this survey aims to focus on (pure) NLP and does
not consider work on vision (Yang et al., 2021; Lin
and Byrne, 2022) or audio (Zhao et al., 2023a).

2 Preliminaries

In the following, we briefly introduce retrieval-
augmented generation (RAG) and then define and
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formulate retrieval-augmented knowledge integra-
tion (RAKI).
Retrieval-augmented generation is first pro-
posed by Lewis et al. (2020), where world
knowledge is retrieved from a vector index con-
structed over Wikipedia articles and then sent to a
seq2seq (Sutskever et al., 2014) model for gener-
ation. More formally, given an input-output pair
(x, y) from a generation task, retrieval-augmented
generation aims to generate the target output y con-
ditioned on the input x and an accessible document
set Z for reference (Lewis et al., 2020; Yu, 2022).
Retrieval-augmented knowledge integration
Baek et al. (2023b) uses the term knowledge aug-
mentation to address the practice of retrieving
knowledge for language models. In this work, we
adopt the term retrieval-augmented knowledge in-
tegration (RAKI) for better clarification, since we
would like to avoid confusion with non-retrieval
based knowledge-integration methods, as men-
tioned in Section 1, that involve heavy pre-training
or fine-tuning. RAKI also follows the first-retrieve-
then-infer paradigm as in RAG, and we identify
the differences as follows: (1) RAG, by its nature,
deals with generation tasks, while RAKI is compat-
ible with classification tasks as well, i.e. y being
a class label (Yu et al., 2023). (2) RAG typically
retrieves general documents for generation, while
RAKI further specifies certain knowledge sources
(e.g. an external knowledge graph) as retrieval base
for better factuality (Baek et al., 2023b).
Definition The setting of RAKI can then be for-
mulated as follows: Given a user input x from task
T and a specific knowledge source (to be discussed
in Section 3), we denote y as target output and
K as whole knowledge from the source. RAKI
consists of two components (Baek et al., 2023b):
(1) a retriever R which selects a subset K′ from
knowledge K:

K′ = R(x;K), (1)

where normally |K ′| ≪ |K| in this retrieval step;
(2) a language model M targeted for task T . M
takes both the input x and the retrieved knowledge
K′ for prediction:

y′ = M(x;K′). (2)

This step is referred to as integration. Due to the
growing in-context reasoning skills (Brown et al.,
2020; Chen, 2023) of language models, prompt-
ing (Schick and Schütze, 2021; Liu et al., 2023b)

has become the go-to paradigm to integrate exter-
nal knowledge. In prompting, the retrieved K′ is
formulated as text to be inserted into a prompt con-
taining x (Baek et al., 2023b; Zhang et al., 2023c).
Then the formulated prompt is sent to LMs for gen-
eration. Besides augmentation via prompts, this
survey also discusses non-prompting techniques to
integrate retrieved K′, which are often based on
LMs as encoders to produce representations of x
and K′ (e.g. in Section 3.1.2 and Section 3.2.2).

In the following, we use the definitions and no-
tations above to discuss retrieval and integration
in detail for the cases of K specified as knowledge
graph (Section 3.1), tabular (Section 3.2) and natu-
ral language (Section 3.3).

3 Different Knowledge Sources as K
We cover two structured knowledge: graph-based
(knowledge graph) and row-based (tabular), as
well as unstructured knowledge (natural language).

3.1 Knowledge Graph

Knowledge graphs (KGs) store rich factual knowl-
edge of things, especially relational information by
its graph structure. A KG can be defined as:

K := (E,R), (3)

where E is the set of entity nodes, and each edge
r ∈ R is a relation that connects a head entity eh
and a tail entity et in the graph (Wang et al., 2019).
The corresponding 3-element tuple (eh, r, et) is
then referred to as a triple.

Table 1 in Appendix presents an overview of the
KGs applied in the literature related to retrieval-
based knowledge integration. Table 2 in Appendix
summarizes the application of these KGs, show-
ing that retrieving KGs can help with knowledge-
intensive tasks such as knowledge graph question
answering (Baek et al., 2023a). The entity-centered
nature of KGs also makes them suitable for infor-
mation extraction tasks such as named entity recog-
nition (Zhang et al., 2023a; Fu et al., 2023) and
relation classification (Fu et al., 2023).

3.1.1 Graph Retrieval
The goal of graph retrieval is to extract a subgraph
K′ of K given input x. Subgraph K′ can be repre-
sented as a list of top-k retrieved triples (Andrus
et al., 2022; Baek et al., 2023b; Fu et al., 2023):

K′ = R(x;K) = {(ehi, ri, eti)}ki=1, (4)
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where ehi, ri and eti denote the head entity, the
relation and the tail entity in the i-th triple.

Some previous work (Zhang et al., 2023a) re-
quires only entity information such as entity de-
scriptions from the knowledge graph. The resulting
subgraph is then a list of entities without relations:

K′ = {ei}ki=1. (5)

In both cases, entity retrieval can usually be the first
step. Therefore, we next introduce entity retrieval
first, and then triple retrieval.
Entity retrieval Entity retrieval finds the most
relevant entity candidates that match input x, as
described in Equation 5. Linked entity IDs and
recognized entity names are intuitive features for
entity retrieval, requiring an additional entity recog-
nition (Akbik et al., 2019) or entity linking (De Cao
et al., 2021) procedure over x before retrieval.

As for entity IDs: Fu et al. (2023) employ
TagMe (Ferragina and Scaiella, 2010) to detect
and link entity mentions in x. TagMe provides
linked entities as their IDs from Wikipedia, thus
enabling Fu et al. (2023) to find exact match in the
Wiki-based KG Wikidata5M (Wang et al., 2021).

As for entity names: Li et al. (2023) use a large
language model Codex (Chen et al., 2021) to ex-
tract entity names of interest automatically. The
authors design a text-to-logic template “Question:
{x} Logic Form: {logic form containing target re-
trieved entities}”, and provide few-shot examples
of user query and corresponding logical forms for
in-context learning. Given input x, the last element
in the logical language generated by Codex is ex-
tracted as the entity name of interest. To deal with a
multiple-choice QA task, Lv et al. (2020) identify1

potential entities both in question and in all five
answer candidates, and find their matches in Con-
ceptNet (Speer et al., 2017). Zhang et al. (2023a)
train a binary classifier (Su et al., 2022) to identify
potential entity mentions. Then for each positive
span as a potential entity, Zhang et al. (2023a) use
the tool ElasticSearch2 for its best matches in Wiki-
data (Vrandečić and Krötzsch, 2014). Shu et al.
(2022) also employs span classifiers as mention
detection models, but followed by an extra alias
mapping tool (Gabrilovich et al., 2013) to obtain
better candidate entities for each potential mention.

Other features such as n-gram have also been
studied for entity retrieval. In this case, a preceding

1Their entity identification tool is not explicitly given.
2https://www.elastic.co/

entity detection step is not required before querying
the KG. Young et al. (2018) and Li et al. (2022) enu-
merate n-grams out of input x, and then retrieve by
checking if an n-gram is an exact entity entry in the
KG. Bian et al. (2021) adapt similar settings to the
task of multiple-choice question answering (QA),
requiring exact match of n-grams between concept
words from ConceptNet (Speer et al., 2017), and
question and answer candidates from the task.
Triple retrieval As described in Equation 4, triple
retrieval finds the most relevant triples (eh, r, et) as
KG facts for final augmentation.

(1) Triple retrieval from retrieved entities. A
simple and intuitive solution is to base on the result
of the above-mentioned entity retrieval: given can-
didate entities {ei} resulted from entity retrieval,
this solution retrieves triples that contain a candi-
date entity (i.e. from {ei}) either as head or tail (Fu
et al., 2023; Young et al., 2018; Li et al., 2022;
Zhang et al., 2023a; Baek et al., 2023b):

K′ = {(eh, r, et) ∈ K|eh or et ∈ {ei}}. (6)

Since retrieved entities {ei} are considered relevant
to the input x, and triples in K′ explicitly involve
at least one retrieved entity in {ei}, these triples
are supposed to be relevant to x as well. Note that
Equation 6 only includes triples that are directly
connected to a retrieved entity, i.e. 1-hop away. To
tackle problems that require multi-hop reasoning
over graph, Feng et al. (2020) and Bian et al. (2021)
further consider triples within a specified maximum
distance from retrieved entities.

(2) Triple retrieval from triple semantics. One
problem with such triple retrieval based on explicit
entity-retrieval is, that not all triples involving re-
trieved entities are necessarily relevant to input x.
Therefore, an alternative is the triple retrieval with-
out prerequisite entity retrieval. In the course of
that, a promising direction is to model relation r (or
(eh, r, et)) and x directly. Most work in this direc-
tion study language models as shared encoder for x
and verbalized relation r. They for instance refor-
mulate r or (eh, r, et) in natural language. That en-
ables pre-computable representations (Oguz et al.,
2022) of relational knowledge before retrieval. An-
drus et al. (2022), for instance, verbalize KG triples
into natural language by joining eh, r, et with space
and making necessary adjustments such as adding
an auxiliary verb if r does not contain a verb, or
adding the article the. The resulting verbalization
is treated as a KG fact and denoted as v(eh, r, et).

47

https://www.elastic.co/


In the case of a question answering task, Andrus
et al. (2022) retrieve the KG fact with the minimum
edit distance from x as top-1 relevant:

K′ = (e′h, r
′, e′t) = argmin

(eh,r,et)∈K
dist(x, v(eh, r, et)).

(7)
For story completion though, Andrus et al. (2022)
apply Sentence-BERT (Reimers and Gurevych,
2019) to embed x and KG facts. The KG fact with
the maximum cosine similarity from x is retrieved.
Baek et al. (2023a) also follow this first-verbalize-
then-embed methodology, but apply MPNet (Song
et al., 2020) as the shared encoder.

To summarize this retrieval subsection (Sec-
tion 3.1.1), Table 3 in Appendix presents the dis-
cussed retrieval methods (both entity and triple).

3.1.2 Subgraph Integration
With the selected graph knowledge from graph re-
trieval (described in Section 3.1.1), the final step is
to augment the input x with retrieved subgraph K′

for task T , given as:

y′ = M(x; {(ehi, ri, eti)}ki=1), (8)

or alternatively

y′ = M(x; {ei}ki=1) (9)

when only entity information is required (Zhang
et al., 2023a) to perform task T . Based on the form
of K′ when augmented to the language model, we
discuss K′ represented as hard, discrete natural lan-
guage prompts and soft, continuous embeddings.
Prompt-based integration Table 4 (See Ap-
pendix) presents the prompts employed in prior
work of knowledge graph integration. In prompt-
based settings, knowledge is inserted as text into
a language model. A simple implementation is
to append (Li et al., 2022; Fu et al., 2023) or
prepend (Baek et al., 2023a,b) the retrieved triple(s)
‘as is’ to the input x, preserving the triple-structure
of K′. Triples can also be augmented with task
instruction (e.g. Below are the facts ...) (Baek et al.,
2023a) or special tokens to highlight recognized
entities (Fu et al., 2023) before concatenation with
input.

Other works transform triples to natural phrases,
to make the inserted knowledge more similar to
input. The easiest way is to manually design a
mapping from relation names to a descriptive nat-
ural language (NL) (Lv et al., 2020; Bian et al.,

2021; Zhang et al., 2023a), which will finally con-
nect the head and tail entities in the prompt. For
example, Bian et al. (2021) suggest mapping the
relation Synonym to NL is the same as, so to refor-
mulate the triple (Problem, Synonym, Challenge)
as descriptive Problem is the same as Challenge.

Due to the advanced capability of LLMs of
understanding and paraphrasing knowledge, even
rewriting prompts (Wu et al., 2023; Zhu et al.,
2023), some prior work studies the possibility of
reformulating the retrieved KG triple with a lan-
guage model. Bian et al. (2021) discuss paraphrase-
and retrieval-based reformulation of KG triples.
They send the mapping-based descriptions (e.g.
Problem is the same as Challenge) to an encoder-
decoder LM to generate top decoded paraphrases.
Besides, they also use the mapping-based descrip-
tions to retrieve Wikipedia texts for retrieval-based
descriptions. Bian et al. (2021) also point out
that concatenation of the three types of reformu-
lation (i.e. mapping-based, paraphrase-based and
retrieval-based) delivers better performance than
using any single type. Wu et al. (2023) adopt Chat-
GPT to paraphrase KG triples to free-form texts.
Andrus et al. (2022) and Li et al. (2023) provide
few-shot triple-to-text examples in user input to
assist GPT models with paraphrase generation.
Embedding integration In embedding-based KG
integration , the retrieved entities {ei}ki=1 are ex-
plicitly embedded (denoted as E) before sending
them to the language model:

y′ = M(x; {E(ehi,ri,eti)}ki=1) (10)

in the case of relations, and

y′ = M(x; {Eei}ki=1) (11)

in the case of entities.
To integrate relation embeddings, Young et al.

(2018) apply an LSTM to encode each retrieved
triple r (such as incomnia, IsA, sleep_problem)
and candidate response (such as A cup of milk
could help you sleep.) in dialogue task. Bi-linear
products of the encodings are then used to com-
pute activation for each possible response. As for
entity embeddings, Fu et al. (2023) evaluate en-
tity embeddings of retrieved entities from various
knowledge-intensive pre-trained LMs (Peters et al.,
2019; Zhang et al., 2019). They point out the chal-
lenge of integrating multiple knowledge via em-
beddings (Fu et al., 2023), that it is hard to simply
add embeddings from different entities and models
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at a time without losing much information in each
embedding.

3.2 Tabular
A tabular is a row-based format to store knowledge
efficiently, with each row representing one entry:

K := {ri}i=1 = {(ai1, ai2, · · · , aiM )}i=1 (12)

Each row ri is a tabular item, normally describ-
ing an entity or event. ai1, ai2, · · · , aiM are M
attributes of the i-th row, which can be given as
text (e.g. entity description) or numerical values.
Prior works also discuss the case of K being multi-
ple tables (Herzig et al., 2021; Li et al., 2021).

3.2.1 Tabular Retrieval
Tabular retrieval can be performed on three levels:
(1) Retrieve relevant tables from a collection of
tables (Herzig et al., 2021; Li et al., 2021). (2) Re-
trieve relevant rows from a table, which describes
the standard setting in table-QA (Wan et al., 2023).
(3) Retrieve relevant blocks from relevant rows,
by removing less important columns (Wan et al.,
2023). The goal of tabular retrieval is to find the
most relevant table blocks (i.e. sub-tabular):

K′ := {(aij1 , aij2 , · · · , aijm)}ki=1 (13)

where j1, · · · , jm are involved columns.
(First-)Retrieval Retrieval based on neural repre-
sentations have been adapted to tabular tasks since
the success of deep passage retrieval (Karpukhin
et al., 2020) over text. Herzig et al. (2021) em-
ploy TaPas (Herzig et al., 2020), a BERT (Devlin
et al., 2019) model pre-trained with weak supervi-
son for table parsing. For a table-QA task, both
the question x and the table T ∈ K are encoded by
TaPas, where the table T is textualized by concate-
nating the cell contents left-to-right, row by row.
The top-k tables yielding maximum inner product
with x at [CLS] token are retrieved. Instead of sim-
ply concatenating cells (Herzig et al., 2021; Oguz
et al., 2022) for encoding tabular data, Wan et al.
(2023) and Shi et al. (2023) rewrite each cell into
“(column, value)” text, and concatenate this semi-
structured text of each row into a textual sequence.
Refinement of tabular retrieval K′ from the
first retrieval can still contain redundant informa-
tion, e.g. less relevant rows from a retrieved table
in a multi-table setting. Park et al. (2023) further
refine the retriever setup by adding a reranking
module after retrieval, to score each retrieved block

b ∈ K′. The relevance score is given by the out-
put distribution of T5 (Raffel et al., 2020) over Rel
(relevance) and Nonrel (non-relevance) from the
prompt “query: {q} block: {b} relevant: ”. While
this reranking technique aims to filter out less rel-
evant rows from K′, Wan et al. (2023) propose to
filter out columns: by applying a shared LM to en-
code x and rows given by a sequence of (attribute,
value) pairs. The top-k rows are retrieved through
maximum inner product search (Mussmann and
Ermon, 2016). Irrelevant columns are removed by
leveraging the encodings of x, K and previously
retrieved rows. To further enrich augmentation,
Zhong et al. (2022) perform an extra retrieval step
over natural language sources for an informative
passage and reformulate this tabular task to table-
text task (Li et al., 2021). This passage is then sent
with retrieved table cells for final answer.

3.2.2 Sub-Tabular Integration

Prompt-based integration Given the top-k rows
K′ = {ri}ki=1 from previous tabular retrieval, the
most studied technique to integrate them is to tex-
tualize K′ and insert them into a prompt.

Herzig et al. (2021) and Zhong et al. (2022) for-
mulate the prompt learning problem as extractive
QA, by restricting the final output to be an exact
span from retrieved table K′. As suggested in De-
vlin et al. (2019), they add a multi-layer perception
on top of the LM and train the model to predict the
start and end position correctly from textualized K′

in the prompt. Li et al. (2021) and Wan et al. (2023)
regard the problem as a generative QA task, where
normally a seq2seq LM is trained to generate the
expected response.

Embedding integration To tackle very long con-
texts from retrieved tabulars {ri}ki=1 and original
user input x, some works integrate encodings in-
stead of text forms of tabular. Oguz et al. (2022),
Park et al. (2023) and Shi et al. (2023) utilize an
encoder-decoder where each retrieved row ri is tex-
tualized and then converted by the encoder into
a contextualized embedding Ei := Enc(x||ri),
where “||” concatenates a retrieved tabular row ri
and the user input x. x denotes a question in a QA
task (Park et al., 2023) or current conversation con-
text in a dialogue system (Shi et al., 2023). Finally,
the concatenation of {Ei}ki=1 is sent to the decoder
to generate an answer (Park et al., 2023) or next
response (Shi et al., 2023).
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3.3 Natural Language

While the previous sections describe incorporating
structured information, most RAG systems retrieve
natural language (NL) documents, mainly because
there is more knowledge available in text form than
in structured form such as knowledge graph, and
converting text to knowledge graph is challeng-
ing (Melnyk et al., 2022).

Formally, we define a natural language (NL)
source to be the composite of text resources:

K := {Di}, (14)

where each Di is a document consisting of a se-
quence of tokens. While text is widely consid-
ered as unstructured (Hu et al., 2024; Mo et al.,
2022), some works see that text can be semi-
structured, because of the sentence and paragraph
structure (Ruan et al., 2022) by its nature, as well
as handcrafted structural clues (Arivazhagan et al.,
2023) such as headings and meta information. De-
spite their differences in structure, unstructured
and semi-structured texts are predominately treated
equally in the reader stage following the concate-
nation and/or compression of retrieved texts.

NL-based RAG systems like LangChain (Chase,
2022) and LlamaIndex (Liu, 2022) usually incorpo-
rate the following steps: (1) preparation including
chunking and indexing, (2) (first-)retrieval, (3) re-
ranking and (4) generation. Respectively, in this
RAKI survey, we will describe (1), (2) and (3)
in Section 3.3.1 (NL retrieval) and final predic-
tion/generation in Section 3.3.2 (NL integration).

3.3.1 Natural Language Retrieval
Similar to graph and tabular retrieval, the goal of
natural language retrieval is to get top-k text doc-
uments from K given the input query x, normally
by using the scoring function of the retriever R:

K′ = R(x;K) = {Di}ki=1. (15)

Preparation Retrieval systems for natural lan-
guage start with the collection of text features, in-
cluding chunking and indexing. (1) Chunking:
Since language models as retrievers have limited
context size (e.g. 512 in BERT (Devlin et al.,
2019)), documents might need to be split into
smaller chunks. Choosing when to split a text into
chunks without losing surrounding information is
a difficult problem (Chen et al., 2023). While li-
braries like LangChain have several techniques that

split based on textual features like ending para-
graphs, many approaches employ strides (overlap-
ping text spans) (Wu and Mooney, 2022; Ram
et al., 2023) to prevent incomplete information. In
the case of semi-structured text, structural infor-
mation such as title and meta information can be
utilized in text/chunk preparation. Arivazhagan
et al. (2023), for instance, proposes to first filter
relevant documents based on abstracts and table of
contents before considering passage snippets. (2)
Indexing then computes and stores features of each
chunk for fast retrieval. The features to be indexed
depend on the applied retriever R, which will be
discussed in the following paragraph.
(First-)Retrieval Choosing a suitable retriever R
for one’s setting comes with the following consid-
erations: While sparse retrieval such as TF-IDF
is straightforward and easy to compute, dense re-
trieval based on dense embeddings proves substan-
tial effectiveness (Arabzadeh et al., 2021), espe-
cially when the query x and the document Di have
limited common lexicon (Karpukhin et al., 2020).
In RAG systems (Lewis et al., 2020; Chase, 2022),
two dense retrieval approaches are mainly applied:

(1) Bi-encoder is normally a Transformer model
that can produce text-level embeddings (Reimers
and Gurevych, 2019): Document embeddings
E(Di) are pre-computed offline during indexing,
while query embedding E(x) is computed at in-
ference. Embedding query and document sepa-
rately (Lewis et al., 2020) by bi-encoder allows
inner-product search within O(|K|) time, but re-
sults in weak interaction between query and doc-
uments (Erker et al., 2024) since bi-encoder was
query-unaware when embedding documents.

(2) Cross-encoder directly models the relevance
between query and documents, and produces a
score S(x,Di) ∈ [0, 1] for each candidate docu-
ment Di at inference, which is slow given a large
K. Despite the cross-encoders can be substantially
better than dense retrievers (Wang et al., 2022a), the
computational cost makes cross-encoder only ap-
plicable to small datasets (Reimers and Gurevych,
2019) or as a re-ranking model (See next paragraph)
based on first-retrieval results (Zhou et al., 2023b).
Re-ranking Re-ranking bridges the gap between
the two encoders (Glass et al., 2022; Ma et al.,
2023): First, a bi-encoder is employed in a previous
first-retrieval to quickly filter a (larger than k) set
K of candidate documents. Then in re-ranking, a
cross-encoder encodes x with each document Di

in K and yields a ranking score S(x;Di) to get the
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final k results.
Besides the retrieve-then-rerank technique, other

approaches have been proposed to achieve query-
document interaction or computational efficiency.
ColBERT (Khattab and Zaharia, 2020) introduce
a late interaction method based on the contextu-
alized tokens of BERT that computes dot-product
between multiple query vectors and multiple docu-
ment vectors. PolyEncoders and PreTTR (MacA-
vaney et al., 2020) pre-compute representations
offline and used self-attentive aggregators on top
of these representations. Liu et al. (2024) sequen-
tially feed all retrieved K′ alongside x through an
accordingly fine-tuned LLM, resulting in a binary
classification of their relevance. Similarly, Asai
et al. (2024) and Jeong et al. (2024) propose an ex-
tended framework where an LLM predicts special
tokens in the text indicating both the relevance of
external knowledge.

3.3.2 Natural Language Integration
The integration of NL in RAG systems follows the
retrieve-then-read paradigm (Lewis et al., 2020),
where a small set of relevant context documents
is retrieved and subsequently used alongside the
question to generate an informed response. In this
survey of RAKI, we generalize retrieval augmen-
tation to generation and classification tasks, and
also cover embedding-based methods for integra-
tion. Therefore, natural language integration can
be categorized into the following three cases:

(1) Prompt integration for generation, by con-
catenating retrieved documents K′ = {Di}ki=1 and
combining with query x in a prompt (Lewis et al.,
2020; Guu et al., 2020; Wang et al., 2022b; Cai
et al., 2023):

y′ = M(prompt(x,D1||D2|| · · · ||Dk)), (16)

where M is the (generative) language model for
final output and prompt(·) denotes the template
that includes all its variables in a prompt.

(2) Embedding integration for generation, by
processing query-document pairs separately:

Ei = Enc(x||Di), i = 1, · · · , k, (17)

and combining the intermediate encodings in a final
decoding stage (Izacard and Grave, 2021; Hofstät-
ter et al., 2023; Zhang et al., 2023b):

y′ = Dec(x||E1||E2|| · · · ||Ek), (18)

where Enc and Dec denote a LM encoder and
decoder. The fusion of query x and encodings

{Ei}ki=1 during decoding stage mitigates the risk
of exceeding the input context length.

(3) Embedding integration for classification,
by embedding retrieved documents {Di}ki=1 as fea-
tures in a kNN model (Khandelwal et al., 2020;
Drozdov et al., 2022). The prediction is based on
the majority vote or nearest neighbor over super-
vised labels of {Di}ki=1.

4 Challenges & Outlook

Here we summarize some challenges of retrieval-
augmented knowledge integration techniques, fol-
lowed by an outlook of the RAKI framework.
Necessity of external knowledge In this survey,
our definition in Section 2 and the many included
works dive into retrieving and augmenting external
knowledge, without questioning before retrieval if
external knowledge is necessary. We discern two
methodologies in identifying the need for external
information during the pre-retrieval stage:

(1) Passively, by relying on self-consistency de-
coding techniques (Wang et al., 2023; Zhao et al.,
2023b; Li et al., 2024). For example, Wang et al.
(2023) allows to quantify the uncertainty associ-
ated with the use of parametric knowledge. By em-
ploying a non-zero temperature to ensure diversity,
multiple generations are sampled and compared for
similarity in the final output. If a set of answers
yields a significant deviation above a threshold, it
indicates substantial uncertainty, necessitating the
introduction of external knowledge.

(2) Actively, by guiding the language model to
generate special tokens as assessment of retrieved
information (Asai et al., 2024; Jeong et al., 2024),
or employing a separate model to score the need for
external knowledge (Liu et al., 2024; Chen et al.,
2024). For example, Chen et al. (2024) uses Chat-
GPT to score generated knowledge (based on in-
ternal, parameterized knowledge of LM) against
retrieved passages (external) in a QA task. They
find out for time-sensitive questions, external in-
formation is prioritized, while non-time-sensitive
ones prompt comparison between generated and
retrieved knowledge to determine the best source.
Prediction consistency with knowledge RAKI
formulated in Section 2 does not verify if LM pre-
dictions reflect knowledge. To address this issue,
Sun et al. (2023) utilize an LLM discriminator
framework to ensure consistent citations by prompt-
ing about various aspects of the generation: (1)
whether the cited source supports the claim, (2)
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whether any of the retrieved documents support the
claim, and (3) whether the cited set of documents is
minimal. Here minimal refers to the document set
not containing any documents that are unnecessary
for supporting the claim. Asai et al. (2024) and
Jeong et al. (2024) again apply their special token
generation scheme (discussed in Section 3.3.1 for
reranking) to predict whether the generated claim
is fully supported by the retrieved knowledge.
Multi-step reasoning For simplicity of modelling,
we formulate the RAKI problem in Section 2 as
single pass. Apart from the single-pass pipeline,
multi-step reasoning frameworks leverage multiple
retrieve-and-read cycles. This approach facilitates
the construction of coherent reasoning chains, en-
abling the system to address complex questions ef-
fectively (Liu et al., 2024, 2023a; Wang et al., 2024;
Li et al., 2024; Zhou et al., 2023a). We summarize
two primary approaches to integrating knowledge
into reasoning frameworks: (1) Knowledge as a
tool for verifying and refining reasoning steps post-
creation (Li et al., 2024; Zhao et al., 2023b; Wang
et al., 2024). For example, Zhao et al. (2023b) im-
prove factuality during Chain-of-Thought (CoT)
generation (Wei et al., 2022) by integrating an
optional RAG stage, where an uninformed CoT
chain undergoes self-consistency tests (Wang et al.,
2023). Failing chains are refined by verifying ques-
tions for each step, retrieving relevant information,
and creating a new knowledge-informed rationale.
Based on this refined CoT rationale the final answer
is corrected.

(2) Knowledge retrieval as an integral part
of creating informed reasoning steps. Liu et al.
(2023a) propose a framework for multi-step reason-
ing where questions are sequentially decomposed.
A central component of this framework is an agent
LLM delegating the answering process. This agent
is tasked with determining whether to decompose
a query further into sub-questions and deciding
whether to retrieve external knowledge or answer
internally for each step. Once enough information
is collected, the LLM provides a final answer, en-
suring grounded reasoning without the need for
post-reasoning verification.
Outlook As can be seen from the above mentioned
challanges and solutions, research in retrieval-
augmented knowledge integration has witnessed
a growing role of LLMs. Besides the generation
(integration) step where LLMs are good fits for by
their nature, LLMs can also serve in the retrieval
step, as retriever itself (Gao et al., 2023) or as dis-

criminator to assess the quality of retrieval (Liu
et al., 2024). Beyond the retrieve-and-integrate
framework of RAKI, LLMs bring several enrich-
ment steps which are not discussed in Section 3,
such as knowledge extraction (Xu et al., 2023) and
consistency verification (Asai et al., 2024).

5 Related Work

Survey of surveys Recent surveys show the
paradigm shift from traditional knowledge integra-
tion to retrieval augmentation: Wei et al. (2021)
and Hu et al. (2024) provide an overview on dif-
ferent pre-training and fine-tuning techniques of
knowledge enhancement, organized by different
knowledge formats. Hu et al. (2024) cover retrieval-
augmented methods also but restrict the source of
retrieval to be text and the task to be natural lan-
guage generation. Mialon et al. (2023) compare var-
ious retrieval augmentation methods over textual
documents. Pan et al. (2024) narrow the source of
knowledge to knowledge graphs (KGs). Ling et al.
(2023) survey different methods to apply LLMs in
a specialized domain, including retrieving explicit
domain information for in-context learning. Zhao
et al. (2023a) focus on the topic of multi-modal
(such as vision and audio) retrieval-augmented gen-
eration (RAG) but also discuss structured knowl-
edge for four tasks such as knowledge-grounded
dialogue. Gao et al. (2023) and Hu and Lu (2024)
both provide a short introduction of unstructured
and structured data for augmentation, with a focus
on available datasets/corpus. To our knowledge,
there is still no comprehensive survey that stud-
ies both structured and unstructured sources and
describes respective NLP techniques accordingly.

6 Conclusion

This survey paper studies recent works that aug-
ment language models by retrieving external knowl-
edge sources. We categorize research in retrieval-
augmented knowledge integration (RAKI) into
three sections, according to knowledge format:
knowledge graph, tabular, and natural language.
Besides a comprehensive collection of knowledge
retrieval and integration approaches, we also point
out the limitations and challenges of current RAKI.
We hope this survey could (1) help researchers
who are looking for a technical-intensive overview
and (2) encourage future work to improve current
RAKI.
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Limitations

Collecting papers for this survey using search en-
gines (e.g. Google Scholar and dblp) is very
challenging, mainly because: (1) It is infeasi-
ble to enumerate all possible search words to
approach every potential paper of our interest.
For example, we include knowledge augmenta-
tion/integration/enhancement in the search word
list (See Appendix A.1 for complete list of search
words), as well as their variants with suffix changes
(e.g. knowledge augment/-ed). These words would
still leave out a paper using knowledge augmenting
or we fuse knowledge. (2) Each search engine has
its own drawbacks (Appendix A.1 presents a de-
tailed comparison of our employed search engines):
e.g. ACL Anthology supports full-text search but
mainly includes publications from *CL venues;
dblp covers most venues but only supports search
over title. Therefore, a relevant non-*CL publica-
tion might have been left out if its title does not
match one of our specified search words.

We would also like to point out that this survey
is focused on the methodological part of RAKI
rather than performance. The idea of retrieval-
augmentation is general and can thus be applied to
a great variety of NLP tasks. Therefore, it makes
limited sense to compare scores reported by papers
that conduct different tasks.

Ethics Statement

In this survey, we (1) formulate the problem set-
ting of RAKI and (2) collect, explain and analyse
searched literature. As for (1), we try to make
formulation objective by giving a general mathe-
matical definition.

As for (2), we make the paper selection crite-
ria public in Appendix A.1. As shown in Ap-
pendix A.2, 51.8% of the included papers are ac-
cepted at *CL venues, which require a mandatory
ethics review since 2022. While we cannot en-
sure the absence of ethical issues in the selected
papers from prior *CL and other venues (especially
arXiv), we ensure the explanations and findings in
this survey are presented objectively.
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Denny Vrandečić and Markus Krötzsch. 2014. Wiki-
data: a free collaborative knowledgebase. Commun.
ACM, 57(10):78–85.

Fanqi Wan, Weizhou Shen, Ke Yang, Xiaojun Quan,
and Wei Bi. 2023. Multi-grained knowledge retrieval
for end-to-end task-oriented dialog. In Proceedings
of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 11196–11210, Toronto, Canada. Association
for Computational Linguistics.

Kexin Wang, Nandan Thakur, Nils Reimers, and Iryna
Gurevych. 2022a. GPL: Generative pseudo labeling
for unsupervised domain adaptation of dense retrieval.
In Proceedings of the 2022 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 2345–2360, Seattle, United States. Association
for Computational Linguistics.

58

http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.1162/tacl_a_00605
https://doi.org/10.1162/tacl_a_00605
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/2022.findings-acl.102
https://doi.org/10.18653/v1/2022.findings-acl.102
https://doi.org/10.18653/v1/2021.naacl-demos.10
https://doi.org/10.18653/v1/2021.naacl-demos.10
https://doi.org/10.18653/v1/2021.eacl-main.20
https://doi.org/10.18653/v1/2021.eacl-main.20
https://doi.org/10.18653/v1/2021.eacl-main.20
https://doi.org/10.18653/v1/2023.emnlp-main.405
https://doi.org/10.18653/v1/2023.emnlp-main.405
https://doi.org/10.18653/v1/2023.emnlp-main.405
https://doi.org/10.18653/v1/2022.emnlp-main.555
https://doi.org/10.18653/v1/2022.emnlp-main.555
https://proceedings.neurips.cc/paper_files/paper/2020/file/c3a690be93aa602ee2dc0ccab5b7b67e-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/c3a690be93aa602ee2dc0ccab5b7b67e-Paper.pdf
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14972
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14972
https://doi.org/10.48550/ARXIV.2208.03054
https://doi.org/10.48550/ARXIV.2208.03054
https://doi.org/10.48550/ARXIV.2312.09075
https://doi.org/10.48550/ARXIV.2312.09075
https://proceedings.neurips.cc/paper_files/paper/2014/file/a14ac55a4f27472c5d894ec1c3c743d2-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2014/file/a14ac55a4f27472c5d894ec1c3c743d2-Paper.pdf
https://doi.org/10.48550/ARXIV.2302.13971
https://doi.org/10.48550/ARXIV.2302.13971
https://doi.org/10.1162/tacl_a_00577
https://doi.org/10.1162/tacl_a_00577
https://doi.org/10.1145/2629489
https://doi.org/10.1145/2629489
https://doi.org/10.18653/v1/2023.acl-long.627
https://doi.org/10.18653/v1/2023.acl-long.627
https://doi.org/10.18653/v1/2022.naacl-main.168
https://doi.org/10.18653/v1/2022.naacl-main.168


Shuohang Wang, Yichong Xu, Yuwei Fang, Yang Liu,
Siqi Sun, Ruochen Xu, Chenguang Zhu, and Michael
Zeng. 2022b. Training data is more valuable than you
think: A simple and effective method by retrieving
from training data. In Proceedings of the 60th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 3170–3179,
Dublin, Ireland. Association for Computational Lin-
guistics.

Xiaozhi Wang, Tianyu Gao, Zhaocheng Zhu, Zhengyan
Zhang, Zhiyuan Liu, Juanzi Li, and Jian Tang. 2021.
KEPLER: A unified model for knowledge embed-
ding and pre-trained language representation. Trans-
actions of the Association for Computational Linguis-
tics, 9:176–194.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V.
Le, Ed H. Chi, Sharan Narang, Aakanksha Chowd-
hery, and Denny Zhou. 2023. Self-consistency
improves chain of thought reasoning in language
models. In The Eleventh International Conference
on Learning Representations, ICLR 2023, Kigali,
Rwanda, May 1-5, 2023. OpenReview.net.

Zihao Wang, Kwunping Lai, Piji Li, Lidong Bing, and
Wai Lam. 2019. Tackling long-tailed relations and
uncommon entities in knowledge graph completion.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 250–260, Hong
Kong, China. Association for Computational Linguis-
tics.

Zihao Wang, Anji Liu, Haowei Lin, Jiaqi Li, Xiaojian
Ma, and Yitao Liang. 2024. RAT: retrieval aug-
mented thoughts elicit context-aware reasoning in
long-horizon generation. CoRR, abs/2403.05313.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824–24837.

Xiaokai Wei, Shen Wang, Dejiao Zhang, Parminder
Bhatia, and Andrew O. Arnold. 2021. Knowledge
enhanced pretrained language models: A compresh-
ensive survey. CoRR, abs/2110.08455.

Jialin Wu and Raymond Mooney. 2022. Entity-focused
dense passage retrieval for outside-knowledge visual
question answering. In Proceedings of the 2022 Con-
ference on Empirical Methods in Natural Language
Processing, pages 8061–8072, Abu Dhabi, United
Arab Emirates. Association for Computational Lin-
guistics.

Yike Wu, Nan Hu, Sheng Bi, Guilin Qi, Jie Ren, Anhuan
Xie, and Wei Song. 2023. Retrieve-rewrite-answer:
A kg-to-text enhanced llms framework for knowledge
graph question answering. CoRR, abs/2309.11206.

Bo Xu, Yong Xu, Jiaqing Liang, Chenhao Xie, Bin
Liang, Wanyun Cui, and Yanghua Xiao. 2017. Cn-
dbpedia: A never-ending chinese knowledge extrac-
tion system. In Advances in Artificial Intelligence:
From Theory to Practice - 30th International Confer-
ence on Industrial Engineering and Other Applica-
tions of Applied Intelligent Systems, IEA/AIE 2017,
Arras, France, June 27-30, 2017, Proceedings, Part
II, volume 10351 of Lecture Notes in Computer Sci-
ence, pages 428–438. Springer.

Derong Xu, Wei Chen, Wenjun Peng, Chao Zhang, Tong
Xu, Xiangyu Zhao, Xian Wu, Yefeng Zheng, and
Enhong Chen. 2023. Large language models for
generative information extraction: A survey. CoRR,
abs/2312.17617.

Xingyi Yang, Muchao Ye, Quanzeng You, and Feng-
long Ma. 2021. Writing by memorizing: Hierar-
chical retrieval-based medical report generation. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 5000–
5009, Online. Association for Computational Lin-
guistics.

Da Yin, Li Dong, Hao Cheng, Xiaodong Liu, Kai-Wei
Chang, Furu Wei, and Jianfeng Gao. 2022. A survey
of knowledge-intensive nlp with pre-trained language
models. CoRR, abs/2202.08772.

Tom Young, Erik Cambria, Iti Chaturvedi, Hao Zhou,
Subham Biswas, and Minlie Huang. 2018. Augment-
ing end-to-end dialogue systems with commonsense
knowledge. In Proceedings of the Thirty-Second
AAAI Conference on Artificial Intelligence, (AAAI-
18), the 30th innovative Applications of Artificial
Intelligence (IAAI-18), and the 8th AAAI Symposium
on Educational Advances in Artificial Intelligence
(EAAI-18), New Orleans, Louisiana, USA, February
2-7, 2018, pages 4970–4977. AAAI Press.

Guoxin Yu, Lemao Liu, Haiyun Jiang, Shuming Shi,
and Xiang Ao. 2023. Retrieval-augmented few-shot
text classification. In Findings of the Association
for Computational Linguistics: EMNLP 2023, pages
6721–6735, Singapore. Association for Computa-
tional Linguistics.

Wenhao Yu. 2022. Retrieval-augmented generation
across heterogeneous knowledge. In Proceedings
of the 2022 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies: Student Research
Workshop, pages 52–58, Hybrid: Seattle, Washington
+ Online. Association for Computational Linguistics.

Yuming Zhang, Hongyu Li, Yongwei Zhang, Shanshan
Jiang, and Bin Dong. 2023a. SRCB at SemEval-2023
task 2: A system of complex named entity recogni-
tion with external knowledge. In Proceedings of the
17th International Workshop on Semantic Evaluation
(SemEval-2023), pages 671–678, Toronto, Canada.
Association for Computational Linguistics.

59

https://doi.org/10.18653/v1/2022.acl-long.226
https://doi.org/10.18653/v1/2022.acl-long.226
https://doi.org/10.18653/v1/2022.acl-long.226
https://doi.org/10.1162/tacl_a_00360
https://doi.org/10.1162/tacl_a_00360
https://openreview.net/pdf?id=1PL1NIMMrw
https://openreview.net/pdf?id=1PL1NIMMrw
https://openreview.net/pdf?id=1PL1NIMMrw
https://doi.org/10.18653/v1/D19-1024
https://doi.org/10.18653/v1/D19-1024
https://doi.org/10.48550/ARXIV.2403.05313
https://doi.org/10.48550/ARXIV.2403.05313
https://doi.org/10.48550/ARXIV.2403.05313
http://arxiv.org/abs/2110.08455
http://arxiv.org/abs/2110.08455
http://arxiv.org/abs/2110.08455
https://doi.org/10.18653/v1/2022.emnlp-main.551
https://doi.org/10.18653/v1/2022.emnlp-main.551
https://doi.org/10.18653/v1/2022.emnlp-main.551
https://doi.org/10.48550/ARXIV.2309.11206
https://doi.org/10.48550/ARXIV.2309.11206
https://doi.org/10.48550/ARXIV.2309.11206
https://doi.org/10.1007/978-3-319-60045-1_44
https://doi.org/10.1007/978-3-319-60045-1_44
https://doi.org/10.1007/978-3-319-60045-1_44
https://doi.org/10.48550/ARXIV.2312.17617
https://doi.org/10.48550/ARXIV.2312.17617
https://doi.org/10.18653/v1/2021.acl-long.387
https://doi.org/10.18653/v1/2021.acl-long.387
https://arxiv.org/abs/2202.08772
https://arxiv.org/abs/2202.08772
https://arxiv.org/abs/2202.08772
https://doi.org/10.1609/AAAI.V32I1.11923
https://doi.org/10.1609/AAAI.V32I1.11923
https://doi.org/10.1609/AAAI.V32I1.11923
https://doi.org/10.18653/v1/2023.findings-emnlp.447
https://doi.org/10.18653/v1/2023.findings-emnlp.447
https://doi.org/10.18653/v1/2022.naacl-srw.7
https://doi.org/10.18653/v1/2022.naacl-srw.7
https://doi.org/10.18653/v1/2023.semeval-1.92
https://doi.org/10.18653/v1/2023.semeval-1.92
https://doi.org/10.18653/v1/2023.semeval-1.92


Yunxiang Zhang, Muhammad Khalifa, Lajanugen Lo-
geswaran, Moontae Lee, Honglak Lee, and Lu Wang.
2023b. Merging generated and retrieved knowledge
for open-domain QA. In Proceedings of the 2023
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 4710–4728, Singapore. As-
sociation for Computational Linguistics.

Zhebin Zhang, Xinyu Zhang, Yuanhang Ren, Saijiang
Shi, Meng Han, Yongkang Wu, Ruofei Lai, and Zhao
Cao. 2023c. IAG: Induction-augmented generation
framework for answering reasoning questions. In
Proceedings of the 2023 Conference on Empirical
Methods in Natural Language Processing, pages 1–
14, Singapore. Association for Computational Lin-
guistics.

Zhengyan Zhang, Xu Han, Zhiyuan Liu, Xin Jiang,
Maosong Sun, and Qun Liu. 2019. ERNIE: En-
hanced language representation with informative en-
tities. In Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics, pages
1441–1451, Florence, Italy. Association for Compu-
tational Linguistics.

Ruochen Zhao, Hailin Chen, Weishi Wang, Fangkai
Jiao, Xuan Long Do, Chengwei Qin, Bosheng Ding,
Xiaobao Guo, Minzhi Li, Xingxuan Li, and Shafiq
Joty. 2023a. Retrieving multimodal information for
augmented generation: A survey. In Findings of the
Association for Computational Linguistics: EMNLP
2023, pages 4736–4756, Singapore. Association for
Computational Linguistics.

Ruochen Zhao, Xingxuan Li, Shafiq Joty, Chengwei
Qin, and Lidong Bing. 2023b. Verify-and-edit: A
knowledge-enhanced chain-of-thought framework.
In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 5823–5840, Toronto, Canada.
Association for Computational Linguistics.

Ce Zheng, Lei Li, Qingxiu Dong, Yuxuan Fan, Zhiyong
Wu, Jingjing Xu, and Baobao Chang. 2023. Can
we edit factual knowledge by in-context learning?
In Proceedings of the 2023 Conference on Empiri-
cal Methods in Natural Language Processing, pages
4862–4876, Singapore. Association for Computa-
tional Linguistics.

Wanjun Zhong, Junjie Huang, Qian Liu, Ming Zhou,
Jiahai Wang, Jian Yin, and Nan Duan. 2022. Reason-
ing over hybrid chain for table-and-text open domain
question answering. In Proceedings of the Thirty-
First International Joint Conference on Artificial In-
telligence, IJCAI 2022, Vienna, Austria, 23-29 July
2022, pages 4531–4537. ijcai.org.

Andy Zhou, Kai Yan, Michal Shlapentokh-Rothman,
Haohan Wang, and Yu-Xiong Wang. 2023a. Lan-
guage agent tree search unifies reasoning act-
ing and planning in language models. CoRR,
abs/2310.04406.

Yucheng Zhou, Tao Shen, Xiubo Geng, Chongyang Tao,
Can Xu, Guodong Long, Binxing Jiao, and Daxin

Jiang. 2023b. Towards robust ranker for text retrieval.
In Findings of the Association for Computational
Linguistics: ACL 2023, pages 5387–5401, Toronto,
Canada. Association for Computational Linguistics.

Chenguang Zhu, Yichong Xu, Xiang Ren, Bill Yuchen
Lin, Meng Jiang, and Wenhao Yu. 2022. Knowledge-
augmented methods for natural language processing.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics: Tutorial
Abstracts, pages 12–20, Dublin, Ireland. Association
for Computational Linguistics.

Yutao Zhu, Huaying Yuan, Shuting Wang, Jiongnan Liu,
Wenhan Liu, Chenlong Deng, Zhicheng Dou, and
Ji-Rong Wen. 2023. Large language models for infor-
mation retrieval: A survey. CoRR, abs/2308.07107.

60

https://doi.org/10.18653/v1/2023.emnlp-main.286
https://doi.org/10.18653/v1/2023.emnlp-main.286
https://doi.org/10.18653/v1/2023.emnlp-main.1
https://doi.org/10.18653/v1/2023.emnlp-main.1
https://doi.org/10.18653/v1/P19-1139
https://doi.org/10.18653/v1/P19-1139
https://doi.org/10.18653/v1/P19-1139
https://doi.org/10.18653/v1/2023.findings-emnlp.314
https://doi.org/10.18653/v1/2023.findings-emnlp.314
https://doi.org/10.18653/v1/2023.acl-long.320
https://doi.org/10.18653/v1/2023.acl-long.320
https://doi.org/10.18653/v1/2023.emnlp-main.296
https://doi.org/10.18653/v1/2023.emnlp-main.296
https://doi.org/10.24963/IJCAI.2022/629
https://doi.org/10.24963/IJCAI.2022/629
https://doi.org/10.24963/IJCAI.2022/629
https://doi.org/10.48550/ARXIV.2310.04406
https://doi.org/10.48550/ARXIV.2310.04406
https://doi.org/10.48550/ARXIV.2310.04406
https://doi.org/10.18653/v1/2023.findings-acl.332
https://doi.org/10.18653/v1/2022.acl-tutorials.3
https://doi.org/10.18653/v1/2022.acl-tutorials.3
https://doi.org/10.48550/ARXIV.2308.07107
https://doi.org/10.48550/ARXIV.2308.07107


A Appendix

A.1 Literature Search Setup

Search words The search words we used are
listed below3:

• retriev-e/-al augment/-ed/-ion
• knowledge retriev-e/-al
• open domain/book
• knowledge inject-ed/–ion
• knowledge augment/-ed/-ion
• knowledge enhance/-ed/-ment
• knowledge integrat-ed/-ion

Search engines We first considered the following
four search engines: ACL Anthology, dblp, Google
Scholar and Semantic Scholar. We summarized
the pros and cons as follows after conducting some
probation searches.

(1) ACL Anthology is the only one among the
four that supports full-time search. However, it
does not include most non-*CL publications.

(2) dblp supports partial match, so a word stem
such as augment can also match augmentation and
augmented, which greatly reduces our workload.
However, it searches only over titles.

(3) Google Scholar searches over title and ab-
stract, and also supports partial match as dblp.
However, one paper can have duplicate items which
require handcraft to de-duplicate.

(4) Semantic Scholar also searches over title and
abstract as Google Scholar. However, applying its
built-in filter (year, conference, etc.) can wrongly
lead to only very few results.
Search pipeline We use dblp and Google Scholar
for literature search, since their pros and cons are
complementary. Our search pipeline is defined as
follows:

(1) We search on dblp and then Google Scholar
the search words listed in the previous section.

(2) For all our searches, we filter those from
after 2017 since this survey model-wise focuses on
Tranformer-based language models.

(3) All search results are manually filtered based
on their relevance to retrieval-augmented knowl-
edge integration. For example, papers that match
knowledge injection need to be further checked to
contain retrieval-related content to be eligible.

(4) Finally, we de-duplicate results from Google
Scholar and dblp. According to the ACL author

3Note that some words have variants: For example, aug-
mentation and augmented for augment. Therefore, we need 6
separate searches for retriev-e/-al augment/-ed/-ion.
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Figure 1: Number of analysed papers per year. 2024*
only counts papers by April 2024.

guidelines4 that referred version should be prior-
itized over preprints, we only keep the refereed
version (mostly from dblp) of an accepted publica-
tion.

A.2 Statistics of Literature
Statistics over years Our literature search resulted
in 56 papers of RAKI, among which 1 from 2018,
1 from 2019, 5 from 2020, 4 from 2021, 12 from
2022, 24 from 2023 and 9 from 2024 (until April
2024). The trend of paper counts by year is given
by Figure 1.
Statistics over venues To get an overview of
which venues publish the most works, we sort the
venues by the number of their accepted papers in
the resulted literature search:

• EMNLP (11): 8 from main + 3 from findings.
• arXiv (10).
• ACL (10): 8 from main + 2 from workshops.
• NAACL (6): 4 from main + 1 from finding + 1

from workshop.
• AAAI (5).
• ICLR (4).
• NeurIPS (2).
• TKDE (2).
• EACL (2): 1 from main + 1 from finding.
• Other venues (5): 1 from ICML, IJCAI, SIGIR,

TACL and TMLR each.
Statistics of knowledge formats Among the 56
analysed papers, 19 are from knowledge graph, 8
from tabular and 32 from natural language. Note
that the sum here exceeds 56 since a paper can
involve more than one knowledge sources (Oguz
et al., 2022; Mo et al., 2022; Hu and Lu, 2024).

4https://acl-org.github.io/policies/submission
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Knowledge graph K Domain Language #Nodes Example of triple (eh, r, et)

Freebase (Bollacker et al., 2008) General English - (Richard Feynman, Profession, Physicist)
Wikidata (Vrandečić and Krötzsch, 2014) General Multilingual 15.8M (Douglas Adams, educated_at, St John’s College)
DBPedia (Lehmann et al., 2015) General Multilingual 3.7M (Berlin, capital_of, Province of Brandenburg)
SenticNet (Cambria et al., 2016) Concept Multilingual 50K (person, Desires, eat)
ConceptNet (Speer et al., 2017) Concept Multilingual 79.9K (ConceptNet, is_a, semantic network)
Wikidata5M (Wang et al., 2021) General English 4.6M (Johannes Kepler, occupation, astronomer)
HowNet (Dong et al., 2010) Concept Chinese, English – (doctor, hypernym, human)
CN-DBpedia (Xu et al., 2017) General Chinese 9M (知识图谱KG,也称alias,科学知识图谱Sci KG)
MedicalKG (Liu et al., 2020) Medicine Chinese – (彩超ultrasound,类别hypernym,检查treatment)

Table 1: Overview of some knowledge graphs applied in retrieval-augmentation literature. #Nodes denotes the
number of entities in the knowledge graph. Regarding example triples from non-English knowledge graphs (i.e.
CN-DBpedia and MedicalKG), their English translations are appended to each element in the triples. The number
of nodes of HowNet is not directly given in the original paper (Dong et al., 2010), and Liu et al. (2020) use a refined
version of HowNet with 52,576 triples. The Freebase (Bollacker et al., 2008) paper gives its number of triples to be
125M without giving the number of nodes. MedicalKG (Liu et al., 2020) has 13,864 triples.

Knowledge graph K Target task T
Freebase (Bollacker et al., 2008) QA (Oguz et al., 2022)
DBPedia (Lehmann et al., 2015) Dialogue Generation (Li et al., 2022)
SenticNet (Cambria et al., 2016) Open-Domain Response Selection (Young et al., 2018)
ConceptNet (Speer et al., 2017) QA (Lv et al., 2020; Bian et al., 2021; Huang et al., 2023)
Wikidata (Vrandečić and Krötzsch, 2014) KGQA (Baek et al., 2023a), NER (Zhang et al., 2023a), ED (Ayoola et al., 2022)
Wikidata5M (Wang et al., 2021) Entity Typing (Fu et al., 2023), Relation Classicification (Fu et al., 2023)
CN-DBpedia (Xu et al., 2017), HowNet (Dong et al.,
2010), MedicalKG (Wang et al., 2021)

NER (Fu et al., 2023)

Table 2: Previous work to retrieve knowledge graphs for specific target tasks. The left column lists the external
knowledge graphs. The right column presents the target tasks together with retrieval-augmented papers conducting
the tasks. QA: Question Answering. KGQA: Knowledge Graph Question Answering. NER: Named Entity
Recognition. ED: Entity Disambiguation.

Previous work Feature for retrieval Level Selection criterion

Fu et al. (2023) Entity ID (from TagMe) Entity Exact match
Li et al. (2023) Entity name (from in-context learning) Entity Exact match
Lv et al. (2020) Entity name (from mention detection) Entity Exact match
Zhang et al. (2023a) Entity name (from global pointer (Su et al., 2022)) Entity Best match from ES
Shu et al. (2022) Entity name (from mention detection + alias mapping) Entity Exact match
Young et al. (2018); Bian et al. (2021) n-gram Entity Exact n-gram match

Andrus et al. (2022) (QA) Edit distance Triple Min. edit distance
Andrus et al. (2022) (story completion) sBERT (Reimers and Gurevych, 2019) embeddings Triple Max. cosine similarity
Oguz et al. (2022) DPR (Karpukhin et al., 2020) embeddings Triple Max. cosine similarity
Baek et al. (2023a) MPNet (Song et al., 2020) embeddings Triple —

Table 3: Overview of prior graph retrieval methods of retrieval-based knowledge graph augmentation. ES: Elastic-
Search. sBERT: Sentence-BERT. (Baek et al., 2023a) does not explicitly give the criterion score over embeddings.
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Previous work Prompt template Knowledge K′ to fill-in

w/o reformulation
Li et al. (2022) USER: Who is Michael F. Phelps? KG: {K′}. <Michael F. Phelps, occupation, Swimmer>
Fu et al. (2023) Who is *Michael F. Phelps*? {K′}. (Michael F. Phelps occupation Swimmer)
Baek et al. (2023a,b) Below are facts that might be meaningful to answer

the given question: {K′}. Question: Who is Michael
Phelps? Answer:

(Michael F. Phelps, occupation, Swimmer)

Reformulation with relation-NL mapping
Lv et al. (2020) {K′}. <SEP> Who is Michael F. Phelps? Michael F. Phelps has occupation swimmer.
Bian et al. (2021) {K′} [SEP] Who is Michael F. Phelps? A.lawyer | B.

businessman | C. swimmer [SEP]
Michael F. Phelps has occupation swimmer.

Reformulation by LMs
Bian et al. (2021) {K′} [SEP] Who is Michael F. Phelps? A.lawyer | B.

businessman | C. swimmer [SEP]
Michael F. Phelps is a swimmer. (para-
phrase based)

Bian et al. (2021) {K′} [SEP] Who is Michael F. Phelps? A.lawyer | B.
businessman | C. swimmer [SEP]

Phelps (born June 30, 1985) is an American
former swimmer. (retrieval based)

Wu et al. (2023) Below are the facts that might be relevant to answer the
question:{K′}. Question: Who is Michael F. Phelps?
Answer:

Michael F. Phelps is a swimmer by profes-
sion. (paraphrase by GPT-3.5)

Andrus et al. (2022) Story: -. Useful Information: {K′}. Question: Who is
Michael F. Phelps? Answer:

Michael F. Phelps is professionally involved
in swimming. (paraphrase by GPT-3.5)

Table 4: Overview of prompts to augment graph. Prompts are concluded into three categories based on reformulation.
Assume entity Michael F. Phelps is recognized in the question Who is Michael F. Phelps during retrieval and marked
as italic. The knowledge is given by (Baek et al., 2023b): (Michael F. Phelps, occupation, Swimmer). Due to
availability of models, we employ GPT-3.5 (instead of GPT-3 used in Andrus et al. (2022)) to generate paraphrase.
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