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Introduction

Welcome to KaLLM 2024, the first workshop on Knowledge Graphs and Large Language Models.

Large Language Models (LLMs) have revolutionised the field of Natural Language Processing (NLP)
by improving contextual understanding, zero-shot and few-shot learning, text generation, and question
answering. However, LLMs have limitations such as accuracy, bias, interpretability, and context. They
often produce factually inaccurate information, struggle to understand complex contexts, and may unin-
tentionally produce biased or stereotyped information. KGs, on the other hand, have high-quality explicit
knowledge, symbolic reasoning potential, and the ability to evolve with new knowledge, making them
essential for various applications. The intersection of LLMs and KGs has sparked significant interest
and innovation in NLP. LLM-enhanced KGs can be introduced into pre-training and inference stages to
provide external knowledge and assess interpretability. LLM-augmented KGs are designed to improve
coverage and ease the use of KGs in various tasks, including embedding learning, completion, construc-
tion, KG-to-text generation, and KGQA. Combining the benefits of LLMs and KGs can also improve
performance in knowledge representation.

KaLLM 2024 intends to provide a platform for researchers, practitioners, and industry professionals to
explore the synergies between LLMs and KGs. We aim to provide a space for the LLM community and
the community of KG researchers to interact and explore how these two communities could collaborate
and support one another. The goal of the workshop is to seize on the tremendous opportunities arising
from investigating cutting-edge approaches, addressing challenges and limitations, and applications in
different domains.

We received a total of 18 submissions; 1 non-archival and 17 archival. 1 archival submission was wi-
thdrawn as the topic did not fit the workshop. We accepted the non-archival submission and 13 out of
the 16 archival submissions. We used reviewers’ recommendations and scores to shortlist a set of three
papers nominated for the Best Paper Award.

The program will feature oral presentations of the three papers nominated for best papers, and poster
presentations of all accepted papers. We are also excited to have invited talks by four speakers: Xin Luna
Dong (Meta Reality Labs), Marko Grobelnik (Jozef Stefan Institute), Heng Ji (University of Illinois
Urbana-Champaign) and Ivan Titov (University of Edinburgh).
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Keynote Talk
The Journey to A Knowledgeable Assistant with

Retrieval-Augmented Generation (RAG)
Xin Luna Dong

Meta Reality Labs

Abstract: For decades, multiple communities (Database, Information Retrieval, Natural Language Pro-
cessing, Data Mining, AI) have pursued the mission of providing the right information at the right time.
Efforts span web search, data integration, knowledge graphs, question answering. Recent advancements
in Large Language Models (LLMs) have demonstrated remarkable capabilities in comprehending and ge-
nerating human language, revolutionizing techniques in every front. However, their inherent limitations
such as factual inaccuracies and hallucinations make LLMs less suitable for creating knowledgeable and
trustworthy assistants.
This talk describes our journey in building a knowledgeable AI assistant by harnessing LLM techniques.
We start with our findings from a comprehensive set of experiments to assess LLM reliability in answe-
ring factual questions and analyze performance variations across different knowledge types. Next, we
describe our federated Retrieval-Augmented Generation (RAG) system that integrates external informa-
tion from both the web and knowledge graphs for trustworthy text generation on real-time topics like
stocks and sports, as well as on torso-to-tail entities like local restaurants. Additionally, we brief our
explorations on extending our techniques towards multi-modal, contextualized, and personalized Q&A.
We will share our techniques, our findings, and the path forward, highlighting how we are leveraging and
advancing the decades of work in this area.

Bio: Xin Luna Dong is a Principal Scientist at Meta Reality Labs, leading the ML efforts in building
an intelligent personal assistant. She has spent more than a decade building knowledge graphs, such
as the Amazon Product Graph and the Google Knowledge Graph. She has co-authored books Machi-
ne Knowledge: Creation and Curation of Comprehensive Knowledge Basesand “Big Data Integration”.
She was named an ACM Fellow and an IEEE Fellow for significant contributions to knowledge graph
construction and data integration", awarded the VLDB Women in Database Research Award and VLDB
Early Career Research Contribution Award. She serves in the PVLDB advisory committee, was a mem-
ber of the VLDB endowment, a PC co-chair for KDD’2022 ADS track, WSDM’2022, VLDB’2021, and
Sigmod’2018.
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Keynote Talk
Extracting Common Sense World Models from LLMs

Marko Grobelnik
AiLab, Jozef Stefan Institute

Abstract: LLMs are often criticized for not operating with a notion of world models, which could pro-
vide robustness, explainability, and multi-hop reasoning. In this keynote, we will show the methodology
and concrete examples of how to extract non-trivial symbolic world models from LLMs for an arbitrary
domain. The extracted world models will be represented in an operational first-order logic; concretely in
the Prolog programming language, in its basic and probabilistic versions. In the second step, the extracted
world models will be used to ground textual data into the semantics of world models to enable reasoning,
explanation, and possibly efficient agent communication operating with explicit representations. The ap-
proach aims to integrate black-box LLM representations with transparent symbolic representations close
to humans without significant loss of information for practical applications.

Bio: Marko Grobelnik is a researcher in the field of Artificial Intelligence (AI). Focused areas of ex-
pertise are Machine Learning, Data/Text/Web Mining, Network Analysis, Semantic Technologies, Deep
Text Understanding, and Data Visualization. Marko co-leads Artificial Intelligence Lab at Jozef Stefan
Institute, cofounded UNESCO International Research Center on AI (IRCAI), and is the CEO of Quin-
telligence.com specialized in solving complex AI tasks for the commercial world. He collaborates with
major European academic institutions and major industries such as Bloomberg, British Telecom, Euro-
pean Commission, Microsoft Research, New York Times, OECD. Marko is co-author of several books,
co-founder of several start-ups and is/was involved into over 100 EU funded research projects in various
fields of Artificial Intelligence. Significant organisational activities include Marko being general chair
of LREC2016 and TheWebConf2021 conferences. Marko represents Slovenia in OECD AI Committee
(AIGO/ONEAI), in Council of Europe Committee on AI (CAHAI/CAI), NATO (DARB), and Global
Partnership on AI (GPAI). In 2016 Marko became Digital Champion of Slovenia at European Commis-
sion.
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Keynote Talk
Making Large Language Model’s Knowledge More Accurate,

Organized, Up-to-date and Fair
Heng Ji

University of Illinois Urbana-Champaign

Abstract: Large language models (LLMs) have demonstrated remarkable performance on knowledge
reasoning tasks, owing to their implicit knowledge derived from extensive pretraining data. However,
their inherent knowledge bases often suffer from disorganization and illusion, bias towards common en-
tities, and rapid obsolescence. Consequently, LLMs frequently make up untruthful information, exhibit
resistance to updating outdated knowledge, or struggle with generalizing across multiple languages. In
this talk I will discuss our recent research efforts at tackling these challenges. I will begin by presen-
ting theoretical and empirical analyses that illuminate when and why LLMs frequently produce factual
errors and struggle to determine knowledge updating boundary in order to reach “ripple effect”. Our in-
vestigations reveal several underlying causes. First, LLMs acquire implicit knowledge primarily through
attention-weighted associations between words, rather than explicit understanding of concepts, entities,
attributes, relations, events, semantic roles, and logics. Second, frequent word associations overshadow
uncommon ones due to training data imbalance and wide context, particularly in contexts involving dyna-
mic events. Third, counter-intuitive updating behaviors are elucidated through a novel gradient similarity
metric. Fourth, LLMs are often unaware of real-world events occurring after their pretraining phase,
complicating the anchoring of related knowledge updates. While existing methods focus largely on up-
dating entity attributes, our research underscores the necessity of updating factual knowledge—such as
participants, semantic roles, time, and location—based on real-world events. We propose a novel fra-
mework for knowledge updating in LLMs that leverages event-driven signals to identify factual errors
preemptively and introduce a training-free self-contrastive decoding approach to mitigate inference er-
rors.

Bio: Heng Ji is a professor at Computer Science Department, and an affiliated faculty member at Electri-
cal and Computer Engineering Department and Coordinated Science Laboratory of University of Illinois
Urbana-Champaign. She is an Amazon Scholar. She is the Founding Director of Amazon-Illinois Center
on AI for Interactive Conversational Experiences (AICE). She received her B.A. and M. A. in Computa-
tional Linguistics from Tsinghua University, and her M.S. and Ph.D. in Computer Science from New York
University. Her research interests focus on Natural Language Processing, especially on Multimedia Mul-
tilingual Information Extraction, Knowledge-enhanced Large Language Models and Vision-Language
Models. She was selected as a Young Scientistby the World Laureates Association in 2023 and 2024.
She was selected as Young Scientistand a member of the Global Future Council on the Future of Com-
puting by the World Economic Forum in 2016 and 2017. She was named as part of Women Leaders of
Conversational AI (Class of 2023) by Project Voice. The other awards she received include two Out-
standing Paper Awards at NAACL2024, AI’s 10 to WatchAward by IEEE Intelligent Systems in 2013,
NSF CAREER award in 2009, PACLIC2012 Best paper runner-up, Best of ICDM2013paper award, Best
of SDM2013paper award, ACL2018 Best Demo paper nomination, ACL2020 Best Demo Paper Award,
NAACL2021 Best Demo Paper Award, Google Research Award in 2009 and 2014, IBM Watson Faculty
Award in 2012 and 2014 and Bosch Research Award in 2014-2018. She was invited to testify to the U.S.
House Cybersecurity, Data Analytics, IT Committee as an AI expert in 2023. She was selected to parti-
cipate in DARPA AI Forward in 2023. She was invited by the Secretary of the U.S. Air Force and AFRL
to join Air Force Data Analytics Expert Panel to inform the Air Force Strategy 2030, and invited to speak
at the Federal Information Integrity RD Interagency Working Group (IIRD IWG) briefing in 2023. She
is the lead of many multi-institution projects and tasks, including the U.S. ARL projects on information
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fusion and knowledge networks construction, DARPA ECOLE MIRACLE team, DARPA KAIROS RE-
SIN team and DARPA DEFT Tinker Bell team. She has coordinated the NIST TAC Knowledge Base
Population task 2010-2020. She is the Chief Editor of Data Intelligence Journal. She served as the as-
sociate editor for IEEE/ACM Transaction on Audio, Speech, and Language Processing, and the Program
Committee Co-Chair of many conferences including NAACL-HLT2018 and AACL-IJCNLP2022. She
was elected as the North American Chapter of the Association for Computational Linguistics (NAACL)
secretary 2020-2023. Her research has been widely supported by the U.S. government agencies (DARPA,
NSF, DoE, ARL, IARPA, AFRL, DHS) and industry (Amazon, Google, Bosch, IBM, Disney).
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Keynote Talk
Understanding and Navigating Human Control and

Transparency in LLMs
Ivan Titov

University of Edinburgh

Abstract: Language models are an exciting technology that has transformed our field and used by mil-
lions of people daily. However, both users and researchers often find themselves puzzled by LLM’s
responses and struggle to understand the underlying decision processes or attribute their responses to
specific data sources. I will talk about our work which tries to enhance the transparency of these models
for human users, ensure their behavior is systematic, and uncover the sources of their decisions. This
transparency should enable finer control of these models, including model editing, the unlearning of
undesirable behaviors or data sources, integration of extra information (e.g., in the form of knowledge
bases).
In this talk, I will discuss the approaches my group (as well as colleagues) have been developing, highli-
ghting not only methods but also some cautious lessons learned along the way. This includes pitfalls in
data attribution and the challenges of guiding model responses with human rationale. Although progress
in these areas may seem slow and sometimes illusory, it is a crucial direction, given the growing reliance
on collaboration between humans and large language models. I also hope to convince you that this area
holds a diverse range of intriguing open problems for us, researchers, to explore.

Bio: Ivan Titov is a Full Professor at the University of Edinburgh, UK, and also a faculty member at
the University of Amsterdam, Netherlands. Ivan’s current interests lie in making deep learning models
interpretable, robust, and controllable, or more generally in machine learning for NLP. He has received
awards at leading NLP conferences. Ivan has been a program co-chair of ICLR 2021 and CoNLL 2018,
and has served on the editorial boards of the Transactions of the ACL, Journal of Artificial Intelligence
Research, and Journal of Machine Learning Research, and on the advisory board of the European chapter
of ACL. Ivan is an ELLIS fellow and co-directs the ELLIS NLP program and Edinburgh ELLIS unit.
Ivan’s research group has been supported by personal fellowships (e.g., ERC, Dutch Vici, and Vidi grants)
as well as industrial funding (e.g., Google, SAP, Booking.com and Amazon).
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Multi-hop Database Reasoning with Virtual Knowledge Graph

Juhee Son1, Yeon Seonwoo1, Seunghyun Yoon2, James Thorne1, Alice Oh1

1KAIST, 2Adobe
{sjh5665, yeon.seonwoo, thorne}@kaist.ac.kr,

syoon@adobe.com, alice.oh@kaist.edu

Abstract

Application of LLM to database queries on
natural language sentences has demonstrated
impressive results in both single and multi-
hop scenarios. In the existing methodolo-
gies, the requirement to re-encode query vec-
tors at each stage for processing multi-hop
queries presents a significant bottleneck to
the inference speed. This paper proposes
VKGFR (Virtual Knowledge Graph based
Fact Retriever) that leverages large language
models to extract representations correspond-
ing to a sentence’s knowledge graph, signifi-
cantly enhancing inference speed for multi-hop
reasoning without performance loss. Given
that both the queries and natural language
database sentences can be structured as a
knowledge graph, we suggest extracting a
Virtual Knowledge Graph (VKG) representa-
tion from sentences with LLM. Over the pre-
constructed VKG, our VKGFR conducts re-
trieval with a tiny model structure, showing
performance improvements with higher compu-
tational efficiency. We evaluate VKGFR on the
WikiNLDB and MetaQA dataset, designed for
multi-hop database reasoning over text. The
results indicate 13x faster inference speed on
the WikiNLDB dataset without performance
loss.

1 Introduction

If open-domain question-answering models could
accurately reason with large-scale facts in
databases, it would make it feasible to substitute
or augment existing database management systems
with NLP technology (Thorne et al., 2021b). Sev-
eral benchmarks have been proposed (Weston et al.,
2016a; Dua et al., 2019; Thorne et al., 2021a),
which range in size and complexity and require
systems to conduct discrete reasoning (incorporat-
ing numerical operations like counting and argmax)
by collating multiple facts within the database. To
facilitate the reasoning at the scale of databases,

𝑫𝑩 𝑫𝑩

Retriever

𝒒 ∶

𝑓!:	John is a writer
𝑓":	John lives in New York
𝑓#:	Mary is a writer
𝑓$:	Mary lives in Seattle
𝑓%:	Tom is 16 years old

… 

List all writers who live in New York

Retriever Retriever

𝑓!:	John is a writer 𝑓#:	Mary is a writer

𝑓":	John lives in New York END

𝑫𝑩

𝒒 𝒒

𝑫𝑩 Retriever

END

𝒒

Figure 1: Illustration of the multi-hop reasoning pro-
cedure for answering the database query. The retriever
searches related facts in the database per each reason-
ing step. As the database sizes increases, the number
of facts used for multi-hop reasoning increases, so the
number of retriever’s operation gets higher.

NLP systems are required to access numerous sets
of relevant sentences, often in combination with
multi-hop retrieval (Figure 1).

For open-domain NLP systems to reason over
only the relevant subset of facts from a corpus,
a two-stage architecture of retrieval and reason-
ing is typically used (Petroni et al., 2021). How-
ever, challenges in database-style reasoning re-
quire additional complexity with retrieving non-
redundant sets of tens or hundreds of facts. For the
WikiNLDB benchmark, Thorne et al. (2021a) pro-
posed an incremental retrieval architecture called
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SSG (Support Set Generator) built on sentence-
BERT (Reimers and Gurevych, 2019). The in-
ference speed of the SSG is not scalable because
it encodes query vectors for each reasoning step
in multi-hop retrieval through the transformer
(Vaswani et al., 2017), causing computation in-
efficiency. As the size of the database increases,
retrieval slows down significantly. For example,
with 25 facts in the database, SSG processes 21.51
queries per second, but as the number of facts in-
creases to 1000, SSG only processes 1.46 queries
per second.

In this paper, we propose VKGFR (Virtual
Knowledge Graph based Fact Retriever) which
significantly improves the inference speed and re-
trieval performance. Since the WikiNLDB dataset
can be represented in the knowledge graph struc-
ture, we suggest constructing a virtual knowledge
graph (Wang et al., 2017, VKG) for fact retrieval
with LLM. The VKG embedding provides com-
pressed vectorized representations of facts and
queries and can be pre-indexed, enabling efficient
and accurate multi-hop retrieval. Recent works
have used VKG to predict target entities from
knowledge bases (Dhingra et al., 2020; Sun et al.,
2021) or retrieve facts to claim verification (de Jong
et al., 2021). However, the number of reasoning
steps and hop lengths are predetermined for these
specific tasks, making it challenging to adapt them
directly to database reasoning. Applying the VKG
to the database reasoning task is non-trivial because
it requires various hops of reasoning, and the can-
didates per each reasoning step are not known a
priori, and our work is the first to employ VKG for
database reasoning.

We evaluate VKGFR on WikiNLDB, a database
reasoning task consisting of various sizes of
database facts and corresponding queries, and
MetaQA (Zhang et al., 2018), a conventional multi-
hop QA dataset over the knowledge base. VKGFR
performs best compared with several other VKG-
based models and multi-hop dense retrieval mod-
els (Xiong et al., 2021; Lee et al., 2021) on both
datasets. Furthermore, VKGFR shows at least 4.7
times faster inference time than SSG in all database
sizes of WikiNLDB (Figure 6). We conduct an
ablation study with different types of entity em-
bedding and model structure, and our approach
shows the best performance. Our main contribu-
tion is to propose a significantly more efficient and
accurate VKG-based retriever enabling natural lan-
guage database reasoning.

Facts
• John is a writer who lives in Seoul, 35

years old
• Marry is 18 year old girl graduated from 

Boston school 
• James is a 40 years old lawyer graduated 

from Harvard law school
Queries 
• Argmax: Who is the oldest person? 
• Set: List all writers lives in New York.
• Count: How many people live in Seoul?
• Bool: Did James graduate from Harvard?

Figure 2: Examples of facts included in natural language
databases and database queries. The highlighted texts
are entities important for reasoning on the database.

2 Background

2.1 Natural Language Databases (NLDBs)
Natural language databases (Thorne et al., 2021a,b)
model large collections of facts stored in plain text
as the storage media for database reasoning. In con-
trast to open-domain question answering, database
reasoning requires making inferences over large
sets of facts related to one query. Conventional
open-domain question-answering methods need to
encode all relevant facts, possibly in the thousands,
perform discrete reasoning to get the most related
facts, and then decode a sequence of tokens repre-
senting the answer to the query. Previous works
have studied small synthetic settings (Weston et al.,
2016b) or reasoning over a single passage (Dua
et al., 2019).

Conventional databases store facts in structured
forms with labeled columns and are queried with
formal languages such as SQL. Much work in
NLP has studied the parsing of user queries into
structured representations or exposing the database
through a natural language interface (Androut-
sopoulos et al., 1995; Zhong et al., 2017). However,
in NLDBs, because both the stored text and queries
are natural languages, NLDBs are not restricted
by any predefined database schema allowing the
addition of new topics without defining tables or
columns, reducing maintenance overheads.

NLDBs are studied using the WikiNLDB dataset
(Thorne et al., 2021a), which contains databases
varying in size (from 25 to 1000 facts) and question-
answer pairs. An example is provided in Figure 2.
In WikiNLDB, four different types of queries re-
quire different reasoning processes (specifically,
counting, min/max, argmin/argmax, and set-based
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answers) and over single entities and short multi-
hop chains (referred to as joins).

2.2 Virtual Knowledge Graphs (VKGs)
Our proposed solution is to perform retrieval by
modeling the set of facts as a VKG: a knowl-
edge graph representation where pairs of enti-
ties and the relation between them is embedded:
(me1 ,me2 , r⃗(e1,e2)). VKG representations have
been used for retrieval in QA, but their usage and
constructions vary by application. DrKIT (Dhin-
gra et al., 2020) and TOME (de Jong et al., 2021)
used the entity representation as a memory bank
for fixed-length multi-hop retrieval. OPQL (Sun
et al., 2021) constructs a key-value memory with
VKG for the fixed length of multi-hop retrieval
and multi-hop slot filling task. The key in OPQL
is the concatenation of the target entity embed-
ding and the relation vector, and the remaining
entity embedding becomes the value of the mem-
ory. VKGDR (Seonwoo et al., 2022) uses VKG
for zero-shot domain-specific retrieval and calcu-
lates the relevance score of queries and documents
by multiplying the relation vectors. In contrast to
previous work in VKG-based retrieval, which uses
a subset of the VKG for a fixed number of hops,
we use the whole VKG representation to perform
variable-length multi-hop retrieval.

3 Methods

Our multi-hop fact retriever VKGFR comprises
two key steps: first, facts and queries are embed-
ded into VKGs (Section 3.1, Figure 3); second,
multi-hop retrieval is performed over the embedded
VKG (Section 3.2, Figure 4). In contrast to SSG
(Thorne et al., 2021a), the embeddings of facts are
immutable and can be pre-indexed, yielding faster
retrieval. For inference, VKG embeddings of new
facts or queries can be embedded on demand.

3.1 Building the VKG
Entity Encoder We extract the entity spans from
the text with a predefined entity vocabulary built
over the Wikipedia entities. All possible pairs of
extracted entities become part of the VKG. We
use a pre-trained language model to compute the
contextualized embeddings of those entities. We
experiment with various models (Karpukhin et al.,
2020; de Jong et al., 2022; Devlin et al., 2019) and
use the best-performing model, DensePhrase.
Relation Encoder The relation encoder computes
a relation vector between a pair of entities (Seon-

Pre-indexed VKGNLDB

John is a writer

Entity 
Encoder

𝑚!! 	
𝑚!" 	 𝑟!!,!"ℎ$! 	

…

𝒇𝟏:	John is a writer
𝒇𝟐:	Mary is a writer and lives in Seattle…

Relation
Encoder

John is a writer [ENT] [R1] is a [ENT] [R2]

Entity Tagging

ℎ$"

𝑽𝑲𝑮(𝒇𝟏)𝟏
𝑽𝑲𝑮(𝒇𝟐)𝟏
𝑽𝑲𝑮(𝒇𝟐)𝟐

𝑽𝑲𝑮(𝒇𝑵)𝑴

Figure 3: Illustration of our VKG construction method.
Each encoder independently builds the vectorized rep-
resentation of facts. The concatenation of the entity
and relation embeddings becomes our VKG represen-
tations of the text. For the f2, there are two entity
pairs (Mary-writer, Mary-Seattle) so the corresponding
VKG representation is indexed as two different triplets
(V KG(f2)1, V KG(f2)2).

woo et al., 2022; Sun et al., 2021; Baldini Soares
et al., 2019). Consistent with previous approaches,
the input to the relation encoder is a sentence with
two entities masked and a special relation token
inserted behind each masked token (e.g. “[ENT]
[R1] is a [ENT] [R2] who lives in L.A.”). The
masking makes the model learn the relation repre-
sentation based on the context of the entities rather
than the textual representation itself. For the two
relation tokens, the relation vector is computed by
concatenation and linear projection:

r⃗e1,e2 = W ⊺[hr1 ;hr2 ] (1)

Hyper parameter described on section 8
The relation encoder is trained with supervision

that relations containing the same entity pairs are lo-
cated in a similar vector space. The relation vectors
that consist of the same entity pairs are regarded
as positive samples. Below is the cross-entropy
training loss for the relation encoder:

Lrel_enc = CE(σ(r⃗⊺e1,e2 r⃗ei,ej ),

I(e1=ei,e2=ej)) (2)

Following Sun et al. (2021), we pre-train the re-
lation encoder with Wikidata and fine-tune it on the
respective target datasets (WikiNLDB, MetaQA).

VKG for WikiNLDB As described above, we
build VKG embeddings for the facts and queries in
WikiNLDB. For the facts, we extract the entity span
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Figure 4: Illustration of VKGFR’s multi-hop inference
procedure. The query is encoded with an RNN, and
the retrieved fact (f1) becomes the input for the next
hop. This multi-hop reasoning process is repeated until
the model predicts the special END vector, indicating
sufficient information was returned.

(ei, ej) based on the Wikipedia entity vocabulary E
and embed them with pretrained models (mei ,mej )
and calculate a relation vector r(ei,ej) for each pair.
As in Figure 2, facts can contain many entity pairs,
so there can be multiple mention-relation-mention
triplets of the same fact. The VKG representations
for fact f that have n entity pairs are denoted as
follows:

vkg(f) = {[mei ;mej ; rei,ej ]k}nk=1, ∀i ei ∈ E
(3)

For queries, we mask the entity and add the special
relation token at the end of the sentence to compute
the relation vector (e.g. “How many people study
at [ENT][R1]? [ENT][R2]”). If there are multiple
entities in the query, we average the VKG represen-
tation per each entity and take the average because
the query is a single unit used for comparison, so it
is more beneficial to include all entity pair relations
in the query. The following is VKG representation
for query q that has n entities:

vkg(q) =
1

n

n∑

k=1

[mei ;mej ; rei,ej ]k, ∀i ei ∈ E

(4)

3.2 Multi-hop Retriever

Figure 4 depicts the comprehensive inference mech-
anism of VKGFR. VKGFR retrieves relevant facts
by searching over a pre-indexed fact VKG with the
given query VKG. For each retrieval step, VKGFR
applies a linear layer to project the fact (Wf ) and
query (Wq) VKG embeddings. Then, to encode

the multi-hop aspect of retrieval, we apply an RNN
layer to transform the vector (Equation 5), consid-
ering the retrieval history.

V 0
q , h

0 = RNN(W ⊺
q vkg(q), 0) ∈ RD (5)

Using the query vector, the fact that the relation
probability is over the threshold (τ ) is returned
(vkg(ft) = retrieve(V t

q ,τ )). For each retrieval hop,
the retrieved fact vector becomes the input of the
next step (Equation 6)

V t+1
q , ht+1 = RNN(W ⊺

f vkg(ft), h
t) ∈ RD (6)

The retrieved facts are further processed by
VKGFR, repeating this retrieval step until a special
End-of-retrieval (EoR) vector is retrieved.
Training We optimize the cross entropy loss be-
tween the inner products of fact, query vectors, and
the ground truth (gt) label that is 1 if the fact is
correct for the query and 0 otherwise.

Lretreiver = CE(σ(V ⊺
fi
V t
q ), Ifi∈gt(q)) (7)

Retrieval The relevance probability between the
query and fact is estimated by computing the inner
product of the query and fact vectors. If this prob-
ability exceeds a hyper-parameterized threshold
τ = 0.5, the fact is retrieved. To model multi-set
multi-hop retrieval for WikiNLDB, the retrieval
process branches if more than one fact is retrieved.
Each branch is independently decoded until EoR is
predicted.

4 Experiments on WikiNLDB

4.1 Experimental Setup

Data The WikiNLDB dataset consists of databases
between 25 and 1000 facts. The size of the database
defines the upper bound of the number of candi-
dates for retrieval. Following the original paper
(Thorne et al., 2021a), we use the training data
from the database size 25 and train a single model
which was tested for all sizes.
VKG Embedding For the entity encoder, we use
the publicly available BERT-base size DensePhrase
checkpoint1. For the relation encoder, we pre-
trained the BERT-large with the Wikidata and fine-
tuned this on WikiNLDB.

1https://github.com/princeton-nlp/
DensePhrases
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Figure 5: Retriever and reader performance of models on all database sizes

Retriever VKGFR is trained with the pre-indexed
VKGs. We use one RNN layer for multi-hop re-
trieval, chosen empirically. We sample hard nega-
tive facts that share the same entity or same relation
with the ground truth facts for training. We set the
sample ratio as 1:10 and the threshold as 0.5 based
on empirical performance on the validation set.
Full Pipeline (With Reader) The contributions
in this paper focus on the retrieval side of a two-
part architecture. For completeness, we experiment
with the reader component. We use the pre-existing
NeuralSPJ model from Thorne et al. (2021a). This
model is an encoder-decoder transformer based
on the T5 architecture that generates a machine-
readable version of a natural language fact given
a query if the fact is relevant or no output other-
wise. Following previous approach, we trained this
model using the gold passages from WikiNLDB
and sampled false-positive facts from our retriever
for resilience. To train the model to predict no
output for false-positive retrieved facts, we sample
false positives from our retrieved facts.

For evaluation, we report precision, recall, and
F1 score for the retriever and answer exact-match
from the reader. To evaluate variance, we run each
experiment with three seeds and average the results.
Appendix 8 describes the hyperparameters.

4.2 Retrieval Baselines

SSG (Thorne et al., 2021a) is a SentenceBERT-
based multi-hop retriever, using an inner-product-
based search mechanism with branching for multi-
hop retrieval. TOME (de Jong et al., 2022) uses
predefined mention encoding for multi-hop re-
trieval. This shows the best performance on the
fact verification task. We fine-tune TOME for

WikiNLDBs. MDPR (Xiong et al., 2021) uses
dense representation for multi-hop retrieval, itera-
tively encoding the questions using the question en-
coder. To apply MDPR to the WikiNLDB dataset,
the number of candidates retrieved for every reason-
ing step needs to be set, and we set the number as
the maximum reasoning steps of the NLDB train-
ing data (Asai et al., 2020). DensePhrase (Lee
et al., 2021) is the text retrieval model we use for
entity embedding, and we experiment with only
the DensePhrase embedding on our model to figure
out the effect of our relation embedding. OPQL
(Sun et al., 2021) memory uses VKG for multi-hop
reasoning, but their VKG representations consist
of only the relation vector and target entity embed-
ding, so we compare our VKG building method to
the OPQL memory. To enable variable lengths of
multi-hop reasoning on DensePhrase and OPQL,
we add VKGFR over the pre-indexed DensePhrase
and OPQL embedding.

4.3 Ablation Study

To verify our VKG encoding method, we conduct
an ablation study with the following types of en-
tity embedding: 1) DensePhrase (Lee et al., 2021,
DP) records the dense representation of passages,
which can be a single entity. 2) Mention Encoder
(de Jong et al., 2022, ME) encodes dense vector
representations of every entity mention in a text,
which is built on the transformer architecture, and
the entity span is projected to the fixed-sized vector
space. 3) The average value of BERT (Devlin et al.,
2019) hidden embedding between the entity span
used as an entity representation. We build VKG
triplets based on different embedding models and
trained VKGFR over those representations with the
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same hyperparameter. 4) We compare the VKGFR
model structure between the RNN and Linear layer.

5 Results on WikiNLDB

5.1 Overall Results on Whole Databases

Figure 5 describes the overall performance of the
retriever and reader for all sizes.
Retriever Performance For retrieval performance,
VKGFR shows the best or comparable F1 score on
all database sizes. SSG performs best on the small-
est database size (25 facts), but as the database
size increases, the performance drastically drops.
VKGFR is consistently better than DensePhrase
and OPQL, which means that our VKG-building
methods are effective in improving retrieval. Com-
pared to other retrieval baselines, MDPR shows
low performance with high variance, indicating
that the fixed number of candidates had a negative
impact on performance. TOME shows the lowest
performance, implying that the mention encoding
strategy of TOME is not effective on this dataset.
Reader Performance VKGFR shows the best
performance on large database sizes (>100), but
the SSG is better on smaller database sizes.
DensePhrase, TOME, and OPQL showed con-
sistently lower performance than VKGFR on all
database sizes. MDPR showed much lower perfor-
mance for the reader even though it showed a better
retrieval score than the TOME, caused by noise
from the fixed number of retrieval candidates.

5.2 Results for Different Types of Queries

WikiNLDB consists of four different types of
queries: min/max, set, count, and boolean. We an-
alyze results from the models with different types
of queries on the largest database size (1000 facts).

Retriever Performance We report retrieval re-
sults for all models in Table 1. VKGFR shows the
highest F1 score on most query types, min/max,
set, and count. In comparison to the SSG, VKGFR
showed better precision which leads better F1 score
but the recall score of SSG is higher than VKGFR.
TOME and MDPR showed the lowest precision but
comparable recall scores. All models’ performance
of the boolean query is very low because 94% of
boolean queries have 0-2 positive facts, making it
hard to conduct accurate retrieval on a large size of
database.

Reader Performance We report the correspond-
ing reader accuracy in Table 2. Because of the
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Figure 6: Inference speed and the retrieval performance
of SSG (orange circles) and VKGFR (blue circles) on
different sizes of the WikiNLDB test set. The x-axis rep-
resents the retrieval F1 score, and the y-axis represents
the inference speed. The size of the circles indicates the
database sizes. The numbers on the circles indicate the
ratio of q/sec between two models on the same DB size.

higher variation in reader performance, we report
the standard deviations in the table. Compared to
the SSG, VKGFR shows better answer accuracy, in-
dicating that our more precise retriever leads to per-
formance improvements on the reader. In compari-
son to the OPQL and DensePhrase, VKGFR shows
better total accuracy. The answer candidates of the
boolean query are easier than the other queries, so
the accuracy is much higher for all models, even
TOME, compared to other question types. The
count query exhibits the lowest accuracy compared
to the others due to its requirement of accurately
predicting every positive sample.

5.3 Computational Efficiency

We measure the number of queries that each re-
triever can process in a second (Q/sec); the infer-
ence speed is measured by one Quadro RTX A6000
48GB GPU. We plot the speed-accuracy trade-off
with our model and the SSG baseline in Figure 6.
The speed of all models includes the time required
for query embedding. VKGFR showed at least
8.9 times faster inference speed than the SSG on
all database sizes and a higher F1 score on DB
size larger than 25, which is more representative of
real-world applications. Table 3 shows the retrieval
speed of each model on the largest database size
(1000 facts). VKGFR models can conduct efficient
retrieval with the simple model structure compared
to the other transformer-based models. To perform
inference on WikiNLDB on TOME, MDPR, and
SSG, a new query vector must be encoded for each
reasoning step. For example, based on the SSG,
440 BERT encodings are required per query in DB
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Min/Max Set Count Bool Total
Model P R F P R F P R F P R F P R F

TOME 17.5 72.5 28.2 15.1 77.5 25.2 14.8 80.5 25.0 2.6 90.9 5.0 15.1 77.2 25.3

MDPR 25.8 72.4 37.7 23.2 77.9 35.3 22.5 79.9 34.9 15.8 77.9 26.2 23.5 76.2 35.7

SSG 35.0 88.3 50.1 27.7 84.7 41.7 26.8 84.6 40.6 19.2 82.4 31.1 29.8 85.9 44.2

VKGFR (Ours) 44.3 70.5 54.4 37.8 76.3 50.5 39.3 76.9 52.0 17.5 82.8 28.9 39.4 74.6 51.6

w/ OPQL embedding 44.0 68.5 53.6 35.2 75.6 48.0 36.5 75.6 49.2 17.7 84.0 29.2 37.9 73.3 50.0

w/ DensePhrase embedding 41.6 68.8 51.8 37.3 72.8 49.3 39.8 74.0 51.7 19.8 83.0 32.0 38.5 72.2 50.2

Table 1: Precision, Recall, F1 score and retrieval speed of each retriever on the database size 1000. VKGFR shows
the highest F1 score on Min/Max, Set, and Count type queries.

Model Min/Max (std) Set (std) Count (std) Bool (std) Tot (std)

TOME 36.68 (0.75) 54.91 (2.81) 15.69 (3.81) 86.75 (3.71) 38.97 (1.94)

MDPR 35.67 (1.28) 41.03 (1.53) 10.83 (1.97) 56.84 (1.77) 31.01 (0.43)

SSG 43.04 (0.44) 58.03 (1.74) 15.37 (1.78) 78.21 (3.06) 41.64 (0.99)

VKGFR (Ours) 44.92 (1.03) 60.01 (0.86) 17.80 (0.89) 83.23 (2.18) 43.91 (0.59)

w/ OPQL embedding 45.61 (1.44) 57.08 (0.94) 16.86 (0.49) 82.16 (0.81) 43.10 (0.23)

w/ DensePhrase embedding 41.30 (3.59) 55.39 (0.70) 17.80 (0.49) 79.70 (0.74) 41.04 (1.64)

Table 2: Fine-tuned reader accuracy on each retriever’s result for different types of queries on the database size
1000. The standard deviation is included in this table because the std of the reader results is bigger than the retrieval
results’ std.

Model Speed
(Q/sec)

F1

TOME 0.19 25.29

MDPR 0.63 35.67

SSG 1.46 44.21

VKGFR (Ours) 12.83 51.59

w/ OPQL embedding 13.01 49.95

w/ DensePhrase embedding 12.45 50.22

Table 3: Represents the speed of each model on the
largest database size (1000) and corresponding retrieval
F1 score.

size 1000 on average, but VKGFR only needs 1
BERT encoding per query.

We included the amortized time for indexing our
embeddings to ensure a fair comparison. However,
this indexing includes additional storage overheads.
We report these storage costs in Table 4.

6 Experiments and Results on MetaQA

Experiment Setup To verify VKGFR on other
tasks, we experiment with MetaQA (Zhang et al.,
2018), which is a multi-hop retrieval over a pre-
defined knowledge base built on the WikiMovies

DB Size # of DBs Avg
Size/DB

Avg Indexing
Time /DB

25 621 1MB 0.3s

50 499 2MB 0.6s

100 250 4MB 1.2s

250 100 10MB 3.3s

500 50 17MB 6.1s

1000 25 26MB 12.0s

Table 4: Represents the size of pre-indexes for test
dataset on each database size, and taking time for the
embedding queries and facts.

dataset. Unlike WikiNLDB, the number of hops
is prefixed before the inference, so there is no end
prediction for this case. The questions of MetaQA
are generated from predefined templates, and corre-
sponding answers exist on the knowledge base. We
fine-tune the relation encoder with MetaQA dataset
as Sun et al. (2021) and use the same training &
inference configuration as 4.1. For inference, we
apply a sparse filter that the retrieved knowledge
base should include the topic entity of the query
for increasing the accuracy (Dhingra et al., 2020;
Sun et al., 2021).
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Results Table 5 reports the Hit@1 results of differ-
ent models on the MetaQA dataset. The VKGFR
outperforms the previous approach by at least 1.7
points in every case, indicating our VKG repre-
sentation contains the essential information for the
question-answering task more than others. The 1-
hop performance of OPQL is not mentioned in the
paper, but the authors said the performance is lower
than the DrKIT.

Model 1Hop 2Hop 3Hop

KVMem - 7.0 19.5
DrQA 55.3 32.5 19.7
GRAFT-Net 82.5 36.2 40.2
PullNet 84.4 81.0 78.2
DrKIT 84.4 86.0 87.6
OPQL - 88.5 87.1
VKGFR 86.1 93.7 92.1

Table 5: Hit@1 results on MetaQA dataset. Each result
is from the original paper.

7 Related Works

Building a semi-structured representation from tex-
tual sources has been an important direction in
handling reasoning queries (Asai et al., 2020; Sun
et al., 2019; Dhingra et al., 2020). This is be-
cause reasoning tasks often require entity match-
ing, and previous dense retrieval methods are in-
sufficient for entity representation learning. For
this reason, many studies have focused on entity-
matching-based retrieval methods (Sun et al., 2018,
2019; Cao et al., 2019). These studies find support-
ing facts by iteratively matching entities that ap-
peared in a given question and documents, similar
to human information-seeking processes. Further-
more, contextualized entity embedding methods
have been proposed. These methods are specifi-
cally designed for entity representation and capture
more fine-grained semantic meanings of entities
(Lee et al., 2021; de Jong et al., 2021).

Inspired by previous entity-matching-based ap-
proaches, some studies propose to use relations
between entities as well as entity vectors (Dhin-
gra et al., 2020; Sun et al., 2021; Seonwoo et al.,
2022). These approaches use a relation encoder
to encode the semantic meaning of the relation of
entities, then construct a graph consisting of entity
vectors and their relation vectors. Dhingra et al.
(2020) proposes a virtual knowledge base, which

consists of trainable entity vectors. Sun et al. (2021)
further develops this approach to use the relation
between entities and propose a virtual knowledge
graph (VKG), which consists of entity and rela-
tion vectors. Seonwoo et al. (2022) adopts the
VKG to the domain-specific document retrieval
with insufficient training data. Unlike the previ-
ous approach, our methods target variable length
of multi-hop database reasoning and show the best
performance.

8 Conclusions

In this paper, we propose VKGFR enable multi-
hop retrieval with faster speed and high perfor-
mance over the WikiNLDB dataset. Our multi-hop
retrieval mechanism does not require re-embedding
of facts, resulting in fewer queries to an encoder
model and allowing it to take advantage of pre-
indexed fact representations. VKGFR retrieves
upon that pre-indexed VKG representation which
is highly contributing to the faster inference speed.
On other tasks, VKGFR shows the best perfor-
mance on the general knowledge-base multi-hop
QA dataset, MetaQA. This research demonstrates
the applicability of VKG text representation in the
task of multi-hop database reasoning.

Limitations

VKGFR retrieves the knowledge base that consists
of explicit entities and relations. If the knowledge
base becomes more complex, with no explicit en-
tities and relations in the sentence, new VKG en-
coding methods will be required for good perfor-
mance.
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A Hyperparameters

We use the AdamW optimizer (Loshchilov and
Hutter) with a warmup ratio of 0.1 in all our ex-
periments, and use four Quadro RTX A6000 48GB
GPUs for model training. Table 6 represents our
training hyper-parameters. The relation encoder
and NeuralSPJ are based on the bert-large and T5
respectively. We trained our model based on the
hugging face transformers(Wolf et al., 2020). For
the hyperparameters for relation encoder and Neu-
ralSPJ, we followed the original paper. For the
VKGFR, we experiement with different learning
rate (5e-4, 1e-4) and choosed the best performing
one. For the layer number, we experimented with
1,2,4,8 and choosed the best-performing one.

B Model Parameter Size

Table 7 represents the number of parameters of
baseline models.

C Dataset

The WikiNLDB Data is available on GitHub2

and we used the pre-splited train, valid and test
data. The MetaQA dataset can also be found on
GitHub3, and we followed a similar methodology
as WikiNLDB when working with it.

2https://github.com/facebookresearch/NeuralDB
3https://github.com/yuyuz/MetaQA
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Model Hyperparmeter Value

Relation Encoder

Learning rate 2e-5
Number of epochs (fine-tuning) 2
Number of epochs (pre-tuning) 3
Batch size per device 24
Relation vector size 1024

VKGFR

Learning rate 5e-4
Hidden dimension of linear layer 4096 * 512
Layer number of rnn 1
Dropout rate 0.2
Number of epochs 20
Batch size for device 16396

NeuralSPJ (Reader)
Learning rate 1e-4
Number of epochs 3
Batch size for device 8

Table 6: Hyperparameters of pre-training and fine-tuning the relation encoder

Model Number of parameters

TOME 53,057,920

MDPR 125,238,274

SSG 66,362,880

VKGFR (Ours) 6,297,088

Table 7: Represents the number of parameters of base-
line models
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Abstract
In this work, we tested the Triplet Extraction
(TE) capabilities of a variety of Large Lan-
guage Models (LLMs) of different sizes in the
Zero- and Few-Shots settings. In detail, we
proposed a pipeline that dynamically gathers
contextual information from a Knowledge Base
(KB), both in the form of context triplets and
of (sentence, triplets) pairs as examples, and
provides it to the LLM through a prompt. The
additional context allowed the LLMs to be com-
petitive with all the older fully trained baselines
based on the Bidirectional Long Short-Term
Memory (BiLSTM) Network architecture. We
further conducted a detailed analysis of the
quality of the gathered KB context, finding it
to be strongly correlated with the final TE per-
formance of the model. In contrast, the size
of the model appeared to only logarithmically
improve the TE capabilities of the LLMs. We
release the code on GitHub 1 for reproducibil-
ity.

1 Introduction

The task of Triplet Extraction (TE) (Nayak et al.,
2021) is of fundamental importance for Natural
Language Processing (NLP). This is because the
core meaning of a sentence is usually carried
by a set of (subject, predicate, object) triplets.
Therefore, the capability to identify such triplets
is a key ingredient for being able to understand
the sentence.

Currently, the State-Of-The-Art (SOTA) for TE
is achieved by models that approach the TE task
in an end-to-end fashion (Zheng et al., 2017; Zeng
et al., 2018; Fu et al., 2019; Zeng et al., 2019; Tang
et al., 2022). That is, they are trained to perform
all the TE sub-tasks, namely, Named Entity Recog-
nition (NER (Yadav and Bethard, 2018)), Entity
Linking (EL (Alam et al., 2022)), and Relation Ex-
traction (RE (Detroja et al., 2023)), together. These

1https://github.com/BrunoLiegiBastonLiegi/
KG-TE-with-LLMs

SOTA models follow the classic NLP paradigm,
i.e., they are trained by supervision on specific TE
datasets. However, this dependence on labeled data
restricts their generality and, therefore, limits the
applicability of such models to the real world.

While several labeled datasets for the TE task
are publicly available (Riedel et al., 2010; Gardent
et al., 2017), these cover only part of the spectrum
of possible entities and relations. This means that a
supervised model trained on these public data will
be restricted to the closed set of entities and rela-
tions seen during training, implying that it may lack
generalization capabilities. Producing a tailored
dataset for training a model for particular applica-
tions, is, however, in general expensive (Johnson
et al., 2018).

For this reason, the recent language understand-
ing and reasoning capabilities demonstrated by
Large Language Models (LLMs), such as the Gen-
erative Pre-trained Transformer 4 (GPT-4) (Ope-
nAI, 2023), LLM Meta AI (LLaMA) (Touvron
et al., 2023), and Falcon (Penedo et al., 2023) to
name a few, have led researchers (Chia et al., 2022;
Kim et al., 2023; Wadhwa et al., 2023; Wei et al.,
2023b; Zhu et al., 2023) to investigate whether they
represent a viable option to overcome the limita-
tions imposed by supervised models for TE. In
detail, the new approach being that at inference
time the LLMs are prompted to extract the triplets
contained in a sentence, while being provided with
only a few labeled examples (or no example at all in
the Zero-Shot setting). This LLM approach largely
limits the amount of data needed to perform the
task, and, in particular, lifts the restriction of adher-
ing to a predefined closed set of relations. However,
the investigations so far indicated that the Zero and
Few-Shots performance of the LLMs appears to
be often underwhelming compared to the classic
fully trained NLP models (Wadhwa et al., 2023;
Wei et al., 2023b; Zhu et al., 2023).

In order to enhance the abilities of LLMs in the
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TE task, we propose in this work to aid them with
the addition of a Knowledge Base (KB). We demon-
strate that augmenting LLMs with KB information,
i.e., dynamically gathering contextual information
from the KB, largely improves their TE capabili-
ties, thereby making them more competitive with
classic NLP baselines. In particular, we show that
when the retrieved information is presented to the
LLMs in the form of complete TE examples rele-
vant to the input sentence, their performance gets
closer to the fully trained SOTA models.

2 Related Work

Classical end-to-end fully supervised models cur-
rently hold the best performance in the TE task.
Starting from the older baseline, Zheng et al.
(2017), which also introduced the revised version
of the WebNLG dataset for Natural Language Gen-
eration (NLG) that is commonly used, several other
architectures based on the bidirectional Recurrent
Neural Networks (RNNs) (Zeng et al., 2018; Fu
et al., 2019; Zeng et al., 2019) have steadily im-
proved the SOTA over the years. More recently,
Transformer-based models achieved a big leap for-
ward in performance, with the recent UniRel model
being the current SOTA (Tang et al., 2022) in the
datasets we consider. A further class of fully su-
pervised models, such as Huguet Cabot and Nav-
igli (2021) and Josifoski et al. (2022), treats the
TE problem as a sequence-to-sequence generation
task, which is more similar to the LLM approach
adopted here, but still requires some training or
finetuning.

With the advent of LLMs, Chia et al. (2022) and
Kim et al. (2023) tested the use of such models for
those TE cases where the availability of examples
to train on is low. The first work proposed to use
a LLM to generate training examples to finetune a
Relation Extractor model to recognize relations for
which labels were not available. The latter work,
instead, suggested using relation templates of the
form 〈X〉 relation 〈Y〉 and finetune a LLM to fill out
〈X〉 and 〈Y〉 with the entities appearing in the sen-
tence. Wadhwa et al. (2023),Wei et al. (2023b), and
Zhu et al. (2023) investigated the general TE task
in both Zero- and Few-Shots settings. These stud-
ies proposed different approaches based on LLM
prompting. The first work tested the Few-Shots per-
formance of GPT-3 (Brown et al., 2020a) and Text-
to-Text Transfer Transformer (T5) (Raffel et al.,
2023) under the inclusion of manually-crafted and

dataset-dependent contextual information in the
prompt. The second work proposed to perform TE
by sequentially prompting ChatGPT in two stages:
asking to individuate the possible relation types
first and then extracting the entities participating
in each relation. The procedure demonstrated bet-
ter results than a one-stage approach where the
model is prompted to extract the triplet directly.
Finally, the third work, evaluated GPT-3 (Brown
et al., 2020b) and GPT-4 (OpenAI, 2023) on some
standard benchmarks in the Zero- and One-Shot set-
tings. However, classical fine-tuned models proved
to be superior in the majority of the cases.

In our study, we similarly test the Zero- and
Few-Shots capabilities of LLMs in two standard
TE datasets that have not been covered by these pre-
vious works. In contrast to Wadhwa et al. (2023)
that manually crafted static dataset-specific con-
text to be fed to the LLM, we propose here to dy-
namically gather contextual information useful for
extracting the triplets from a KB. This makes our
approach more flexible and less data-dependent,
as the KB does not require any manual operation
and can be easily switched depending on the need.
Also, in contrast to other works, we investigate a
wide range of Language Models with varying sizes.
This allows us to provide an in-depth analysis of
the scaling of the performance, both, from the per-
spective of the model chosen, and the quality of the
contextual KB information included in the prompt.

3 The Pipeline

In this section, we provide a detailed illustration
of the pipeline used to test the TE capabilities
of LLMs.

3.1 Task Formulation

Given a sentence composed of tokens
(t1, t2, · · · , tN ), the TE task consists of
identifying all the relations expressed in it and ex-
tracting them in the form of triplets (s, p, o). Here,
s = (ti, · · · , ti+ns) and o = (tk, · · · , tk+no)
represent a subject and an object of length ns and
no tokens, and p is the predicate. Usually, the
task is related to a specific KB, i.e., a graph of
the form G = (V, E), composed of entities e ∈ V
as vertices and relations r ∈ E as directed edges.
Therefore, s and o of the sentence correspond to
vertices es, eo ∈ V . The predicate p is mapped to a
relation included in the closed set of possible edge
types of the KB.
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Figure 1: The TE pipeline. Left: illustration of the pipeline. A KB is constructed from the training and validation
splits of a given dataset. For each test sentence, the relevant contextual information is retrieved from the KB and
included in the prompt for a LLM-based TE. Right: summary of information retrieval from the KB. Either the
sentence-triplets pairs or the single triplets alone are encoded by a sentence encoder and compared to the encoding
of the input sentence by cosine similarity.

3.2 LLMs as Triplet Generators
In order to perform TE, we can prompt LLMs to
generate, for a given input sentence, a sequence of
tokens corresponding to the set of entity-relation
triplets

{
(eis, r

i
p, e

i
o)
}n

i=1
. As demonstrated by

Wadhwa et al. (2023), Wei et al. (2023b), and
Zhu et al. (2023), LLMs are, in principle, able
to extract the knowledge triplets contained in a text
without a need for task-specific training, under a
suitable choice of prompt. In general, successful
LLM prompts follow a fixed schema that provides
a detailed explanation of what the task consists of,
a clear indication of the sentence to process, and
some hints or examples for the desired result.

In this work, we tested the use of three different
prompts: a simple baseline and two slight varia-
tions of it. However, preliminary testing in TE
showed no significant difference in the F1 scores
among them. Therefore, we opted for using only
the base prompt reported in Figure 2 in the main
experiments. The details of the prompts tested and
their results can be found in Appendix A.3.

3.3 KB-aided Triplet Extraction
In order to support LLMs in the TE task, we pro-
pose the pipeline illustrated in Figure 1. The
pipeline augments the LLM with external KB in-
formation. In detail, for each input sentence, rele-
vant context information contained in the KB is re-
trieved and attached to the LLM prompt described
above. The context-enriched prompt is then fed to
the LLM for the knowledge triplet generation.

We prepare the information coming from the
KB in two different forms: either as simple con-
text triplets

Tc =
{
(eis, r

i
p, e

i
o)
}NKB

i=1
∈ G , (1)

or as sentence-triplets pairs

Ec =
{
(Si

c, T
i
c)
}NKB

i=1
. (2)

The latter provides factual examples of triplets to be
extracted for specific sentences. Note that we indi-
cate with NKB the number of triplets, respectively,

Some text is provided below. Extract up to {max_triplets} knowledge 
triplets in the form (subject, predicate, object) from the text.
---------------------------------------------------------------------------------------------------
Examples:
Text: Abilene, Texas is in the United States.
Triplets:
(abilene texas, country, united states)

Text: The United States includes the ethnic group of African 
         Americans and is the birthplace of Abrahm A Ribicoff 
         who is married to Casey Ribicoff.

Triplets:
(abrahm a. ribicoff, spouse, casey ribicoff)
(abrahm a. ribicoff, birth places, united states)
(united states, ethnic group, african americans)
---------------------------------------------------------------------------------------------------

Triplet Extraction Prompt

Text: {text}
Triplets:

Figure 2: The base prompt we experimented with. At in-
ference time the {text} and {max_triplets} variables
are substituted with the sentence to process, respectively,
the maximum number of triplets found in a sentence in
the corresponding dataset.
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sentence-triplets pairs retrieved from the KB. In
the first case, augmentation is achieved by simply
attaching the retrieved triplets Tc as an additional
“Context Triplets” argument to the base prompt
reported in Figure 2. For the second approach,
instead, we substitute the two static examples pro-
vided in the base prompt, with the input relevant
examples Ec retrieved from the KB.

The relevant context information to build the Tc

triplets set for each input sentence is retrieved as
follows. Given the KB, we isolate all the triplets
(eis, r

i
p, e

i
o) ∈ G contained therein, and store them

in a node based vector store index (Liu, 2022). In
detail, each node of this index corresponds to one
and only one of the triplets and stores the embed-
ding obtained by running a small-scale sentence
encoder, MiniLM (Wang et al., 2020), on the corre-
sponding (subject, predicate, object) string. In
the first approximation, this should be enough to
provide a meaningful embedding for each triplet.
During inference (i.e., TE), we first encode the in-
put sentence using the MiniLM. This is followed by
comparing the obtained sentence embedding with
all the triplet embeddings contained in the index
to retrieve the top NKB most similar triplets to the
input sentence. Out of this NKB-dimensional sam-
ple, we further select the first two triplets for each
relation type present in the sample. This is done to
obtain a more diverse set of context triplets with a
more homogeneous distribution over the relations.
In some cases, indeed, the risk of obtaining a highly
biased distribution towards a specific relation type
exists, which is sub-optimal for those sentences
that contain several different relationships.

Note that a similar procedure can be followed
to prepare the Ec examples set. However, in this
case, the focus will be shifted to the example sen-
tences we wish to include. Namely, each node
of the vector store index is going to consist both
of the example sentence and the KB triplets to be
extracted from it. Then, the embedding vector is
obtained by running the sentence encoder on either,
the example sentence alone, or the sentence and
triplets combined. As before, at inference time the
top NKB most similar (sentence, triplets) pairs to
the input sentence are retrieved and included in the
prompt as Few-Shots examples.

4 Experiments

In this section, we first provide details about the
datasets and models we tested. This is followed by

Train Validation Test Relations Max Avg
WebNLG 5,019 500 703 171 7 2.29
NYT 56,195 5,000 5,000 24 22 1.72

Table 1: Statistics of the WebNLG and NYT datasets.
The number of training, validation, and testing sentences
is reported, together with the number of relations types
in the dataset and the maximum and average number of
triplets contained in a sentence.

Parameters [B] Context
GPT-2 (Radford et al., 2019) 0.1 | 1.5 1,024
Falcon (Penedo et al., 2023) 7 | 40 2,048
LLaMA (Touvron et al., 2023) 13 | 65 2,048

Table 2: The number of parameters (in billions [B]) and
context window size of the selected LLMs.

the presentation of the main results for the TE task.

4.1 Datasets and Models

In order to test the TE capabilities of a selected set
of LLMs (see Table 2 for their comparison), we
experimented with two standard benchmarks for
the TE task: the aforementioned WebNLG (Gar-
dent et al., 2017) and the New York Times
(NYT) (Riedel et al., 2010) dataset (see Table 1
for their basic statistics). The former was initially
proposed as a benchmark for the NLG task, but has
been successively adapted to the TE task and in-
cluded in the WebNLG challenge (Castro Ferreira
et al., 2020). As the revision provided by Zheng
et al. (2017) appears to be the most widely used in
the literature, we decided to run our tests on that
particular version of WebNLG. The NYT bench-
mark is a dataset created by distant supervision,
aligning more than 1.8 million articles from the
NYT newspaper with the Freebase KB. For each
dataset, we used the training and validation splits
to build the corresponding KB following the proce-
dure outlined in Section 3.3.

We selected the LLMs reported in Table 2 for
testing. We ran locally all the models in their 8-
bit quantized version provided by the Hugging-
Face (Wolf et al., 2020) library. We tested the use
of OpenAI models through their provided API as
well. However, as their results were often incon-
sistent and given the limited access and control
we had over them, we decided to exclude these
models from the main report. All the experiments
regarding them can be found in Appendix A.1. The
temperature was set to τ = 0.1 for all the experi-
ments. We experimented with higher temperatures
but observed that they were detrimental to the TE
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Model WebNLG NYT
NovelTagging (Zheng et al., 2017) 0.283 0.420

CopyRE (Zeng et al., 2018), 0.371 0.587
GraphRel (Fu et al., 2019) 0.429 0.619

OrderCopyRE (Zeng et al., 2019) 0.616 0.721
UniRel (Tang et al., 2022) 0.947 0.937

Table 3: Micro-averaged F1 of some finetuned models
selected from the literature.

Model WebNLG NYT
0-Shot 2-Shots 0-Shot 2-Shots

GPT-2
base 0.000 0.006 0.000 0.000
xl 0.000 0.037 0.000 0.000

Falcon
7b 0.000 0.066 0.000 0.002

40b 0.021 0.158 0.000 0.007

LLaMA
13b 0.006 0.129 0.000 0.002
65b 0.041 0.219 0.000 0.017

Table 4: Zero and 2-Shots micro-averaged F1 perfor-
mance of the LLMs tested with the prompt of Figure 2
and without any context coming from the KB.

performance of the model. For Falcon and LLaMA
LLMs, we also explored their instructed counter-
parts, i.e., models that were fine-tuned for chat ap-
plications, either through Reinforcement Learning
with Human Feedback (RLHF) (Christiano et al.,
2023) or supervision from other LLMs (Taori et al.,
2023). However, as the instructed models always
performed on par, or worse, in our tests, we decided
to present the base variants.

We made use of the LlamaIndex (Liu, 2022),
LangChain (Chase, 2022) and HuggingFace trans-
formers (Wolf et al., 2020) python libraries for the
implementation of the pipeline.

4.2 Zero- and 2-Shots without the KB

As a baseline, we test the Zero- and 2-Shots ca-
pabilities of the LLMs without any additional in-
formation supplemented from a KB. As described
in Section 3, we prompt the LLM with the base
prompt of Figure 2 to extract all the triplets for a
sentence in the form (subject, predicate, object). In
particular, for the 2-Shots settings, two standard ex-
amples are included in the prompt but not changed
over the different sentences (c.f. Figure 2).

In general, the LLMs queried by the base prompt
do not seem capable of performing well in the
TE task (Table 4). The two static examples in-
cluded in the 2-Shots setting help to clarify the
task and improve substantially the performance
over the Zero-Shot. However, all models struggle
to achieve the performance of the classical base-

Model WebNLG NYT
0.5-Shot 5-Shots 0.5-Shot 5-Shots

GPT-2
base 0.249 0.430 0.175 0.375
xl 0.297 0.517 0.193 0.448

Falcon
7b 0.381 0.567 0.250 0.519

40b 0.345 0.615 0.226 0.547

LLaMA
13b 0.374 0.609 0.247 0.582
65b 0.377 0.677 0.243 0.647

Table 5: 0.5 and 5-Shots micro-averaged F1 perfor-
mance of the LLMs tested with the prompt of Fig-
ure 2 augmented with NKB = 5 triplets, respectively,
sentence-triplets pairs retrieved from the KB.

line NLP models (Table 3). The sole exception is
the LLaMA 65B model that achieves an F1 score
close to the one obtained by Zheng et al. (2017)
in the WebNLG dataset with 2-Shots. In particu-
lar, the NYT benchmark appears to be challenging
for LLMs as they have difficulties even reaching
a mere 1% F1 score. This discrepancy in perfor-
mance between the datasets could potentially be
explained as follows: In contrast to the WebNLG
dataset, which features more linear and simple sen-
tences, in NYT articles quite complex structures,
with several subordinate clauses and implicit rela-
tions, are frequent. In particular, the triplet labels
of the NYT dataset often cover only a subset of the
actual relations found in the sentence. Therefore,
without training examples available, LLMs cannot
infer which relations are and are not supposed to
be extracted.

4.3 Zero-shot with KB Triplets (0.5-Shots)

If we supplement the LLMs with context triplets
retrieved from the KB, as described in Section 3.3
and illustrated in Figure 1, the performance of the
LLM in the TE task increases substantially (see
Table 5). We refer to this setting where only a
set of context triplets, but no example sentence, is
provided to the model as 0.5-Shots. The additional
triplets hint at which relations and entities the LLM
should expect, but they do not give any indication
of which sentence pattern they could arise from.

In this case, the smallest model we tested,
namely GPT-2 base, is competitive with the
LLaMA 65B model without context triplets, both,
for the WebNLG and the NYT dataset. Further-
more, the bigger models (Falcon, LLaMa) perform
better or on par with some of the classical NLP
baselines for the WebNLG dataset given in Table 3.

Even so for the NYT dataset a large improve-
ment is obtained under the addition of context
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triplets, all the LLMs are not able to reach scores
competitive with the classical NLP models. The
reason behind this might be related to the lower
capability of the KB retriever to gather relevant
context for NYT (c.f. Figure 3) discussed below
and to the specific difficulties associated with the
NYT dataset discussed in the previous section.

In general, it is interesting to observe that per-
formance with the addition of the context triplets
appears to be less dependent on the particular LLM
used in case of 0.5-Shot setting. Quite remarkably,
the small GPT-2 xl is able to retain most of the per-
formance of the larger models. This is particularly
evident for the NYT dataset, where all the LLMs
are not able to perform better than a 25% F1 thresh-
old. This could be seen as a symptom of the TE
accuracy being mainly driven by the added context
triplets in this case. Indeed, we also tested this KB
triplets augmentation combined with the inclusion
of the two static examples used in Section 4.2, but
no significant differences were observed.

4.4 Few Shots with KB Sentence-Triplets
Pairs

To further aid LLMs in the TE task, we experiment
with inclusion in the prompt of input-specific (sen-
tence, triplets) example pairs retrieved from the KB,
as detailed in Section 3.3. Such updated prompts
should provide a much stronger signal to the LLM
as they not only suggest which entities and rela-
tions the LLM should expect, but also which kind
of patterns in the sentence correspond to a specific
relation. In particular, as it will be discussed in
Section 4.5, the measured train-test overlapping
seems to be large for both datasets (c.f. Figure 3)
and, therefore, the updated prompts are likely to
include examples of similar sentences. Therefore,
performance improvements are expected, and in
fact, looking at Table 5, we see that including 5
of these examples in the prompt makes the LLM
competitive with most of the classical baselines
reported in Table 3 (except the most recent SOTA
from Tang et al. (2022)).

Interestingly, the performance gap between the
two datasets narrowed under the updated prompt.
In particular, the NYT corpus seems to have be-
come far easier now for the LLMs. As discussed
in Section 4.2, this dataset consists of sentences
with a much more complex structure and more
implicit relations. Therefore, having available ex-
amples of similarly constructed sentences might
have helped the models to more easily identify the
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Figure 3: Probability that the correct triplet is present in-
side the retrieved KB context consisting of (left) triplets
alone or (right) sentence-triplet example pairs, plotted
against the amount of context gathered, NKB .

correct triplets.

4.5 Quality of the KB Context

To evaluate the effectiveness of the KB retriever
and the quality of the included KB context, we
plot in Figure 3 the probability of finding the cor-
rect triplets with increasing NKB , i.e., the solution
to the TE task, inside the gathered KB context.
Namely, for each test sentence contained in the two
datasets, we looped over every labeled triplet and
counted the number of times it was contained inside
the context provided by the retriever. We repeated
this procedure for different values of NKB .

Figure 3(left) suggests that NKB ∼ 10 − 20
retrieved triplets almost maximize the probability
of retrieving a useful context already, as, beyond
that, the improvement is only marginal. However,
as few as five triplets worked the best in our tests.
Probably, a greater number of context triplets re-
trieved leads to a marginally increased likelihood
of including relevant information, but at the cost
of a larger dilution. Conversely, as illustrated by
Figure 3(right), for the sentence-triplets augmen-
tation convergence is not reached with NKB = 8
yet. However, in our experiments, the final TE per-
formance only marginally improved going from 5
to 8 sentence-triplets examples included. Still, it is
interesting to note that LLM performance increases
with NKB in this case, providing further evidence
that the examples composed of sentence-triplets
pairs are much more informative. Adding several
of them does not lead to a dilution of useful in-
formation, but rather contributes to widening the
spectrum of examples the LLM can take “inspira-
tion” from.

In general, the probability of providing the cor-
rect triplet to the LLM through the context appears
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Figure 4: Probability that the correct triplet is present
among the retrieved KB context for the WebNLG
dataset, as in Figure 3, but with different scaled-down
versions of the original KB.

to be large: greater than 50% in the majority of
the cases, and even approaching the 70 ∼ 80%
for the WebNLG dataset. This is symptomatic of
substantial overlap that exists between the training,
validation, and test splits for both datasets, to the
point that even a stochastic model, that randomly
sampled the triplets out of the KB context retrieved,
was able achieve performance competitive with
many of the LLMs and baselines of Table 3 in
some cases (see Appendix A.2 for more details).

4.6 Ablation Study

To further investigate the impact of the additional
knowledge retrieved from the KB, we revisit in
this section the performance of one of our best
performing LLMs, LLaMA-65b. In detail, we con-
struct a scaled-down version of the KB via ran-
domly sampling from the original training and vali-
dation splits, keeping only a fraction of the original
sentences and triplets. For this reduced KB, the
probability of having the correct triplet answer al-
ready within the retrieved information is reduced
(c.f. Figure 4). This allows us to evaluate how the
accuracy of the model is impacted by the quality
of the retrieved data.

We decided to conduct this test on the WebNLG
dataset. As P (NKB) for the full-scale KB has been
larger than for the NYT dataset, c.f. Figure 3, a
wider range of values to be explored is allowed.
Nonetheless, a preliminary test on the NYT dataset
yielded similar results. In Figure 5a we report the
variation of the final F1 score obtained by LLaMA-
65b with prompts augmented by NKB = 5 triplets
and sentence-triplets pairs gathered from a KB of
different scales S = 0, 0.1, 0.25, 0.5, 1. Here, the
scale refers to the fraction of left-over data from the
original KB. Note that S = 0 corresponds to the

original prompt without any additional information
from the KB. The F1 score is plotted against the
probability PS(NKB = 5) of having the correct
triplet inside the retrieved data with NKB = 5 for
the different KB sizes. This corresponds to the
probability curves of Figure 4 evaluated at NKB =
5. We observe that the performance degrades as the
probability PS(NKB) shrinks with decreasing S,
as expected. In particular, the relation appears to be
linear: F1triplets ∼ 0.25 · Ps(NKB = 5) + 0.21.
F1sentence−triplets ∼ 0.55 ·Ps(NKB = 5)+0.21.
with measured determination coefficients r2 =
0.98 and r2 = 0.96, respectively. This suggests
that there is a strong correlation between the TE
capabilities of the model and the quality of the
retrieved data.

Furthermore, we investigated how the final TE
performance scales with the size of the model. In
Figure 5b, the F1 score is plotted against the num-
ber of parameters Npar in log scale for all the mod-
els we tested. The plot includes the results obtained
for both the WebNLG and NYT datasets, for all
settings considered. We observe that for each of
the three settings, the models’ performance grows
linearly in log scale with respect to their sizes. The
scaling in the number of parameters Npar in log
scale can be approximated by

F1norm ∼ m · logNpar. (3)

The slope parameters of the linear fit for
WebNLG are m = 0.0456, 0.0304, and 0.0871
for, respectively, 2-Shot, 0.5-Shot(KB), 5-
Shots(KB) settings, and for the NYT the corre-
sponding parameters are m = 0.0028, 0.0257
and 0.0906. The determination coefficients for
the WebLNG and NYT datasets are, respectively,
r2 = 0.67, 0.62, and 0.97, and r2 = 0.18, 0.7
and 0.90. Interestingly, the F1 score increase with
the size of the model is steeper for the few-shots
prompt (c.f. Figure 5b right). This suggests that
larger models might be more capable in making use
of several examples included inside of the prompt.

Therefore, the F1 score and thus the TE accu-
racy appears to scale linearly with the size of the
KB (c.f. Figure 5a), but only logarithmically with
the size of the model (c.f. Figure 5b). This suggests
that it could be better to invest resources to improve
the quality of the KB and its associated information
retriever, rather than in training larger models.
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Figure 5: (Left) Triplets (orange) and sentence-triplets (green) KB augmented performance of the LLaMA-65b
model with different scaled-down versions of the KB built for the WebNLG, S = 0, 0.1, 0.25, 0.5, 1. The F1 score
is plotted against the probability of retrieving the correct triplet with NKB = 5 for each S (namely P (NKB = 5)
for each curve of Figure 4). (Right) F1 score obtained by the tested models, plotted against their corresponding log
of number of parameters, for WebNLG (blue) and NYT (orange) in the three settings: 2-shots, 0.5-shots with KB
triplets (NKB = 5), and 5-shots with KB sentence-triplets pairs (NKB = 5). The outliers (GPT-4 and GPT-3.5
turbo) are shown in green.

5 Conclusion

In this work, a pipeline for Zero- and Few-Shots TE
from sentences was presented and tested for various
LLMs. We showed that the inclusion of KB infor-
mation into the LLMs prompting can substantially
improve the TE performance. In particular, small
models were often able to outperform their bigger
siblings without access to the additional KB infor-
mation. Furthermore, with the information from
the KB organized as sentence-triplets pair examples
relevant to the input sentence, the accuracy of the
LLMs improved further. In this setting, the larger
LLMs were getting closer to the classical SOTA
models and outperformed most of the older base-
lines. However, even for the largest models, TE
remains a challenging task without any finetun-
ing. LLMs were still no match for SOTA classical
finetuned models in the two standard benchmark
datasets we tested as part of our work, in agreement
with Wadhwa et al. (2023); Wei et al. (2023b); Zhu
et al. (2023).

Moreover, the performed investigation of the
quality of the retrieved KB context showed that
the solution to the TE task was often contained
inside it already. This first indicated that a large
overlapping between the train, validation and tests
sets exists for both WebNLG and NYT, leading
us to reconsider their generality for benchmarking
TE capabilities and suggesting that a revision with
better test isolation might be helpful. Secondly,
it demonstrated that, while LLMs are capable of
correctly individuating the relevant information in

the context, they do not shine, yet, in re-elaborating
such information, generalizing and making use of
it for different examples. Indeed, the investigation
of the impact of the quality of the retrieved KB
context, showed as the performance of the LLaMA-
65b model linearly decreased with the probability
of finding the solution of the task within the context
already, indicating that the intrinsic incompleteness
of KBs might represent a big limiting factor of this
approach. Concurrently, we found that the TE per-
formance improved only approximately logarithmi-
cally with the size of the model. This suggests that
improving the quality of the KB and the associated
information retriever might be more effective than
increasing the modeling power of the LLM for TE.
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A Appendix

A.1 OpenAI Models results
We report here the results obtained by the OpenAI
models listed in Table 6. We ran them remotely
through the OpenAI API and always setting a tem-
perature T = 0.1. We were not able to find any
information regarding the parameter precision they
used. Note that the GPT-3.5 and GPT-4 are in-
structed models. For some experiments we also
tested the use of text-davinci-002, which is a non-
instructed model based on GPT-3 and, apparently,
the only base variant OpenAI provides through
their API.

Parameters [B] Context
text-davinci-002 (Brown et al., 2020b) 175* 2,048
GPT-3.5 (Brown et al., 2020b) 175* 4,096
GPT-4 (OpenAI, 2023) 1,760* 8,192

Table 6: The number of parameters (in billions [B]) and
context window size of the OpenAI LLMs. We indicate
by * the numbers that are not officially confirmed.
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Tables 7 and 8 report the results obtained by the
OpenAI models on the WebNLG and NYT datasets
in all the different settings. The comparison with
the other models, c.f. Tables 4 and 5, shows them
to be comparable to the Falcon 40B model in the
majority of the cases. However, they recorded very
underwhelming results on the NYT dataset both, in
the 0.5-Shots and Few-Shots settings. Our manual
inspection of the triplets they provided as an an-
swer suggested that they were less keen to adhere to
the entities and relations appearing in the provided
KB context, often paraphrasing or reformulating
them in a more prolix form that lowered the accu-
racy. This might be a consequence of the instructed
training they had gone through, as discussed in Sec-
tion 4.1. In contrast, the results provided by the
non-instructed text-davinci-002 model were more
in line with all the other LLMs.

A.2 Random Model

In order to better understand the results obtained
by the KB-augmented LLMs, we considered the
following simple random TE model: first, we
randomly select the number of triplets n ∈
[1,max_triplets] to extract, with max_triplets
indicating the maximum number of triplets con-
tained in a sentence of the dataset. Then, we
uniformly sample n triplets out of the retrieved
KB context. Surprisingly, the random model is
very competitive with the KB-augmented LLM
for small NKB on the WebNLG dataset (see Fig-
ure 6), and similar results were observed for the
NYT dataset. This can be explained by the hand
of Figure 3. In detail, we infer from the figure
that the KB-augmented prompt has a large prob-
ability of containing the correct triplets to extract
already, therefore, even randomly selecting a subset
of them yields a relatively high accuracy. This pro-
vides further confirmation that the TE performance
is largely driven by the KB retriever.

However, the performance of the random model
decreases polynomially with NKB , as the prob-
ability of randomly sampling the correct triplets

Model WebNLG NYT
0-Shot 2-Shots 0-Shot 2-Shots

OpenAI
GPT-3.5 0.000 0.144 0.000 0.008
GPT-4 0.007 0.156 0.000 0.007

Table 7: Zero and 2-Shots micro-averaged F1 perfor-
mance of the LLMs tested with the prompt of Figure 2
and without any context coming from the KB.

Model WebNLG NYT
0.5-Shot 5-Shots 0.5-Shot 5-Shots

OpenAI
text-davinci-002 0.403 0.491 0.144 0.418

GPT-3.5 0.336 0.520 0.088 0.184
GPT-4 0.394 0.510 0.096 0.151

Table 8: 0.5 and 5-Shots micro-averaged F1 perfor-
mance of the OpenAI LLMs tested with the prompt of
Figure 2 augmented with NKB = 5 triplets, respec-
tively, sentence-triplets pairs retrieved from the KB.
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1

triplets

Random
LLaMA-65b
Fitting	Eq.	(3)

0 2 4 6 8
NK B

sentence-triplet

Figure 6: Degradation of the random model perfor-
mance with the increase of the context information in-
cluded, NKB . The LLaMA-65b, instead, is able to
retain most of its performance when more triplets are
added (left panel), and sees a significant F1 rise with
an increasing number of sentence-triplets pairs (right
panel). For reference, we also report the fit of (4) as a
dashed orange line.

follows the empirical scaling relation

F1rand(NKB) ∼
(
P (NKB)

NKB

)n

, (4)

with n number of triplets to extract and P (NKB)
probability of retrieving the correct triplet from the
KB (Figure 3).

In contrast, the LLM is able to retain much of its
original performance for a larger number of triplets
provided (c.f. Figure 6(left)) or even improve under
the inclusion of more sentence-triplets examples
(c.f. Figure 6(right)).

A.3 Prompts

Here we report all the TE prompts that we tested.
Figures 7 and 8 report two variations of the base
prompt of Figure 2. The first one implements a
Chain-of-Thought (Wei et al., 2023a) approach
where multi-step reasoning is enforced. The sec-
ond tries to provide the LLM with more informa-
tion about the task, describing in more detail the
role of each one of the core components of TE. In
Table 9 the three prompts of Figures 2, 7, and 8
are compared for the WebNLG and NYT datasets

22



Some text is provided below. Procede step by step:
- Identify a predicate expressed in the text
- Identify the subject of that predicate
- Identify the object of that predicate
- Extract the corresponding (subject, predicate, object)
  knowledge triplet
- Repeat until all predicates contained in the text have been extracted, 
  but no more than {max_triplets} times
---------------------------------------------------------------------------------------------------

Chain-of-Thought Prompt

Text: {text}
Triplets:

Figure 7: Prompt implementing the Chain-of-Thoughts
approach (Wei et al., 2023a).

Some text is provided below. The text might contain one or more 
predicates expressing a relation between a subject and an object. 
The subject is the entity that takes or undergo the action expressed by
the predicate. 
The object is the entity which is the factual object of the action. 
The information provided by each predicate can be summarized as a
knowledge triplet of the form (subject, predicate, object). 
Extract all the information contained in the text in the form of 
knowledge triplets. Extract no more than {max_triplets} knowledge 
triplets.
---------------------------------------------------------------------------------------------------

Documented Prompt

Text: {text}
Triplets:

Figure 8: Prompt providing more details about the core
components of the TE task, namely, including defini-
tions of subject, object, predicate, and triplet.

under the use of two different LLMs, GPT-2 xl,
and LLaMA 65B. The three prompts yield similar
micro-averaged F1 scores, with small deviations.

Figure 9 reports the prompt that we used in the
0.5-Shots setting. The prompt consists of a simple
adaptation of the base prompt of Figure 2 to accom-
modate for the additional triplets retrieved from the
KB.

Some text and some context triplets in the form 
(subject, predicate, object) are provided below. 
Firstly, select the context triplets that are relevant to the input text. 
Then, extract up to {max_triplets} knowledge triplets in the form 
(subject, predicate, object) contained in the text taking inspiration 
from the context triplets selected.
---------------------------------------------------------------------------------------------------

0.5-Shots Prompt

Text: {text}
Context Triplets:
{context_triplets}
Triplets:

Figure 9: Adaptation of the base prompt found in
Figure 2 to the 0.5-Shots setting. An additional
{context_triplets} argument is included to accommo-
date for the KB triplets retrieved from the KB.

Prompt WebNLG NYT

G
PT

-2
xl base 0.037 0.0002

documented 0.034 0.0003

chain-of-thought 0.039 0.0004

0.002 0.0001

L
L

aM
A

-6
5b base 0.219 0.017

documented 0.213 0.012

chain-of-thought 0.219 0.015

0.003 0.002

Table 9: Comparison of the 2-Shots TE micro-averaged
F1 performance with the three different prompts of Fig-
ures 2, 7, and 8. The standard deviation of the perfor-
mance across the three prompts is reported below each
column.
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Abstract

Recent LLMs show an impressive accuracy on
one of the hallmark tasks of language under-
standing, namely Question Answering (QA).
However, it is not clear if the correct answers
provided by LLMs are actually grounded on
the correct knowledge related to the question.
In this paper, we use multi-hop QA datasets to
evaluate the accuracy of the knowledge LLMs
use to answer questions, and show that as much
as 31% of the correct answers by the LLMs
are in fact spurious, i.e., the knowledge LLMs
used to ground the answer is wrong while the
answer is correct. We present an analysis of
these spurious correct answers by GPT-4 using
three datasets in two languages, while suggest-
ing future pathways to correct the grounding
information using existing external knowledge
bases.

1 Introduction

Question Answering (QA) is one of the hallmark
tasks that evaluate language understanding capabil-
ities of NLP systems. We are currently witnessing
the flourishment of highly capable large language
models (LLMs) that solve this complex task, re-
quiring both knowledge and inference skills, with
an impressive accuracy (Bang et al., 2023). On
the other hand, it has been shown that LLMs can
generate content that contradicts facts (Bang et al.,
2023; Ji et al., 2023), and several verification re-
sults have been reported regarding the evaluation
of LLMs’ internal knowledge and whether LLMs
can provide answers based on facts (Wang et al.,
2023; Manakul et al., 2023; Lin et al., 2022; Zheng
et al., 2023; Pezeshkpour, 2023).

At this point, it is not clear exactly to what extent
such LLMs possess the knowledge needed to solve
QA problems and how accurately they perform
inference to leverage that knowledge. How often
do LLMs rely on “hallucinated” knowledge during
inference? Can these hallucinations be remedied by

Who was born first, Ivan Foster or Ian Paisley?

GPT-4

Gold Derivation:

(Ivan Foster, was born in, 1943);

(Ian Paisley, was born in, 1926)

Gold Answer: Ian Paisley

Derivation:

(Ivan Foster, was born in, 1934);

(Ian Paisley, was born in, 1926)

Answer: Ian Paisley

Where was the father of Ernest Gottlieb born?

GPT-4

Gold Derivation:

(Ernest Gottlieb, father, Augustus);

(Augustus, place of birth, Dessau) 

Gold Answer: Dessau

Derivation:

(Ernest Gottlieb, father, Leopold);

(Leopold, place of birth, Dessau)

Answer: Dessau

Spuriously 
correct

Comparison question

Composition question

Spuriously 
correct

Bridge entity 
error

Numerical
error

Figure 1: Examples of spurious correct answers. Red
text indicates where the model (GPT-4) makes mistakes,
blue text indicates where the model’s answer is correct.
See Appendix A for other types of errors.

structured knowledge bases (KBs) carefully crafted
by humans? Previous studies have reported that
correct answers are often obtained despite errors
in the reasoning path that LLMs output to solve
QA (Bao et al., 2024; Sprague et al., 2024; Nguyen
et al., 2024; Ishii et al., 2024). Ishii et al. (2024)
shows the specific error patterns by question type
in such cases and the possibility of complementing
errors with KBs using JEMHopQA dataset1, which
has evidence information in the form of triples, but
their analysis is limited to one dataset in Japanese.

In this paper, we focus on investigating how
such “spurious” correct answers by LLMs oc-
cur more deeply in other datasets and languages.
We use three datasets from two languages – Hot-
PotQA (Yang et al., 2018) with R4C (Inoue et al.,

1https://github.com/aiishii/JEMHopQA
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HotPot 2Wiki JEMHop

#Avg. question 16.50 11.87 30.71
#Avg. answer 3.42 2.30 4.32

#Avg. derivations 2.50
(3.00)

2.37
(2.42)

2.04
(2.07)

Table 1: Question and answer lengths and number of
derivation triples of each dataset. The #Avg. question
and #Avg. answer in HotPot and 2Wiki are the aver-
age number of tokens, that in JEMHop is the average
number of characters, and the number in parentheses in
#Avg. derivations is the average number of derivations
in each original dataset.

Question type HotPot 2Wiki JEMHop

Comparison 19% 27% 61%
Composition 80% 55% 39%
Bridge-comparison 1% 18% 0%

Table 2: Distribution of question types.

2020) and 2WikiMultiHopQA (Ho et al., 2020)
for English, and JEMHopQA for Japanese. These
three datasets present the task of outputting the
knowledge (derivation) that serves as the evidence
for the answer in the form of derivation triples (as
in Fig. 1), so they can be used directly to mea-
sure the spuriousness of correct answers in QA. In
addition, we investigate the extent to which gold
derivation triples in each dataset are covered by
existing KBs, suggesting that hallucinatory knowl-
edge can be corrected by combining LLMs with
such KBs.

2 Analysis Method

2.1 Datasets

In this analysis, we use questions, answers, and
supporting evidence from widely used HotPotQA,
2WikiMultiHopQA, and JEMHopQA, which are
Wikipedia-based multi-hop QA datasets. We use
R4C for derivation triples of HotPotQA, and ran-
domly extract 100 instances from the develop-
ment set as HotPot. We randomly extract 100 in-
stances from the 2WikiMultiHopQA development
set as 2Wiki and use all 120 instances from the
JEMHopQA development set as JEMHop. Table 1
summarizes the details of these datasets, where the
average number of derivation triples are roughly
the same across them.

In these datasets, questions comprise of three
different types2: (i) Comparison questions, where

2Although 2WikiMultiHopQA has an “Inference” type, we

the two derivation triples have the same relation,
as in at the top of Fig. 1; (ii) Composition ques-
tions, where two derivation triples share a “bridge”
entity, as in the example at the bottom of Fig. 1
where “Augustus” serves as the bridge; (iii) Bridge-
comparison, which combines a composition with
a comparison, where a comparison is made after
finding the bridge entity, e.g., “Which film has the
director who is older, Aardram or Land and Free-
dom?”. The distribution of these three types of
questions is shown in Table 2.

As Ishii et al. (2024) reports that comparison
questions (numerical comparisons in particular) are
more susceptible to spurious correct answers, we
created additional datasets that include the samples
of such questions in our study. The number of
numerical comparison questions differs consider-
ably across our dataset (HotPot: 4%, 2Wiki: 17%,
JEMHop: 28%), so we created focused datasets
consisting only of numerical comparisons by tak-
ing 30 samples from the development set of the
datasets, resulting in HotPot_NC, 2Wiki_NC, and
JEMHop_NC. We also extracted 30 multi-hop
QA instances that compare numerical values from
DROP (Dua et al., 2019), a widely used QA dataset
that requires mathematical operations, and use
them as the analysis set DROP_NC.

The supporting evidence in each dataset is in the
form of triples representing a semi-structured re-
lationship (e.g., “date of birth”) between a subject
entity (“Ivan Foster”) and an object entity (“1943”),
as shown in Fig. 1. The questions are those that
require multi-hop reasoning, and each question-
answer pair is accompanied by two or more deriva-
tion steps. The task of evaluating LLMs using each
dataset is, given a question Q, (i) to predict the
answer A, and (ii) to generate a derivation D that
justifies A.

2.2 Evaluation Metrics

Answers For HotPot and 2Wiki, we use exact
match (EM) and partial match, F1 score measuring
the average overlap between gold and predicted
answers. For JEMHop, we use similarity match
(SM) score based on the Levenshtein distance.

Derivations To account for differences in the
structure of the triples and to measure semantic
matches, the authors manually evaluated derivation
triplets. Even if predicted derivation has a different
surface form from the gold derivation, it is consid-

consider it a subtype of composition in this paper.
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Answer EM / F1 or SM (%)
HotPot 2Wiki JEMHop

Zero-shot 38.7/45.3 23.7/28.8 51.7/52.5
5-shot 39.7/49.9 34.3/39.8 56.1/57.8
CoT 5-shot 41.5/50.9 48.3/56.4 62.8/64.5

Comparison 71.1/78.9 86.4/86.4 81.3/81.3
Composition 35.0/44.9 22.4/36.4 34.0/38.3
Brg-comparison 0.0/0.0 70.4/72.2 -/-

Table 3: Results of GPT-4 with different prompts.

ered correct if the information contained is correct,
in the form of a triple, and sufficient to answer the
question.

Note that each dataset provides evaluation scripts
for both answers and derivation triples, but we use
these scripts to evaluate answers only and rely on
human evaluation for derivation triples.

2.3 Evaluation Setup Using GPT-4

We use gpt-4-0613 model via OpenAI API with
the prompt for the Chain-of-Thought (CoT) (Wei
et al., 2022) 5-shot setting as a method of eliciting
the derivation triples that the model uses to infer.
More specifically, the CoT 5-shot prompt consists
of an instruction to provide a CoT reasoning path,
along with 5 few-shot samples. To ensure that
the setting of the CoT 5-shot prompt to output the
inference path at the same time as the answer does
not affect the accuracy of the answer, we also use
zero-shot (ask a question only) and non-CoT 5-shot
(include 5 random samples from the training set)
prompts (see examples in Appendix B).

Based on the results of preliminary experiments,
we use temperature parameters of 0.1, 0.2, and 0.0
for HotPot, 2Wiki, and JEMHop, respectively. The
maximum token limit is set to 32 for the zero-shot
and 5-shot prompts, and to 256 for the CoT prompt.
Due to the sampling-based decoding of GPT-4 API,
we run each experiment three times and report the
average of all runs.

3 Results and Discussion

3.1 How well can GPT-4 answer multi-hop
questions correctly?

In Table 3, the first three rows show the results
for the answers in the zero-shot, 5-shot, and CoT
5-shot settings for each dataset. In all datasets,

3Note that this classification table does not include the
formatting errors that occurred in two cases in JEMHop and
one case in HotPot_NC as derivation triple errors, so the total
does not add up to 100%.

the 5-shot setting performed better than the zero-
shot setting, and the CoT 5-shot setting achieved
the highest accuracy. These results confirm that
the CoT 5-shot prompt setting, which outputs the
derivation triples simultaneously with the answer,
does not affect the accuracy of the answers.

The last two rows show that composition ques-
tions are significantly harder to answer correctly
than comparison questions in all datasets. A major
factor for this large difference is suspected to be
that in comparison questions, the two subject enti-
ties are explicitly mentioned in the question and the
answers tend to be binary (choosing one of the two
entities), while in composition question, a bridge
entity is implicit and must be identified, and the an-
swers for these questions tend not to be binary (an
entity as an answer). Bridge-comparison questions
fell in the middle as this tasks for a binary answer
while needing to identify a bridge entity.

3.2 When do spurious correct answers occur?

Table 4. shows the performance of GPT-4, where
we present the results in a matrix along both an-
swer correctness and derivation triple correctness.
Cases where the derivation triples were considered
correct even though they differed from the gold
derivation triples in this evaluation are described
in detail in Appendix C. We found that only 0-
1% cases had an error in inference (Answer is F
and Derivation is T); the remaining cases had er-
rors in derivation (i.e., hallucination). As shown
in the table, spurious correct answers (Answer is
T and Derivation is F) comprise 18% of all cases
(which is 31% of the correctly answered cases) in
2Wiki and 15.8% (which is 25% of the correctly
answered cases) in JEMHopQA, showing that they
occur also quite frequently in English. More than
90% of these spurious correct answers occur in
comparison questions and bridge-comparison; they
occur less frequently in HotPot because there are
fewer comparison questions.

The question type that generated spurious cor-
rect answers most frequently (38% on 2Wiki and
68% on JEMHop) was questions comparing nu-
merical values or dates (see detail in Appendix A).
Therefore, we also manually classified the correct-
ness of the derived triples and answers for the nu-
merical comparison questions, adding the evalua-
tion of HotPot_NC, 2Wiki_NC, JEMHop_NC and
DROP_NC (see in §2.1) in the CoT 5-shot setting4.

4As DROP lacks evidence information, few-shot examples
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Derivation Triples
HotPot 2Wiki JEMHop

T F T F T F

Answer
T 50.0% 8.0% 39.0% 18.0% 47.5% 15.8%
F 1.0% 41.0% 0.0% 43.0% 0.8% 34.1%

Table 4: Classification of right (T) and wrong (F) of answers and derived triples3.

Derivation Triples
HotPot_NC 2Wiki_NC JEMHop_NC DROP_NC
T F T F T F T F

Answer
T 73.3% 16.7% 40.0% 46.7% 50.0% 36.7% 46.7% 36.7%
F 0.0% 6.7% 0.0% 13.3% 0.0% 13.3% 0.0% 16.7%

Table 5: Classification of right (T) and wrong (F) of answers and derived triples of numerical comparison questions3.

The results are in Table 5.
In this table, we find that as much as 36-46% of

the answers were spuriously correct in 3 of the 4
datasets – with the exception of HotPot_NC, where
the rate of spurious correct answers remained lower
at 16.7%. While it was not obvious to us why Hot-
Pot_NC behaved differently, we could see why
spurious correctness happens often in numerical
comparison: they occur when the relative order
of numbers or dates are not affected even when
there is an error in derivation triples. This is also
observed when we analyzed the results of bridge
comparison questions in 2Wiki – out of 14 correct
answers of this type, 10 were in fact spurious in the
same manner as the numerical comparison ques-
tions: there was an error in the identification of
bridge entity (identifying a wrong person), but the
relative order of the dates required for the answer
was unaffected. In order for the answers to be spu-
riously correct in this way, the error margin for the
numbers/dates in the grounding knowledge must be
small enough so as not to impact the relative order.
Exactly how “wrong” or “close” GPT-4 is when it
comes to the numerical aspect of the grounding in-
formation deserves further investigation; we leave
this for future work.

3.3 Can External KBs Remedy Spurious
Correct Answers?

GPT-4 “hallucinated” wrong derivation triples in
50-60% in each dataset as a whole. We investigated
whether this knowledge hallucination can be fixed
by using external KBs.

For this, we used two existing KBs on Wikipedia,

of CoT-5shot are created using the same data as 2Wiki.

namely Wikidata (Vrandečić and Krötzsch, 2014)
and Shinra5 (Sekine et al., 2019). The latter extracts
attribute-value pairs from Japanese Wikipedia ar-
ticles and structures them according to the ENE
(Sekine, 2008) categories in Sekine et al. (2020);
this is used for JEMHopQA only as it is in Japanese.
Also, in 2Wiki, all hallucinated derivation triples
can be found by Wikidata as the questions of 2Wiki-
MultihopQA derive from the knowledge triples
in Wikidata. Therefore, we studied the extent to
which gold derivation triples in each dataset are
covered by external KBs for HotPot and JEMHop
only. Knowledge representation in these KBs is
compatible with the derivation triples used in our
task, allowing for a straightforward application.

In Table 6, the first three columns show the cover-
age of derivation triples of each dataset for GPT-4,
Wikidata, and GPT-4 combined with Wikidata. We
assume that the derivation triples generated by GPT-
4 in answering the questions are GPT-4’s internal
knowledge and estimate GPT-4’s coverage by cal-
culating how well GPT-4’s internal knowledge cov-
ers the gold derivation triples in each dataset. As a
multi-hop question requires two or more triples to
answer, a partial coverage statistic is also given. We
see that GPT-4 provides complete evidence for 51%
and 48% of HotPot and JEMHop questions respec-
tively, but if combined with Wikidata, it can cover
up to 59% and 63% respectively. The last three
columns show the coverage of derivation triples of
Shinra, GPT-4 combined Shinra and GPT-4 com-
bined with both KBs. GPT-4 and both KBs seem
to complement each other well: GPT-4 combined
with both KBs achieves 81.7% of coverage, up by

5http://shinra-project.info/
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Dataset Coverage GPT-4 Wikidata (W) GPT-4+W Shinra (S) GPT-4+S GPT-4+W+S

HotPot
(R4C)

Full 51.0% 31.0% 59.0% - - -
Partial 17.0% 51.0% 41.0% - - -
None 32.0% 18.0% 0.0% - - -

JEMHop
Full 48.3% 29.2% 63.3% 50.0% 78.3% 81.7%

Partial 23.3% 28.3% 26.7% 29.2% 15.0% 13.3%
None 28.3% 42.5% 10.0% 20.8% 7.5% 5.0%

Table 6: Coverage of derivation steps in the test set by existing KBs and GPT-4.

31% as compared with GPT-4 alone (48.3%). This
indicates that a further improvement in multi-hop
QA task is possible by combining LLM with exist-
ing KBs, a fruitful direction for future research.

4 Conclusions

In this paper, we presented the evaluation of GPT-4
on multi-hop QA in three datasets in English and
Japanese, focusing on how the answers are/are not
grounded on the knowledge internal to the model.
The results show that almost all of the incorrect
answers are due to knowledge hallucination, and
that even when the answer is correct, up to 31% of
them (40% in numerical comparison questions) are
in fact spurious. We also showed that the knowl-
edge GPT-4 uses for grounding is complementary
with external KBs, indicating a future direction of
integrating them for solving multi-hop questions.
Our analysis is based on the assumption that the
derivation triples generated by the LLM are reason-
ing of the LLM, but we hope to clarify whether this
assumption is correct in the future.
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A Detailed Types of Spurious Correct
Answers

Table 7 shows the percentage of spurious cor-
rect answers by question type in each dataset.
They mainly appeared in comparison and bridge-
comparison questions, with numerical comparison
being the most frequent (38% in 2Wiki compar-
ison , 50% in 2Wiki bridge-comparison, 68% in
JEMHop).

Spurious correct answers of comparison ques-
tions. Table 8 shows examples of spurious cor-
rect answers in comparison questions. In “numer-
ical comparison”, the relative order of dates (e.g.,
"1212" vs "1248") or values (e.g., "1.5" vs "2.0") in
GPT-4’s derivations matched the gold, despite in-
correct date or values. In “shared predicate”, the an-
swer condition (e.g., whether authors are the same
in both entities) was unaffected, despite different
authors ("Meka Tanaka" vs "Oreko Tachibana") in
GPT-4’s and gold derivations.

Spurious correct answers of composition ques-
tions. Table 9 shows examples where the answer
was correct despite incorrect bridge entities. In one
case, different princes were from the same family
and birthplace. In others, the bridge entity was
unspecified or non-existent, suggesting the model
knew the answer in advance. For example, GPT-4
correctly answered "World War II" for when a fa-
cility was established, despite using a non-existent
bridge entity.

Spurious correct answers of brige-
comparison questions. Table 10 shows
examples in “numerical comparison” and “shared
predicate” types. The answer was unaffected
despite wrong bridge entities, as the relative order
of dates (e.g., "1936" vs "1956") or conditions like
directors’ countries remained unchanged.

B Example of Prompts for GPT-4

The following are examples of the three types of
prompts we used in our experiments:
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HotPot 2Wiki JEMHop

Comparison
Numerical comparison 16.7% 38.9% 68.4%
Entity selection 16.7% 0.0% 10.5%
Shared predicate 0.0% 0.0% 15.8%

Composition
Entity or value answer 66.7% 5.6% 5.3%

Bridge-comparison
Numerical comparison 0.0% 50.0% -
Shared predicate 0.0% 5.6% -

Table 7: Types of spurious correct answers by question
type. Each percentage is the number of spurious correct
answer cases in HoPot (6 cases), 2Wiki (18 cases) and
JEMHop (19 cases).

1. Zero-shot: ask a question only, as in:
Output your answers to the following questions.

Answers should be brief noun phrases or "yes/no"

answers.:

Which film came out first, 3 Dots or Dying God? =>

2. 5-shot: include 5 random samples from the
training set as few-shot examples, as in:
Output your answers to the following questions, re-

ferring to the examples.

Answers should be brief noun phrases or "yes/no"

answers.:

When was the director of film Antarjali Jatra born?

=> 24 July 1950

Who died later, Bob Dispirito or John Wilton? =>

Bob Dispirito

(...3 more examples)

Which film came out first, 3 Dots or Dying God? =>

3. Chain-of-Thought (CoT) 5-shot: add an in-
struction to provide a CoT reasoning path,
along with 5 few-shot samples.
Output your answers and rationale to the following
questions in the form of examples.
Answers should be brief noun phrases or "yes/no"
answers.:
When was the director of film Antarjali Jatra
born? => (Antarjali Jatra, director, Goutam
Ghose);(Goutam Ghose, date of birth, 24 July 1950)
=> 24 July 1950
Who died later, Bob Dispirito or John Wilton?
=> (Bob DiSpirito, date of death, December 21,
2015);(John Wilton, date of death, 10 May 1981)
=> Bob Dispirito
(...3 more examples)
Which film came out first, 3 Dots or Dying God? =>

C Detailed Manual Evaluation of
Derivations

In the manual evaluation of the derivations output
by GPT-4, even if the derivations did not exactly

match the gold derivations, they were considered
correct if they were in the form of triples and pro-
vided sufficient information to derive the answer
from the question. The specific cases considered
correct are as follows:

i Differences in wording (tense, synonymous
verbs or nouns, presence or absence of modi-
fiers).

ii Differences in granularity of information (ge-
ographic, temporal, etc. units).

iii Differences in type of information.

iv Differences in the amount of information
contained in a triple (cases where multiple
triples of information in the gold are com-
bined into one in the pred (GPT-4 output) and
vice versa).

v Differences in how triples are formed ( the
subject and object of the triple are opposite, or
part of the object of the gold triple is included
in the relation of the pred triple, etc.).

Examples for each pattern are shown in Table 11.
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Question Type Example

Numerical
comparison

Question:
Which occured first, the Battle of Las Navas de Tolosa or king Fernando III
gave a new fuero to the city?

Gold derivation:
(“Battle of Las Navas de Tolosa”, “start time”, “July 16, 1212”);
(“Giving of new fuero by Fernando III”, “start time”, “1219”)

Gold answer:
Battle of Las Navas de Tolosa

GPT-4’s derivation:
(“Battle of Las Navas de Tolosa”, “start time”, “July 16, 1212”);
(“Giving of new fuero by Fernando III”, “start time”, “1248”)

GPT-4’s answer:
Battle of Las Navas de Tolosa

Numerical
comparison

Question:
Which start has a higher absolute magnitude, A-type star or B9-type star?

Gold derivation:
(“A-type star”, “absolute magnitude”, “0.2”) ;
(“B9-type star”, “absolute magnitude”, “0.4”)

Gold answer:
B9-type

GPT-4’s derivation:
(“A-type star”, “absolute magnitude”, “1.5”) ;
(“B9-type star”, “absolute magnitude”, “2.0”)

GPT-4’s answer:
B9-type star

Shared
predicate

Question:
Are Ai Yazawa the author of both “A” and “Promise Cinderella”?

Gold derivation:
(“A”, “author”, “Ai Yazawa”) ;
(“Promise Cinderella”, “author”, “Oreko Tachibana”)

Gold answer:
No

GPT-4’s derivation:
(“A”, “author”, “Ai Yazawa”) ;
(“Promise Cinderella”, “author”, “Meka Tanaka”)

GPT-4’s answer:
No

Table 8: Examples of spurious correct answers in comparison questions. Red text indicates where there was an error
in the derivation, blue text indicates that the answer is correct.
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Error type Example

Bridge entity
is wrong

Question:
Where was the father of Ernest Gottlieb, Prince Of Anhalt-Plötzkau born?

Gold derivation:
(“Ernest Gottlieb, Prince of Anhalt-Plötzkau”, “father”,
“Augustus, Prince of Anhalt-Plötzkau”);

(“Augustus, Prince of Anhalt-Plötzkau”, “place of birth”, “Dessau”)
Gold answer:

Dessau

GPT-4’s derivation:
(“Ernest Gottlieb, Prince of Anhalt-Plötzkau”, “father”,
“Leopold, Duke of Anhalt-Dessau”);

(“Leopold, Duke of Anhalt-Dessau”, “place of birth”, “Dessau”)
GPT-4’s answer:

Dessau

Bridge entity
is not identified

Question:
A 1946 musical comedy starred a British actor who lived in what country
throughout his adult life?

Gold derivation:
(“Two Sisters from Boston”, “is”, “a 1946 musical comedy film”);
(“Two Sisters from Boston”, “stars”, “Peter Lawford”);
(“Peter Lawford”, “is”, “a British actor”);
(“Peter Lawford”, “lived throughout adult life in”, “the United States”)

Gold answer:
United States

GPT-4’s derivation:
(“A 1946 musical comedy”, “starred”, “a British actor”);
(“The British actor”, “lived in, “the United States throughout his adult life”)

GPT-4’s answer:
The United States

Bridge entity
is fictitious

Question:
The facility where Hideki Tojo died and died was established after what war?

Gold derivation:
(“Hideki Tojo”, “Place of death”, “Sugamo Prison”);
(“Sugamo Prison”, “War that led to its establishment”, “World War II”)

Gold answer:
World War II

GPT-4’s derivation:
(“Hideki Tojo”,“facility where he died and died”,
“Suginami Ward Hirozawa Hospital”);

(“Suginami Ward Hirozawa Hospital”,“when established”,“post-World War II”)
GPT-4’s answer:

World War II

Table 9: Examples of spurious correct answers in composition questions. Red text indicates where there was an
error in the derivation, blue text indicates that the answer is correct.
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Question Type Example

Numerical
comparison

Question:
Which film has the director who is older, Aardram or Land And Freedom?

Gold derivation:
(“Aardram”, “director”, “Suresh Unnithan”);
(“Suresh Unnithan”, “date of birth”, “30 July 1956”);
(“Land and Freedom”, “director”, “Ken Loach”);
(“Ken Loach”, “date of birth”, “17 June 1936”)

Gold answer:
Land And Freedom

GPT-4’s derivation:
(“Aardram”, “director”, “Sibi Malayil”) ;
(“Sibi Malayil”, “date of birth”, “2 May 1956”) ;
(“Land And Freedom”, “director”, “Ken Loach”) ;
(“Ken Loach”, “date of birth”, “17 June 1936”)

GPT-4’s answer:
Land And Freedom

Shared
predicate

Question:
Are the directors of films Penelope (1966 Film) and Sioux Blood both
from the same country?

Gold derivation:
(“Penelope (1966 film”) ,“director”, “Arthur Hiller”) ;
(“Arthur Hiller”, “country of citizenship”, “Canadian”) ;
(“Sioux Blood”, “director”, “John Waters”) ;
(“John Waters (director born 1893”) ,“country of citizenship”, “American”)

Gold answer:
No

GPT-4’s derivation:
(“Penelope”, “director”, “Arthur Hiller”) ;
(“Arthur Hiller”, “country of birth”, “Canada”) ;
(“Sioux Blood”, “director”, “John Ford”) ;
(“John Ford”, “country of birth”, “United States”)

GPT-4’s answer:
No

Table 10: Examples of spurious correct answers in bridge-comparison questions. Red text indicates where there was
an error in the derivation, blue text indicates that the answer is correct.
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Pattern Derivation examples
gold pred

( i ) wording
(Kingdom of the Isles, covered a total land area of,
over 8300 km2)

(The Isles, covers,
a total land area of over 8300 km2)

(Michaël Llodra, gained victory over,
Juan Martín del Potro)

(Michaël Llodra, defeated,
Juan Martín del Potro)

(ii) granularity

(Great Neck School District, is in,
the town of North Hempstead, Nassau County,
New York, United States)

(Great Neck School District, is located in,
Great Neck, New York);

(Disney Magazine, is published quarterly from,
December 1965 to April 2005) (Disney Magazine, ceased publication in,2005)

(Dirk Nowitzki, was born, June 19, 1978) (Dirk Nowitzki, was born in, 1978)

(iii) type (Shinjo-city, city tree, Cherry tree) (Shinjo-city, city tree, exist)
(Avengers: Infinity War, previous film,
Avengers: Age of Ultron)

(Avengers: Infinity War, position of the work,
third film in the Avengers series)

(iv) information
per one triple

(Modest Mouse, was formed in, Issaquah);
(Issaquah, is in, Washington) (Modest Mouse, formed in, Issaquah, Washington)

(Finish What Ya Started,
features Sammy Hagar, on a rhythm guitar)

("Finish What Ya Started", is a song from, OU812);
(OU812, features, Sammy Hagar);
(Sammy Hagar,plays,guitar)

(v) form
(Lantern Waste, is the place where,
Lucy Pevensie and Mr. Tumnus meet)

(Lucy Pevensie and Mr. Tumnus, meet at,
Lantern Waste)

(The Spiderwick Chronicles (film),
follows the adventures on a family as they discover,
magical creatures)

(The Spiderwick Chronicles, is about,
a New England family who discover
magical creatures around their estate)

Table 11: Examples of derivatives that were considered correct.
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Abstract

Generative AI and Large Language Models are
increasingly used in business contexts. One
application involves natural language conversa-
tions contextualized by company data, which
can be accomplished by Enterprise Knowledge
Graphs, standardized representations of data.
This paper outlines an architecture for imple-
mentation of an Enterprise Knowledge Graph
using open-source Wikibase software. Addi-
tionally, it is presented a Knowledge Graph
Q&A System powered by Generative AI.

1 Introduction

Knowledge Graphs (KG) are semantic networks
that represent information in a graph structure, with
entities as nodes and relationships as edges (Heist
et al., 2020), built from diverse data to integrate
and organize knowledge (Paulheim, 2016). They
can be applied in areas such as the labor market
(Popping, 2003), education methods (cao, 2023),
and medicine (Vidal Rolim et al., 2021), and are
valued in Artificial Intelligence (AI) for their clar-
ity and flexibility (Shen et al., 2022). An example
is the combination of KG with AI technologies,
such as Microsoft’s Azure OpenAI, which further
enhances their potential by facilitating the integra-
tion and analysis of large volumes of data more
efficiently and accurately (Sarica et al., 2020).

In this context, the use of Wikibase to create
KG offers significant advantages. Wikibase allows
the integration of heterogeneous data, flexible data
schema modeling, and collaborative knowledge cu-
ration, enabling the construction of comprehensive
and up-to-date graphs for applications such as rec-
ommendation, analysis, and research (Sarica et al.,
2020). In Brazil, KG have driven advancements
in areas such as smart cities and healthcare (Vi-
dal Rolim et al., 2021; bel, 2023). Despite the chal-
lenges, research is exploring their potential, such
as the Brazilian Legislation and Brazilian History

KG (de Paiva and Rademaker, 2024; Navas-Loro
et al., 2022).

Large Language Models (LLMs) are reshap-
ing the way humans interact with machines, spe-
cially through Generative AI applications. Known
for their immense scale and intricate architecture,
LLMs have transformed the field of natural lan-
guage processing. These models undergo rigor-
ous stages, including data gathering, preprocess-
ing, model selection, training, and fine-tuning,
all aimed at achieving peak performance (Linkon
et al., 2024). Presently, experts are exploring the
Gen AI capacity to redefine a company’s valua-
tion and improving its cost structure, which can
fully impact several business in the future (Scap-
paticci, 2023). Although the progress in these mod-
els is promising, they do come with limitations.
Large language models struggle to expand or mod-
ify their memory, lack transparency in their pre-
dictions, and may even generate “hallucinations.”
However, models that blend training data with com-
pany data (retrieval-based) can mitigate some of
these challenges (Lewis et al., 2020a). This tech-
nique is called Retrieval-Augmented Generation
(RAG) and allows expansion of knowledge, as well
as inspection and interpretation of accessed infor-
mation (Lewis et al., 2020b).

Mackenzie Presbyterian Institute (IPM) main-
tains one of the oldest institutions of education
in Brazil, founded in 1870. Its structure encom-
passes a University, with campuses in 6 Brazilian
cities and with about 37,000 students enrolled, a
School with about 9,000 students enrolled, and two
Hospitals, which together provide more than 2.3
million health care encounters and procedures in
2022 (Mackenzie Presbyterian Institute, 2022).

In a corporate context such as IPM, data integra-
tion was being addressed with the use of dataware-
houses and datalakes, trying to offer a 360-degree
view of the customer and allow the board to have
an integrated view of the company. However, the

35

mailto:rene.mendes@mackenzie.br
mailto:dimas.oliveira@terceiros.mackenzie.br
mailto:victor.garcia@mackenzie.br


growing understanding of student interactions, pa-
tients and the various services offered by IPM
seems to be naturally represented by a graph and
well documented through business glossaries and
ontologies, suggesting that Knowledge Graphs can
offer a more complete and integrated experience of
IPM data (Martin et al., 2021; Blumauer and Nagy,
2020).

The possibility of integrating Large Language
Models (LLM) with Knowledge Graphs (KG)
opened a new horizon for offering data to IPM
end users: the possibility of asking questions about
the integrated data and being answered in natural
language. But how complex would it be to imple-
ment this solution for IPM? And what would be
the results of the interaction of an LLM with IPM
data? These are some of the questions we need to
answer.

In this article we will detail a RAG Q&A system
that accesses data from an Enterprise Knowledge
Graph based on Wikibase, created to integrate com-
pany data. For the experiments, the graph was
loaded with synthetically generated students and
patients data, thus preserving the identity and pri-
vacy of both patients and students.

This article is structured as follows: Section 2
depicts the entire solution of the Knowledge Graph,
including its ontologies, its data, and its architec-
ture; Section 3 discuss the tests and results ob-
tained when adopting LLM to build the Q&A sys-
tem; Section 4 concludes the article and presents
contributions, limitations, and future improvement
opportunities.

2 Knowledge Graph

The KG that is being built for our company can be
defined as an Enterprise Knowledge Graph (EKG),
as it is restricted to corporate use and is applied
to commercial use cases. The objectives for build-
ing a KG in our context include: gain insights into
students’ relationships with courses, teachers, sub-
jects and content, as well as patients’ relationships
with treatments, medications and medical proce-
dures; integrate data from different sources; build
the foundation of what will become a semantic data
catalog, and build the foundation that supports data
analysis.

An important concern for our company was to
provision an EKG that could demonstrate its data
integration potential in the shortest possible time
and in a performant manner, or, as in the words

of Blumauer and Nagy (2020), "deliver the right
data in the right format in a timely and high-
performance manner". In this sense, Wikibase
proved to be more advantageous compared to clas-
sic RDF KG solutions, as it offers out-of-the-box
services (Diefenbach et al., 2021). In just a few
days of work, we had a fully operational sandbox
environment provisioned on Docker containers, in-
cluding a SPARQL endpoint, a full-text search so-
lution for concepts and attributes, and a graphical
interface for SPARQL queries. The fact that Wik-
ibase is a solution for Open Knowledge Graphs
(OKG) is still a concern for us because Wikidata
does not allow restricting data access according to
user groups and, in a corporate environment, users
should only access data relating to their activities.
At least intuitively this concern can be addressed
by using extensions (Kapica, 2023) or even devel-
oping one.

In the next sections we will discuss the KG com-
ponents, including the ontologies, data and tech-
nologies adopted in its construction.

Figure 1: System architecture, highlighting the data
sources, the Wikibase components, the enrichment inter-
face, the outputs of datasets and reports and the interface
with Q&A system.

2.1 Technologies

The Figure 1 shows the system architecture. In-
stances of concepts defined in ontologies (Subsec-
tion 2.2) are extracted from internal data sources
through ETL workflows and loaded into the KG
with the support of both OpenRefine1 and Quick-
Staments2 tools. For natural language processing
tests synthetically generated data were loaded into
KG (Subsection 2.3).

Once loaded to the KG, instances of concepts,
called "items" in Wikibase, are available to be

1https://openrefine.org
2https://www.wikidata.org/wiki/Help:QuickStatements
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queried by a SPARQL endpoint or by a data vi-
sualization interface called Query Service. Items
can be edited or even enriched through data loads
from Wikidata3 or even through references to items
defined in Wikidata. The concepts defined in the
KG make up a data glossary, and instances of
these concepts can be offered to data consumers
through datasets or reports fed directly into Mi-
crosoft Power BI workspaces, or as a data source
for the intelligent natural language processing sys-
tem (Subsection 3.1).

Figure 2: Ontology definition levels, organized by top
and domain levels.

2.2 Ontologies
The concepts used in the KG were defined in on-
tologies, which are formal representations of terms
in a given domain (Hogan et al., 2021). In ontolo-
gies, concepts are defined through classes, which
are collections of objects, and the characteristics of
concepts are represented by attributes. Interactions
between classes are represented by special types of
attributes: relations. Individuals in an ontology are
represented as instances (Sack and Alam, 2020).

The definition of the concepts used in the KG
was based on the Basic Formal Ontology (BFO)
(Smith et al., 2020), an ontology that defines gen-
eral terms common to all knowledge domains, that
is, a top-level ontology. Under the BFO is the Ba-
sic Mackenzie Ontology (BMackO), a proprietary
top-level ontology dedicated to the definition of
terms and attributes common to all other ontolo-
gies adopted by IPM. The concepts relating to the
domains covered by the KG were defined in either
proprietary or public ontologies, the latter located
using the Ontobee (Xiang et al., 2011) tool. All do-
main ontologies adopted in the KG (Tech, Security,
Person, Sales, Human Resources, Education and
Health), extend the BFO ontology. The complete
hierarchy of ontologies adopted in KG is depicted
in Figure 2.

The Tech and Security ontologies aim to define
the concepts and properties that must be applied

3https://www.wikidata.org

to all other domain ontologies. For example, in
the Security ontology, the attributes "is personally
identifiable information" and "is sensitive infor-
mation" were defined. These two attributes are
applicable to attributes of ontologies that are below
the Security ontology (Figure 2). The proprietary
ontologies Tech, Person, Education, and Health
extend the following publicly shared ontologies:
Information Artifact Ontology (IAO) (Ruttenberg
et al., 2022), Ontology for General Medical Sci-
ence (OGMS) (Zheng et al., 2009), Ontology for
Modeling and Representation of Social Entities
(OMRSE) (Brochhausen et al., 2024) and Ontol-
ogy of Adverse Events (OAE) (Smith et al., 2022).

2.3 Gen AI Synthetic Data Creation

In Section 3 we will present a Knowledge Graph
Q&A System that we built to allow natural lan-
guage quering. Since this app is a prototype, we
choose the free version of Gemini Pro 1.0 as the
best option to run tests. With the aim of avoiding
the leakage of sensible information, we connected
the LLM only to a development knowledge base,
filled with synthetic data. To generate high quality
synthetic data similar to real data we used GPT-3
providing the fields and data types. An example of
prompt used can be found in the Appendix B. We
generated academic and customer/lead data, simi-
lar to data retrieved in our Customer Relationship
Management (CRM) system.

3 Large Language Models

We will also discuss the tests and results obtained
when adopting LLM to build a KG questions and
answers system.

3.1 Knowledge Graph Q&A System

With the KG implementation, we looked for an in-
telligent natural language processing system that
could understand and respond to user queries in a
conversational manner. The goal was to improve
the accessibility of information stored in the pri-
vate Wikibase instance repository, making it easier
for users to retrieve relevant data through natural
language interactions even for stakeholders who do
not dominate SPARQL query language.

To build the Knowledge Graph Q&A system, we
started from the preliminary work on the GitHub
repository Langchain Wikibase (Ziff, 2024), with
proposes the use of a Langchain autonomous
Reasoning-Action (or Re-Act for short) Agent to
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retrieve Wikidata information via API and answer
questions. Re-Act Agents can reason about what
kind of tools must be called and how to handle the
tool output. In this case, the tools provided to the
Re-Act agent was python functions to get proper-
ties and items information from Wikidata API. The
agent looks for properties PID and items QID from
Wikidata (Wikimedia Foundation, 2009–) then con-
vert the user input question into a SPARQL query
and run it in Wikidata SPARQL endpoint. The
agent also generate an human readable answer from
the SPARQL query result. The original repository
was a simple python script to be run via CLI pass-
ing the question as argument.

Figure 3: The user interface developed to the generative
AI powered chat, built with Gradio.

We contributed to the GitHub repository
Langchain Wikibase (Ziff, 2024) adding a chain
tool to retrieve all properties of a given item from
Wikidata rest API, enriching the Re-Act Agent app.
Also, we developed a python module to wrap up
the tools and customized some Lang Chain pack-
ages to use with local Wikibase instances instead of
Wikidata. Furthermore, we improved the prompts
and make use of the chain to properly answer de-
scriptive questions such that “Who is Student A?”
or “What is Pernambuco Federal University?” us-
ing the tool that we implemented. The application
was originally designed to run over Open AI GPT
models, we also enabled connection to other lan-
guage models like Google Gemini 1.0 Pro and the
open source model Mixtral 8 × 7B from Mistral
AI (Jiang et al., 2024). Moreover, we developed a
simple chatbot user interface by the Python library
Gradio, which can be seen in Figure 3. All this de-

velopment and improvements was already commit-
ted and merged to the original GitHub repository
(Ziff, 2024).

The generative AI chatbot powered by Gem-
ini 1.0 Pro was connected to the OKG database
Wikidata and to our EKG database developed over
a Wikibase (Wikimedia Deutschland, 2012–) in-
stance. The same structure was used through
both cases, reasoning about the question, running
queries over the SPARQL endpoint and translat-
ing it into human readable answers. The chatbot
was tested using three kinds of questions: type
1) descriptive questions e.g. “Who is Albert Ein-
stein?”, “What is Google’s industry?”, “What is
Google?”; type 2) questions that links a property
to an item e.g. “What is the Google inception?”,
“List 10 subsidiaries of Google.”,“What are the ge-
ographic coordinates of Mount Everest?”; and type
3) questions involving calculations e.g. “What is
the average GDP per capita of the Africa continent
countries?”, “What is the sum of the population
of USA, Canada and Mexico?”, “What is the sum
of the number of countries in South America and
North America?”.

The percentage of correct answered questions
for each type can be found in Figure 4. The criteria
used to determine if the Re-Act Agent correctly
answered a question was human evaluation, com-
paring the generated answer with data available in
Wikidata or our EKG and the generated SPARQL
queries with human written queries. To monitor
the app and inspect costs we used the developer
framework Langsmith, which allows an end-to-end
track of the LLM-powered application lifecycle.
Appendix A shows the reasoning process of the
Langchain Re-Act Agent to answer a question, us-
ing Python functions as tools to interact with the
KG.

4 Conclusion

Even at the prototype stage, the Knowledge Graph
Q&A System demonstrated a good hit rate, spe-
cially in simple questions. As illustrated in Figure
4, the Re-Act agent performed significantly better
with type 1 questions when connected to our pri-
vate Knowledge Graph, yielding 31% more correct
answers. This improvement can be attributed to
our Enterprise Knowledge Graph (EKG) being re-
stricted to subjects of interest for our company, as
opposed to Wikidata, which covers a wide range of
topics. The discrepancy shown in Figure 4 between

38



Figure 4: Comparison of KG Q&A System connected to Wikidata and our EKG. The type 1 are descriptive questions,
type 2 questions that links an item to a property and type 3 questions involving calculations.

local EKG and Wikidata for type 2 questions are
possibly due to training data about the Wikidata,
since several PIDs and QIDs are known by Gemini
1.0 pro. Occasionally, the answers generated by the
Re-Act agent connected to our private EKG con-
tain some Wikidata properties, resulting in empty
results from our SPARQL endpoint. Using a more
robust LLM like Gemini 1.5 pro or GPT-4 and
fine tuning the model to better generate SPARQL
may fix this problem and improve the success rate.
When deploying the chatbot to production, this will
be our approach. Also, when using premium LLM
versions, the providers guarantee that no private
data are used to train models, making them suitable
to a production version.

On privacy, an opportunity to improve the KG
is the segregation of access to items based on the
authenticated user’s profile, and the reproduction of
this segregation of access for the SPARQL queries
submitted to the SPARQL endpoint and to the Wik-
ibase Query Service (WDQS).

The results obtained so far have been favor-
able to the adoption of KGs as a solution for
data integration and LLM for the construction
of a search and response interface in natural lan-
guage for IPM’s corporate data. While adopting an
Open Knowledge Graph solution like Wikibase in
an enterprise environment presents the challenge
of segregating data access, the gains from Wiki-
data Query Service’s out-of-the-box data visualiza-
tion options and simplicity of horizontal scaling
of Wikibase’s docker swarm implementation are
self-demonstrable.

Acknowledgments

We would like to thank the Mackenzie Presbyterian
Institute and the Department of Technology and

Innovation for supporting the development of KG
and the publication of this article. We would like to
thank professor Donald Ziff for starting the project
that originated our Q&A system.

References
2023. Exploration on the application of knowledge

graph in modern chinese teaching. 2023 International
Seminar on Computer Science and Engineering Tech-
nology (SCSET). IEEE.

2023. Inovação de serviços em cidades inteligentes: In-
teração de pessoas não-especialistas com knowledge
graphs.

Andreas Blumauer and Helmut Nagy. 2020. The knowl-
edge graph cookbook: Recipes that work. edition
mono/monochrom.

Mathias Brochhausen, William Hogan, Amanda Hicks,
Shariq Tariq, and Swetha Garimalla. 2024. Ontology
for modeling and representation of social entities.
Accessed: May 15, 2024.

Valeria de Paiva and Alexandre Rademaker. 2024. To-
wards a brazilian history knowledge graph.

Dennis Diefenbach, Max De Wilde, and Samantha Ali-
pio. 2021. Wikibase as an infrastructure for knowl-
edge graphs: The eu knowledge graph. In The Seman-
tic Web–ISWC 2021: 20th International Semantic
Web Conference, ISWC 2021, Virtual Event, Octo-
ber 24–28, 2021, Proceedings 20, pages 631–647.
Springer.

Nicolas Heist, S Hertling, Daniel Ringler, and Heiko
Paulheim. 2020. Knowledge graphs on the web - an
overview. ArXiv, abs/2003.00719.

Aidan Hogan, Eva Blomqvist, Michael Cochez, Clau-
dia d’Amato, Gerard de Melo, Claudio Gutiér-
rez, Sabrina Kirrane, José Emilio Labra Gayo,
Roberto Navigli, Sebastian Neumaier, Axel-Cyrille
Ngonga Ngomo, Axel Polleres, Sabbir M. Rashid,
Anisa Rula, Lukas Schmelzeisen, Juan F. Sequeda,

39

https://doi.org/10.1109/SCSET58950.2023.00093
https://doi.org/10.1109/SCSET58950.2023.00093
https://doi.org/10.5753/sbsi_estendido.2023.229342
https://doi.org/10.5753/sbsi_estendido.2023.229342
https://doi.org/10.5753/sbsi_estendido.2023.229342
https://github.com/mcwdsi/OMRSE
https://github.com/mcwdsi/OMRSE
https://doi.org/10.3233/SSW200009
https://doi.org/10.3233/SSW200009


Steffen Staab, and Antoine Zimmermann. 2021.
Knowledge Graphs. Number 22 in Synthesis Lec-
tures on Data, Semantics, and Knowledge. Springer.

Albert Q. Jiang, Alexandre Sablayrolles, Antoine
Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las
Casas, Emma Bou Hanna, Florian Bressand, Gi-
anna Lengyel, Guillaume Bour, Guillaume Lam-
ple, Lélio Renard Lavaud, Lucile Saulnier, Marie-
Anne Lachaux, Pierre Stock, Sandeep Subramanian,
Sophia Yang, Szymon Antoniak, Teven Le Scao,
Théophile Gervet, Thibaut Lavril, Thomas Wang,
Timothée Lacroix, and William El Sayed. 2024. Mix-
tral of experts. Preprint, arXiv:2401.04088.

Aleš Kapica. 2023. Extension access control. Accessed:
May 16, 2024.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock-
täschel, Sebastian Riedel, and Douwe Kiela. 2020a.
Retrieval-augmented generation for knowledge-
intensive nlp tasks. In Advances in Neural Infor-
mation Processing Systems, volume 33, pages 9459–
9474. Curran Associates, Inc.

Patrick S. H. Lewis, Ethan Perez, Aleksandra Pik-
tus, Fabio Petroni, Vladimir Karpukhin, Naman
Goyal, Heinrich Küttler, Mike Lewis, Wen-tau
Yih, Tim Rocktäschel, Sebastian Riedel, and
Douwe Kiela. 2020b. Retrieval-augmented gener-
ation for knowledge-intensive NLP tasks. CoRR,
abs/2005.11401.

Ahmed Ali Linkon, Mujiba Shaima, Md Shohail Ud-
din Sarker, Norun Nabi, Md Nasir Uddin Rana,
Sandip Kumar Ghosh, Mohammad Anisur Rahman,
Hammed Esa, Faiaz Rahat Chowdhury, et al. 2024.
Advancements and applications of generative artifi-
cial intelligence and large language models on busi-
ness management: A comprehensive review. Jour-
nal of Computer Science and Technology Studies,
6(1):225–232.

Mackenzie Presbyterian Institute. 2022. Instituto pres-
biteriano mackenzie - relatório anual - institucional
& sustentabilidade 2022. Accessed: May 15, 2024.

Sean Martin, Ben Szekely, and Dean Allemang. 2021.
The Rise of the Knowledge Graph: Toward Modern
Data Integration and the Data Fabric Architecture.
O’Reilly Media, Incorporated.

María Navas-Loro, Carlos Badenes-Olmedo, Manolis
Koubarakis, Luis Redondo, Sabrina Kirrane, Nan-
dana Mihindukulasooriya, Ken Satoh, and Mari-
bel Acosta, editors. 2022. Building and analyzing
the brazilian legal knowledge graph, volume 3257.
CEUR-WS.org.

Heiko Paulheim. 2016. Knowledge graph refinement:
A survey of approaches and evaluation methods. Se-
mantic Web, 8:489–508.

Roel Popping. 2003. Knowledge graphs and network
text analysis. Social Science Information, 42:106 –
91.

Alan Ruttenberg, Barry Smith, Bjoern Peters, Carlo
Torniai, Chris Mungall, Chris Stoeckert, Holger
Stenzhorn, James A. Overton, James Malone, Jen-
nifer Fostel, Jie Zheng, Larisa Soldatova, Lawrence
Hunter, Mathias Brochhausen, Melanie Courtot,
Philippe Rocca-Serra, David Osumi-Sutherland,
William Hogan, Adam Goldstein, Albert Goldfain,
Christian A. Boelling, Darren Natale, Gwen Fr-
ishkoff, Jonathan Rees, Matt Brush, Michel Dumon-
tier, Paolo Ciccarese, Pat Hayes, Randy Dipert, Ron
Rudnicki, Satya Sahoo, Sivaram Arabandi, Werner
Ceusters, William Duncan, Yongqun He, and Clint
Dowland. 2022. Information artifact ontology. Ac-
cessed: May 15, 2024.

Harald Sack and Mehwish Alam. 2020. Knowledge
graphs 2020.

Serhad Sarica, Jianxi Luo, and Kristin L Wood. 2020.
Technet: Technology semantic network based on
patent data. Expert Systems with Applications,
142:112995.

Chiara Silveira Scappaticci. 2023. Artificial intelli-
gence: how can Gen-AI tools support the current
business models of the firms and add value? Ph.D.
thesis.

Tong Shen, Fu Zhang, and Jingwei Cheng. 2022. A
comprehensive overview of knowledge graph com-
pletion. Knowledge-Based Systems, 255:109597.

Barry Smith, Alan Ruttenberg, and John Beverley. 2020.
Basic formal ontology. Accessed: May 15, 2024.

Barry Smith, Jiangan Xie, Yu Lin, Abra Guo, Bingjian
Yang, Desikan Jagannathan, Edison Ong, Kelly Yang,
Kevin Mo, Liwei Wang, Meiu Wong, Noemi Garg,
Qingping Liu, Rebecca Racz, Shelley Zhang, Sir-
arat Sarntivijai, Sydni Joubran, Yongqun He, Zu-
oshuang Xiang, Ling Wan, David Ameriguian, Jes-
sica DeGuise, Jiangan Xie, and Qiuyue Yang. 2022.
Ontology of adverse events. Accessed: May 15,
2024.

Tulio Vidal Rolim, Caio Viktor S. Avila, Narciso Arruda,
José Wellington F. da Silva, José Gilvan R. Maia,
Mauro Oliveira, Luiz Odorico M. Andrade, and Vâ-
nia M. P. Vidal. 2021. Um Enfoque Incremental
para Construção do Grafo de Conhecimento do SUS,
pages 327–342. Tecnologia da Informação e Co-
municação: Pesquisas em Inovações Tecnológicas.
Editora Científica Digital.

Wikimedia Deutschland. 2012–. Wikibase. Accessed:
May 15, 2024.

Wikimedia Foundation. 2009–. Wikidata. Accessed:
May 15, 2024.

Zuoshuang Xiang, Chris Mungall, Alan Ruttenberg, and
Yongqun He. 2011. Ontobee: A linked data server
and browser for ontology terms. In ICBO.

40

https://doi.org/10.2200/S01125ED1V01Y202109DSK022
https://arxiv.org/abs/2401.04088
https://arxiv.org/abs/2401.04088
https://www.mediawiki.org/wiki/Extension:AccessControl
https://proceedings.neurips.cc/paper_files/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf
https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2005.11401
https://www.mackenzie.br/transparencia/relatorio-anual
https://www.mackenzie.br/transparencia/relatorio-anual
https://www.mackenzie.br/transparencia/relatorio-anual
https://ceur-ws.org/Vol-3257/paper3.pdf
https://ceur-ws.org/Vol-3257/paper3.pdf
https://doi.org/10.3233/SW-160218
https://doi.org/10.3233/SW-160218
https://doi.org/10.1177/0539018403042001798
https://doi.org/10.1177/0539018403042001798
https://github.com/information-artifact-ontology/IAO/
https://open.hpi.de/courses/knowledgegraphs2020
https://open.hpi.de/courses/knowledgegraphs2020
https://doi.org/10.1016/j.eswa.2019.112995
https://doi.org/10.1016/j.eswa.2019.112995
https://doi.org/10.1016/j.knosys.2022.109597
https://doi.org/10.1016/j.knosys.2022.109597
https://doi.org/10.1016/j.knosys.2022.109597
https://basic-formal-ontology.org
https://github.com/OAE-ontology/OAE
https://www.editoracientifica.com.br/books/livro-pesquisas-em-inovacoes-tecnologicas-pesquisas-em-inovacoes-tecnologicas
https://www.editoracientifica.com.br/books/livro-pesquisas-em-inovacoes-tecnologicas-pesquisas-em-inovacoes-tecnologicas
https://wikiba.se/
https://www.wikidata.org/


Jie Zheng, Lindsay Cowell, Barry Smith, Alan Rut-
tenberg, Albert Goldfain, Werner Ceusters, Anand
Kumar, Bill Hogan, Cornelius Rosse, Daniel Merico,
Richard Scheuermann, Sivaram Arabandi, and Brian
Aevermann. 2009. Ontology for general medical
science. Accessed: May 15, 2024.

Donald Ziff. 2024. GitHub - donaldziff/langchain-
wikibase — github.com. https://github.com/
donaldziff/langchain-wikibase. [Accessed 14-
05-2024].

A Langchain Agent-Chain Reasoning and
Answering

Example of the reasoning process of the Knowl-
edge Graph Q&A System to consult graph, gener-
ate SPARQL and answer a question:

—————————–
Question: What is the population of the city of

São Paulo?

Answer:

1. Find the Q item for "city of São Paulo"
using the getQItem tool

Action: getQItem
Action Input: city of São Paulo
Q174

2. Find P properties for "population" using
the getProperty tool

Action: getProperty
Action Input: population
P1082

3. Generate the simplest possible SPARQL
query and check its validity with the checkSparql
tool

Action: checkSparql
Action Input:

SELECT ?population WHERE {
wd:Q174 wdt:P1082 ?population.

}

Query is valid

4. Run the SPARQL query using the runSparql
tool and retrieve the result

Action: runSparql
Action Input:

SELECT ?population WHERE {
wd:Q174 wdt:P1082 ?population.

}
result:

{
' head ' : {

' va r s ' : [ ' p o p u l a t i o n ' ]
} ,
' r e s u l t s ' : {

' b i n d i n g s ' : [ {
' p o p u l a t i o n ' : {

' d a t a t y p e ' :
' h t t p : / / www. w3 . org / 2 0 0 1 / XMLSchema# dec imal ' ,

' t ype ' : ' l i t e r a l ' ,
' va lue ' : ' 1 1 4 5 1 2 4 5 '

}
} ]

}
}

5. Summarize JSON results in natural language
to generate a human-readable response

Final Answer:
The population of the city of São Paulo is ap-

proximately 11,451,245 inhabitants.

B Generating Synthetic Data through
LLM

This is an example of prompt used to generate stu-
dent synthetic data, similar to data from the aca-
demic Data Warehouse:
Create a table of synthetic student

data, with all fields filled in as
per the instructions below. The table
columns must be all of the options below
in </columns>:

<columns>
registration
status
isActive
person.code
person.name
person.socialName
person.contact.telephone
person.contact.branchLine
person.contact.email
person.contact.businessEmail
person.contact.businessTelephone
person.contact.businessBranchLine
entity.code
entity.name
subsidiary.code
subsidiary.name
educationLevel.code
educationLevel.name
school.code
school.name
courses.code
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course.name
sourceSystem
</columns>

registration is a 7-digit identifier
for each student and the person code is
a 5-digit string. The status must be one
of the options below between </status>:

<status>
’Inactive’
’Active’
’Canceled’
</status>
The isActive field can be true or false
The entity.code must be ’1’ for all
lines The entity.name must be ’Entity
A’ for all rows The subsidiary.code
and subsidiary.name must be one of the
options below between </sub>

<sub>
1,Subsidiary A
2,Subsidiary B
3,Subsidiary C
</sub>
The educationLevel.code and
educationLevel.name must be one of
the options below between </edu>:

<edu>
10,High School
11,Undergraduate
12,Post Graduation
</edu>
The school.code and school.name must be
one of the options below between </sch>:

<sch>
20,School A
21,School B
22,School C
</sch>
course.code and course.name must be one
of the options below between </course>

<course>
A0010,Program A
A0020,Program B
A0030,Program C
</course>

sourceSystem must be ’System A’ on
all lines. In each example, the code and
name are separated by a comma, always
in the same order. Adjust the choice
of courses, school and teaching level
according to similarity. Generate the
table in CSV format. Don’t generate code,
write the table rows. The table must have
200 rows, do not stop until you complete
the table. Do not repeat people’s names.
Fill in all fields and lines with values
as per the instructions above. Follow
all the rules.
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Abstract

In recent years, the use of synthetic data, ei-
ther as a complement or a substitute for orig-
inal data, has emerged as a solution to chal-
lenges such as data scarcity and security risks.
This paper is an initial attempt to automatically
generate such data for Information Extraction
tasks. We accomplished this by developing
a novel synthetic data generation framework
called KGAST, which leverages Knowledge
Graphs and Large Language Models. In our
preliminary study, we conducted simple exper-
iments to generate synthetic versions of two
datasets—a French security defense dataset and
an English general domain dataset, after which
we evaluated them both intrinsically and extrin-
sically. The results indicated that synthetic data
can effectively complement original data, im-
proving the performance of models on classes
with limited training samples. This highlights
KGAST’s potential as a tool for generating
synthetic data for Information Extraction tasks.

1 Introduction

Information Extraction (IE) models serve as cru-
cial components across various domains, enabling
us to make informed decisions based on complex
data. However, the effectiveness of these mod-
els is dependent on the availability and quality of
training data. In this context, we encounter two
critical challenges: 1) Data Scarcity: Frequently,
despite having complex modeling techniques, re-
searchers deal with datasets that are either insuf-
ficient in size or entirely unavailable. Without a
sufficient number of labeled examples, IE models
struggle to generalize effectively, compromising
their predictive capabilities. 2) Privacy and Com-
pliance Concerns: In an era of heightened data pri-
vacy regulations, organizations must navigate the
balance between model performance and safeguard-
ing sensitive information. Certain datasets whether
due to privacy risks or legal constraints cannot be

openly shared, which further complicates training
effective IE models. To address these issues, re-
searchers often resort to manual data augmentation.
This labor-intensive process involves collecting ad-
ditional data points and meticulously annotating
them. While effective, it is time-consuming and
resource-intensive, making it less feasible for small
organizations operating on limited budgets. Nu-
merous studies have explored the expansion of
training data by introducing additional synthetic
data (Kobayashi, 2018; Wei and Zou, 2019; Zhang
et al., 2020). These studies presented straightfor-
ward strategies, such as substituting certain words
with their equivalent terms. These equivalents can
be retrieved from external sources like WordNet
(Miller, 1995), DBnary (Sérasset, 2015), or they
can be calculated using word embedding models
such as Word2Vec (Mikolov et al., 2013), FastText
(Bojanowski et al., 2016), and Glove (Pennington
et al., 2014). Although these techniques can in-
deed augment the initial training dataset, they fail
to generate adequate diversity for the models to
generalize effectively in subsequent tasks, owing
to the minimal semantic variations from the orig-
inal data. Back-translation is another recognized
technique for augmenting the initial training data.
With Machine Translation models (Xie et al., 2017;
Fabbri et al., 2020), paraphrases of each sentence
can be obtained through the back-translation pro-
cess. While back-translation effectively amplifies
the dataset size twofold, it introduces a notable
challenge in terms of annotation. The text derived
from back-translation diverges from the original
annotation. Thus, either careful manual annotation
or sophisticated annotation algorithms are required
to update the annotations in alignment with the
back-translated text, ensuring the precision of the
dataset.

To address these issues of low data diver-
sity and misalignment of the original annotation,
we propose a novel synthetic data generation
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framework called KGAST. This framework lever-
ages Knowledge Graph to automatically generate
Annotated Synthetic Texts that can be used for
training IE models. In this study, we sought to
answer questions similar to the ones raised in this
paper (Claveau et al., 2021):

• Can synthetic data serve as supplementary
data to improve the performance of classes
with limited training samples?

• Can synthetic data be a viable alternative to
gold standard data?

2 Related Works

2.1 Data Augmentation
Given the resource-intensive nature of manual data
creation and annotation, a variety of data augmen-
tation strategies have been employed to address the
issue of data scarcity. One of the well-known ap-
proaches is the rule-based (Kobayashi, 2018; Wei
and Zou, 2019; Zhang et al., 2020) word replace-
ment. This method requires a heuristic for select-
ing and replacing words within a sentence. On
the other hand, some research has approached this
at sentence level by leveraging dependency tree
(Coulombe, 2018; Dehouck and Gómez-Rodríguez,
2020). For example: "John did the math exercises."
is replaced with "The math exercise was done by
John". The data augmented through these meth-
ods often conveys information very similar to the
original, thereby limiting semantic diversity. Back-
translation (Xie et al., 2017; Fabbri et al., 2020)
is another method to augment the original dataset.
This straightforward technique involves translating
text from the original language to another language,
and then translating it back to the original language
to produce a new version. However, this method
presents its own challenges, as labels from the orig-
inal text may no longer align with the new text due
to changes in syntax or semantics.

2.2 Distant Supervision
Automatically generating new supervised data is a
compelling alternative to manual annotation, espe-
cially when creating large-scale datasets for natural
language processing tasks. One such approach is
Distant Supervision (Roller et al., 2015; Deng and
Sun, 2019), which leverages existing knowledge
bases to construct and label new training samples.
The core assumption of this method is that if two
entities share a relation in the knowledge base, any

sentence containing those two entities might ex-
press that relation. However, the automated anno-
tation process introduces errors such as incorrectly
assumed entity types or the relations between entity
pairs.

2.3 In context Learning

In-context learning (ICL) has recently emerged as
a new paradigm in the field of natural language
processing. This approach allows Large Language
Models (LLMs) to make predictions based solely
on contexts that are augmented with a select num-
ber of examples. Often, ICL aids in refining the
output of an LLM, enhancing the accuracy of the
output even in the absence of fine-tuning. With
ICL, the performance achieved by LLMs can ri-
val that of previous supervised learning methods
(Brown et al., 2020; Shin et al., 2021; Wan et al.,
2023). This can be achieved by carefully crafting
clear instructional prompts along with high-quality
task-specific k-shot examples (Zhao et al., 2021;
Liu et al., 2022).

3 Method

3.1 Overview

Our proposed methodology is built upon two pri-
mary elements: LLMs and ICL. Contrary to pre-
vious research that modified the original texts of
the dataset, our approach involves the generation of
new synthetic texts and their corresponding annota-
tions using LLMs. A well-known reasoning prompt
method, Chain-of-Thoughts (Wei et al., 2022), en-
ables us to create complex ICL prompt templates
to instruct LLM models for such tasks. The intu-
ition behind this approach stems from the concept
of distant supervision, where we make a naive as-
sumption that if a pair of entities (ehead, etail) is
present in both the text and the Knowledge Graph
(KG), these two entities maintain the same relation
as the one in the KG.

3.2 Task Formulation

We formalize the task of synthesizing annotated
data as a natural language generation task. Con-
sider a given gold text t ∈ G, where G =
{t1, . . . , tn} represents the set of gold standard
texts, At = {a1, . . . , an} is the set of label an-
notations, Rt = {r1, . . . , rn} is the set of relations,
Kt is the KG and At, Rt ⊆ Kt. The intuition is to
construct a text generation prompt p by utilizing the
KG as an input to get our intended output synthetic
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Figure 1: KGAST framework. (1) It begins by using a knowledge graph Kt as a starting point. Based on this
knowledge graph, the framework retrieves a set of relevant k-shots examples to build prompt templates. We then
prompt the LLM to generate a set of synthetic texts {t′1, . . . , t

′
n}. (2) From these generated texts, we select the best

t′ through a voting prompt which will then be used as input in the annotation prompt template to prompt the model
for text annotating. (3) Finally, annotations retrieved from the LLM outputs are merged with the filtered knowledge
graph Kt′ to get the final annotation.

text t′. The KG Kt of a prompt p is constructed
by extracting all the annotated relations Rt from
the text t. Once the synthetic text t′ is produced,
we proceed to extract the set of label annotations
At′ and the set of relations Rt′ by simply filtering
out any triples of the KG Kt where either the head
or the tail is not present in the text t′. This can be
formulated as At′ , Rt′ ⊆ Kt′ , where:

Kt′ = naive_filter(Kt, t
′) (1)

3.3 Prompt Construction
Our prompt template is divided into three main
sections for ease of understanding.

Instruction Serves as a clear directive for the
LLM, which outlines its role and task. We clearly
specify the role and task for which we want to
generate output. For instance, in the case of text
generation:

"You are a creative text writer. Write
me a text using the provided Knowledge
Graph. Your objective is to write a co-
herent text that incorporates all the given
triples (head, relation, tail) of the Knowl-
edge Graph. You have the right to make
the text creative and informative, but you
must make sure that the text reflects the
given Knowledge Graph."

For text annotation, we draw inspiration from
Tree-of-thought (Yao et al., 2023) prompting and
construct the instruction as follows:

"You are a text annotator. Your
objectives are to: 1/ Analyze the
given text in detail, 2/ Annotate pos-
sible entities based on these entity
types: person(PER), location(LOC),
organization(ORG), time(TIME), num-
bers(NUM), and miscellaneous entity
names(MISC). Response with the anno-
tation in this format: "Possible Entities:
e_1 e_2,...., e_n", where e_1 to e_n are
the extracted entities."

k-shots Examples Similar to the Retrieval-
Augmented Generation (RAG) (Lewis et al., 2020),
where all documents are embedded into latent
space, we did the same for all examples retrieved
from G. We then use top-k retrieval to find exam-
ples that are close to the input KG Kt as k-shot
examples for prompting.

Test Input We used KG Kt as an input in the
form of a list of triples in natural language to
prompt the LLM model. The structure of these
input triples is as follows:

("Head":Type, "Relation", "Tail":Type)
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The goal is to provide the LLM with as much infor-
mation as possible so that it can generate a coherent
text that corresponds to the input triples.

3.4 The Framework: KGAST
The process outlined in Section 3.2 yields both the
text and its corresponding annotation. However,
we identified two primary issues:

Incomplete Text Annotation Despite having an-
notations, we found that it is often incomplete as
seen in Figure 2. The method’s effectiveness is
heavily reliant on the performance of the LLM
used. Consequently, the likelihood of generating
a text, t′, that includes all the input triples of Kt

is contingent on the LLM’s performance for our
given tasks.

Text Coherence and Validity Without a valida-
tion heuristic, the texts generated by our method
may contain nonsensical phrases. This is because
LLMs are known to produce hallucinations, such
as incoherent texts with their input KGs, repetitive
tokens, inclusion of parts of the prompt, and texts
in different languages.

Figure 2: The graph displays entity coverage statistics
for various texts. The Y-axis represents the number of
entities, while the X-axis corresponds to the text.

To address these shortcomings, we integrated
Self-consistency (Wang et al., 2022) into our frame-
work, aiming to mimic real human annotation pro-
cesses as closely as possible. The idea behind self-
consistency is to prompt the LLM to generate a
set of n outputs and select the most consistent one.
For text generation, we prompted LLM to gener-
ate n = 3 outputs. We used the 3 output texts
as input to prompt the LLM to vote n = 5 times,
evaluating each based on creativity, coherence, and
the text’s capacity to include all the input triples

of the KG. We then select the best text t′ with the
highest voting score. A similar approach is also
applied for extracting annotations from text t′. We
prompted the same model to generate n = 5 outputs
and merged the most consistent annotation with a
threshold of 0.5. This means that if an annotation
appears in at least 50% of the n outputs, it is ex-
tracted. Subsequently, this annotation is merged
with the annotation from our naive heuristic. The
entire procedure is described in Figure 1.

4 Experiment Setup

4.1 Datasets
For simplicity, we will refer to gold standard data
as G and synthetic data as S.

DocRED (Yao et al., 2019), is a document-
level relation extraction dataset constructed from
Wikipedia and Wikidata. This dataset contains a
total of 96 relations and 6 entity types for English
general domain. Each relation is annotated along
with its supporting evidence.

French Security and Defense for which we will
refer as FRSD, is a document-level relation extrac-
tion dataset that covers the annotation for Event
Extraction, Entity Recognition, Attribute Extrac-
tion, and Relation Extraction tasks for French in-
telligence service. FRSD contains 2,000 French
documents, of which 800 are manually written and
annotated by humans. It consists of 35 entity types,
20 attributes, and 49 relations.

4.2 Synthetic Data Generation
In this preliminary study of generating synthetic
data, we did simple generation experiments by us-
ing the training set of G as a reference to generate
the synthetic version S . For DocRED, this resulted
in a total of 3023 new documents along with their
annotations. The LLM model used in the frame-
work for this dataset was Zephyr-7B1, a fine-tuned
model of Mistral-7B (Jiang et al., 2023). The same
approach was applied to FRSD but on 400 (train)
documents. In FRSD, we observed a significant
data imbalance among Event classes. With this
in mind, we manually selected the top 10 event
classes with the fewest samples and used their texts
as a reference to generate 1200 new documents
(Oversampling). We used Vigostral-7B2, a chat-

1https://huggingface.co/HuggingFaceH4/
zephyr-7b-beta

2https://huggingface.co/bofenghuang/
vigostral-7b-chat
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Pre-training Strategy Events Entities
F1 Macro F1 Micro F1 Macro F1 Micro

No pre-training 43.28±1.32 58.58 ±1.90 66.78 ±1.59 81.81±0.33
S pre-training 45.17 ±0.83 58.81 ±0.46 67.45 ±1.33 81.61±0.12
G pre-training 43.60 ±3.46 58.56±1.95 67.72 ±2.13 81.95±0.36
S ∪ G pre-training 45.19 ±2.07 58.93±0.90 68.38 ±0.34 82.03±0.34

Table 1: Unified Model results for Event and Entity Extraction.

Pre-training Strategy Attributes Relations
F1 Macro F1 Micro F1 Macro F1 Micro

No pre-training 61.63±2.15 81.87±0.52 44.53±1.45 56.74±0.78
S pre-training 60.05±1.97 82.07±0.62 43.26±1.22 55.85±0.75
G pre-training 55.98 ±8.18 81.33±0.73 43.25±4.78 57.10±0.70
S ∪ G pre-training 60.39±2.76 81.27±0.75 46.49±0.55 56.87±0.84

Table 2: Unified Model results for Attribute and Relation Extraction.

based model that has been fine-tuned on Mistral-7B
(Jiang et al., 2023) for this dataset. Supporting evi-
dence for each relation of S on both datasets was
automatically extracted using a simple heuristic.
This heuristic identifies the sentence index where
the head or the tail entity appears and uses it as
supporting evidence.

4.3 Tasks

To evaluate the effectiveness of our proposed frame-
work, two types of evaluations were conducted:

Intrinsic Evaluation This evaluation aims to un-
derstand the accuracy of our framework’s anno-
tations. We evaluated the annotation accuracy of
DocRED’s synthetic documents. For Named En-
tity, this was done by using BERT-NER3 as an
inference model to predict the set of synthetic texts,
and then comparing the output prediction with our
framework’s annotations. As for Relations, we
used the best model of DREEAM (Ma et al., 2023)
(RoBERTa)4 as the inference model and followed
the same procedure.

Extrinsic Evaluation The goal of this evalua-
tion is to assess how S impacts the performance
of downstream tasks. For DocRED, we used S
to train on two tasks: Named Entity Recognition
(NER), and Relation Extraction (RE). NER task
was trained on the Flair framework5 which used Bi-
LSTM with flair embeddings. RE was trained us-

3https://huggingface.co/dslim/bert-base-NER
4https://github.com/YoumiMa/dreeam
5https://huggingface.co/flair/ner-english

ing DREEAM (teacher) model, which is based on
BERT with λ = 0.05. We trained a total of 5 times
with different seeds, evaluated the models against
the original test set, and computed the average to
get the final results. For FRSD, we conducted ex-
periments on two models: Boundary Smoothing
(BS) (Zhu and Li, 2022): which is used for Event,
Entity, and Attribution recognition tasks. Unified
Model (UM) (Prieur et al., 2024): this model ap-
proaches the tasks jointly for NER and RE tasks.
The architecture of this model includes a module
for detecting entity spans and a second for predict-
ing their interactions. In these experiments, we
follow the same as the experiment conducted with
DocRED and report the results in Section 5.3.

5 Experiment Results

5.1 Dataset Characteristic

A descriptive statistic of both datasets can be seen
in Table 3. We observed that G tends to contain
longer documents and possesses a greater number
of unique entities and labeled tokens, indicating
a higher semantic quality and more robust repre-
sentation of specific objects, people, places, etc.
We computed the Self-BLEU (trigram) for each
dataset, revealing lower Self-BLEU scores for G.
The scores suggest that the gold datasets are more
diverse and less prone to repetitive use of the same
tokens/entities in the text. On the other hand, S
can be seen to have a larger number of entity pairs
(triples) due to the repetition of entities used in the
texts. While this increases the raw count of entity
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pairs, it may not necessarily enhance the diversity
or quality of these pairs.

In addition to the descriptive statistics of the
datasets, we also studied the semantic and lexical
difference between the set of gold texts t and syn-
thetic text t′ using Cosine Similarity as a measure.
The sentence encoders, SimCSE6 (for English)
Camembert-large7 (for French), were used for
analyzing the semantic difference, while Bag-of-
Words with TF-IDF was used for the lexical differ-
ence. Figure 3 shows the distribution of the score.
Since t and t′ describe the same knowledge graph
Kt, despite their different writing styles, higher
semantic similarity scores are expected. Lower
lexical similarity scores indicate that different lex-
ical properties and grammatical structures were
used, even though both t and t′ describe roughly
the same Kt. A more in-depth study for produc-
ing more diverse texts needs to be done whether
through parameter control, reworking the prompt
template, or filtering out texts that will increase the
Self-BLEU score.

DocRED FRSD
G S G S

# Docs 3053 3023 400 1200
# Tokens 603468 493638 56128 184667
Toks/Doc 197.66 163.29 140.32 153.89

Sents/Doc 7.94 6.66 6.20 6.69
Sent Len 25.96 24.94 23.48 23.53
# Entity 79481 56766 11436 36825

# Triples 117712 157905 12940 41771
# Labels 147358 102558 15781 46912

Labels/Doc 48.27 33.93 39.45 39.09
Self-BLEU 0.53 0.63 0.58 0.76

Table 3: Descriptive statistics of G and S for both the
DocRED and FRSD dataset. # Labels here represents
the total number of labeled tokens in the dataset.

5.2 Intrinsic Evaluation
The performance on NER task can be observed in
Table 4. We achieved high F1-scores of 0.93 and
0.92, demonstrating the effectiveness of our frame-
work’s annotation capacity. Among all the tags, we
noticed that MISC was the only tag that scored the
lowest. As for RE tasks, we considered two types
of annotation accuracy: 1) Relation and 2) Evi-
dence. We need to take into account that, originally
the best DREEAM model only achieved a 67.53 F1-

6https://github.com/princeton-nlp/SimCSE
7https://huggingface.co/dangvantuan/

sentence-camembert-large

score on DocRED test set, thus the results reported
might not be very accurate. Table 5 presents the
accuracy results, showing that our naive assump-
tion heuristic achieved a 0.63 F1-score for Relation
and a 0.37 F1-score for Evidence. As S’s evidence
was solely based on a very naive heuristic, an over-
prediction of the evidence is to be expected, leading
to a low precision score and a high recall score.

Precision Recall F1-score
B-LOC 0.95 0.98 0.96

B-MISC 0.92 0.74 0.82
B-ORG 0.91 0.89 0.90
B-PER 0.98 0.97 0.98
I-LOC 0.96 0.93 0.94

I-MISC 0.83 0.83 0.83
I-ORG 0.93 0.87 0.90
I-PER 0.98 0.99 0.98

Micro 0.94 0.91 0.93
Macro 0.94 0.91 0.92

Table 4: Intrinsic performance with BERT-NER’s pre-
dictions as true labels.

Precision Recall F1-score
Relation 0.66 0.61 0.63

Evidence 0.26 0.60 0.37

Table 5: Intrinsic performance with DREEAM’s predic-
tion as true labels.

5.3 Extrinsic Evaluation

While generating a large volume of new annotated
synthetic texts can be accomplished with relative
ease, the challenge lies in optimally utilizing this
synthetic data. We conducted a series of experi-
ments in order to address this.

DocRED In NER task, we conducted training
under different scenarios. We trained the models
separately on 1) the original training set G, 2) the
synthetic set S, 3) a combination of G + S, 4) a
subset of G by sampling documents that have ≥
20% labeled tokens which left us with 1564 docu-
ments. As can be seen from Table 6, using only G
generally yields better results. Although training
solely on S produces acceptable results (79.14 on
Weighted-F1), there is a significant performance
gap between G and S. Similar training strategies
were applied for the RE task, except for scenario
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Figure 3: Distribution of the cosine similarity score between text t and t′. The left figure depicts semantic differences,
while the right shows lexical differences. The text example can be found in the Appendix section A.

4, in which the model was trained using a random
sample of 20% of the training set. We observed the
same trend based on the scores shown in Table 7.
From the evaluation results, it can be inferred that
both tasks might benefit from more diverse training
sets with higher semantic differences to generalize
better and produce more robust performance.

FRSD For our first model BS, we randomly split
S into three and used them as complement data to
train the BS model. Results in Table 8 show the
interest of using S as a complement training data.
Notably, as shown in Tables 9 and 10, S enhances
the performance of classes with fewer samples for
Event and Attribute extraction tasks. As outlined
in Section 3.4, annotations from S carry the risk
of introducing a lot of noise due to incomplete
annotation or wrongly assumed relations. Further-
more, the annotations also heavily rely on the ca-
pacity of the LLMs used. To address this issue,
we tried to improve annotations by implementing
a Teacher-Student learning strategy. This solution
consists of training a Teacher model on G. The
Teacher model is then used to make predictions on
S . These predictions are used as annotations to pre-
train a second model, the Student model. Finally,
the training of the Student model is refined on the
G. For this experiment, we used only the batch
of 400 texts from S. Four training scenarios were
explored: no pre-training, pre-training with S’s an-
notation, pre-training on synthetic texts with anno-
tations produced by the Teacher model, and finally,
a pre-training with S’s annotation together with
those of the Teacher model. We discovered that
there is an increase in the performance for classes
with low samples, except for Attributes. The sec-
ond observation is that using S’s annotations alone

is useful for low sample classes for Events and Enti-
ties. This significance grows when the annotations
are combined with predictions from the Teacher
model. The results are shown in Tables 1, 2.

Weighted-F1 Macro-F1 Micro-F1
G 88.02 86.45 88.04
S 79.14 76.87 79.21

G + S 87.89 86.25 87.90
Gf 86.26 84.43 86.30

Gf + S 85.87 84.06 85.89

Table 6: Evaluation results on DocRED’s named entity
recognition task.

F1 Ign-F1 Evi-F1
G 61.51±0.19 59.7±0.19 52.09±0.22
S 44.41±0.48 43.51±0.46 31.17±0.46

G + S 60.04±0.34 58.27±0.36 50.67±0.36
Gf 56.12±0.28 55.46±0.28 46.99±0.28

Gf + S 54.79±0.26 53.5±0.25 44.86±0.31

Table 7: Evaluation results on DocRED’s relation extrac-
tion task. We used the same metrics that were proposed
in DocRED’s paper (Yao et al., 2019).

6 Conclusion

In this paper, we introduced a novel framework that
leverages Knowledge Graphs and Large Language
Models to generate annotated synthetic data for In-
formation Extraction tasks. Our preliminary exper-
iments demonstrated that while the data generated
by this framework can enhance the performance of
classes with limited training samples, it cannot yet
serve as a substitute for the original data. Theoreti-
cally, within this framework, data anonymization
and bias mitigation can be easily accomplished by
modifying the input Knowledge Graphs. However,
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Events Entities Attributes
Data F1 macro F1 micro F1 macro F1 micro F1 macro F1 micro

G 41.83 ±0.79 55.56 ±0.63 65.41 ±1.04 81.60 ±0.26 56.74 ±0.86 80.02 ±0.26
G + S400 43.92 ±1.14 55.94 ±0.80 65.82 ±1.04 81.14 ±0.14 59.17 ±1.11 80.86 ±0.32
G + S800 43.61 ±0.96 56.00 ±0.47 64.33 ±0.94 79.91 ±0.34 59.96 ±1.82 80.61 ±0.69
G + S1200 44.20 ±1.08 56.45 ±0.85 63.56 ±0.82 80.06 ±0.38 60.67 ±0.95 80.46 ±0.35

Table 8: Evaluation results for Event/Entity/Attribute extraction using BS. {400, 800, 1200} are dataset’s sizes.

G G + S1200

Classes #Samples F1-score #Samples F1-score
CIVIL_WAR_OUTBREAK 19 57.45 440 54.83

COUP_D_ETAT 24 44.23 198 45.22
DEMONSTRATION 38 4.11 1215 12.44

DRUG_OPERATION 13 18.48 242 41.30
ELECTION 27 65.73 197 82.45

ILLEGAL_CIVIL_DEMO. 29 27.31 30 20.48
NATURAL_CAUSES_DEATH 9 40.25 15 43.02

POLITICAL_VIOLENCE 29 10.72 137 3.51
POLLUTION 31 60.11 141 68.01

SUICIDE 22 39.27 22 41.92
TRAFFICKING 38 31.85 381 45.27

Table 9: Evaluation results on some of the Event classes with the lowest data samples based on BS.

G G + S1200

Classes #Samples F1-score #Samples F1-score
HEIGHT 4 26.81 14 45.56

LATITUDE 3 41.83 4 53.66
LENGTH 4 23.11 13 47.79

LONGITUDE 5 41.83 5 42.15
MATERIAL_REFERENCE 14 47.36 31 54.94

QUANTITY_MIN 20 46.72 76 42.77
TIME_MAX 11 42.81 12 41.46
TIME_MIN 28 25.43 33 30.20

WEIGHT 15 74.42 24 84.96
WIDTH 4 4.66 11 11.39

Table 10: Evaluation results on some of the Attribute classes with the lowest data samples based on BS.

further research and experimentation are required
to fully realize and validate these possibilities.

7 Limitation

One of the limitations of this study is that we only
generated new data based on the original data’s
Knowledge Graphs, which led to low diversity in
the dataset. Future work could involve experiment-
ing with modified Knowledge Graphs to enhance
diversity. We acknowledge that the annotations pro-
duced by our framework are far from perfect and
require further enhancements. One potential im-

provement could be the use of a dependency tree to
identify co-references and annotate them. It could
also be used to extract relations between entities.
Another path for improvement could be the use of
attention weights from the generated texts. This
could help identify the evidence of relations by
pinpointing where the head and tail entities most
attentively interact within the texts.
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A Example Appendix

Examples of text comparison between G and S are
provided in Table 11 for English and Table 12 for
French. Figure 4 illustrates a sample of Knowledge
Graph Kt along with its corresponding gold text

t and synthetic text t′. An example of an entity
extraction prompt can be seen in Figure 5.
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Figure 4: Sample of a knowledge graph Kt with its t and t′.

Figure 5: Example of prompt used for entity extraction.
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Texts from G Texts from S
Pacific Fair is a major shopping centre in Broadbeach
Waters on the Gold Coast, Queensland, Australia. It
was Queensland’s largest regional shopping centre
until 2006. Pacific Fair was developed by Hooker
Retail Developments and opened in 1977 on what
was swampland with 96 specialty stores and two an-
chor tenants. Since then, Pacific Fair has undergone
numerous expansions and has grown to have more
than 300 specialty stores and four anchor tenants. In
January 2014, work began on a major redevelopment
project to meet the predicted regional growth on the
Gold Coast. Prior to the redevelopment, the shopping
centre had four main major stores including a four-
level Myer, Kmart, Target, Coles and Toys ’R’ Us.
Daimaru operated in the centre before its Australian
withdrawal, albeit briefly. It also had a 12-screen
Birch Carroll and Coyle Cinema (re-opened as Event
Cinemas in late 2015). Pacific Fair is a major public
transport interchange on the Gold Coast, serviced by
Surfside Buslines, and the Broadbeach South station
located not far from the shopping centre. Nearby is
The Star Gold Coast and Gold Coast Convention &
Exhibition Centre. Pacific Fair fronts Little Talle-
budgera Creek and is the southern end of the Surfers
Riverwalk. This shopping centre was featured on the
third season of The Mole.

Located in the state of Queensland, Australia, Surfers
Riverwalk is a scenic walkway along the banks of
the Nerang River in the city of Gold Coast. This
administrative territorial entity falls under the larger
jurisdiction of Queensland. The Gold Coast, also sit-
uated in Queensland, is a popular tourist destination
and is known for its stunning beaches, theme parks,
and shopping complexes like Pacific Fair, which was
established in 1977. Some well-known retail chains
operating in the area include Toys ’R’ Us, Myer,
Kmart, Coles, and Daimaru. Transportation options
include Surfside Buslines and the Broadbeach South
train station. Nearby attractions include Little Talle-
budgera Creek and the Gold Coast Convention &
Exhibition Centre. Surfers Riverwalk offers views of
both the river and the beachfront, making it a popular
spot for locals and tourists alike. Event Cinemas, an-
other prominent establishment in the area, provides
entertainment options for moviegoers. Overall, the
Gold Coast boasts a diverse range of businesses and
amenities catering to the needs of its residents and
visitors.

Lark Force was an Australian Army formation es-
tablished in March 1941 during World War II for
service in New Britain and New Ireland. Under the
command of Lieutenant Colonel John Scanlan, it
was raised in Australia and deployed to Rabaul and
Kavieng, aboard SS Katoomba, MV Neptuna and
HMAT Zealandia, to defend their strategically im-
portant harbours and airfields . The objective of the
force, was to maintain a forward air observation line
as long as possible and to make the enemy fight for
this line rather than abandon it at the first threat as
the force was considered too small to withstand any
invasion. Most of Lark Force was captured by the
Imperial Japanese Army after Rabaul and Kavieng
were captured in January 1942. The officers of Lark
Force were transported to Japan, however the NCOs
and men were unfortunately torpedoed by the USS
Sturgeon while being transported aboard the Mon-
tevideo Maru. Only a handful of the Japanese crew
were rescued, with none of the between 1,050 and
1,053 prisoners aboard surviving as they were still
locked below deck.

During World War II, the Australian Army played a
significant role, with over 330,000 men serving over-
seas. Among them was John Scanlan, a soldier who
served in various campaigns in the Pacific theater.
Born in Australia, Scanlan enlisted in the army in
1940 and was assigned to the Lark Force, a special-
ized unit tasked with defending Singapore against
Japanese invasion. In March 1941, the Lark Force
was formally established, and Scanlan was among its
founding members. The force, composed primarily
of Australian infantry, artillery, and engineering units,
operated mainly in Malaya and Singapore. Its pri-
mary mission was to provide defensive cover against
any potential Japanese threat in the region. As the
war intensified, the Lark Force found itself facing
increasingly formidable opponents. The Imperial
Japanese Army, which had already conquered much
of Southeast Asia, launched a massive assault on Sin-
gapore in February 1942. The Lark Force, along with
other Allied forces, put up a fierce resistance, but
ultimately they were overwhelmed. Thousands of
soldiers, including Scanlan, were captured and sent
to prisoner-of-war camps in Japan. Many never re-
turned home.

Table 11: Samples of English Gold and Synthetic texts. Highlighted words are the entities and words in Red are the
entities that did not appear in the original text t. 54



Texts from G Texts from S
Le 19 septembre 2020, un mouvement de grève a per-
turbé les cours au sein de l’Université du Michigan.
En effet, les enseignants de l’université ont décidé de
fermer les portes de toutes les salles d’étude. Les en-
seignants reprochent au gouvernement d’avoir ignoré
leurs relances concernant le non-respect des termes
du contrat signé entre les deux parties. Après avoir
été annoncée sur les réseaux sociaux, la grève a en-
traîné une confrontation entre les enseignants et les
forces de l’ordre. Monsieur Mehmet-akhif Hassan
est mort après avoir été brutalement frappé sur la
tête avec une matraque durant la confrontation. Il a
été évacué en urgence dans une ambulance pour être
conduit à l’hôpital, mais les secouristes ont déclaré
son décès en route.

Le 19 septembre 2020, une grève des enseignants
au Michigan a provoqué une confrontation entre ces
derniers et les forces de l’ordre, entraînant également
une crise dans le gouvernement. La confrontation a
débouché sur un accident de la route, où Mehmet-
akhif Hassan, un citoyen présent à l’endroit des
événements, a été grièvement blessé. L’accident a
également causé divers dégâts matériels, notamment
la perte d’un ambulance. Les secouristes ont rapide-
ment pris en charge Mehmet-akhif Hassan et l’ont
emmené à l’hôpital. Les enseignants, qui avaient par
ailleurs bloqué les portes de l’université, ont égale-
ment protesté devant cet incident, affirmant qu’il était
lié à leur conflit avec la police et le gouvernement.
Ces incidents ont également affecté les relations entre
les différents groupes impliqués, en particulier celles
entre les enseignants et les forces de l’ordre, ainsi
que celles entre les enseignants et le gouvernement.

Naomi Zhang, la multimilliardaire et fondatrice de
l’entreprise "BOMO", était à la tête de l’entreprise
numéro 1 dans la distribution d’alcool en Argen-
tine. Un de ses employés, Monsieur Thibault Alek-
seï, d’origine serbe, était le chef d’un gang de vente
d’armes à feu. Il utilisait sa voiture de fonction pour
livrer de la drogue et de la cocaïne à plusieurs en-
treprises. Il avait livré des dizaines déntreprises, dont
"POLIS". Lorsque la nouvelle avait été annoncée
dans la presse, l’entreprise de Naomi Zhang avait
été au cœur dún scandale médiatique et avait vu son
nombre de commandes diminuer.

Naomi Zhang est une femme d’affaires influente
basée en Argentine. Elle est fondatrice de BOMO,
une organisation non gouvernementale qui travaille
activement pour améliorer la situation de nombreuses
personnes au sein du pays. Thibault Alekseï, quant
à lui, est un criminel serbe vivant également en Ar-
gentine. Il est impliqué dans la distribution illégale
de drogues et fait partie d’une bande organisée ap-
pelée gang. Naomi Zhang et Thibault Alekseï sont
tous deux présents en Argentine, où ils exercent leur
influence respective sur divers secteurs de la vie quo-
tidienne.

Table 12: Samples of French Gold and Synthetic texts. Highlighted words are the entities and words in Red are the
entities that did not appear in the original text t. Certain entities may not have been included in Kt because they
have no relationship to any other entity, which would explain why they were present in t but absent from t′.
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Abstract

Knowledge Graphs (KGs) serving as seman-
tic networks, prove highly effective in man-
aging complex interconnected data in differ-
ent domains, by offering a unified, contex-
tualized, and structured representation with
flexibility that allows for easy adaptation to
evolving knowledge. Processing complex Hu-
man Resources (HR) data, KGs can help in
different HR functions like recruitment, job
matching, identifying learning gaps, and en-
hancing employee retention. Despite their po-
tential, limited efforts have been made to im-
plement practical HR knowledge graphs. This
study addresses this gap by presenting a frame-
work for effectively developing HR knowledge
graphs from documents using Large Language
Models. The resulting KG can be used for
a variety of downstream tasks, including job
matching, identifying employee skill gaps, and
many more. In this work, we showcase in-
stances where HR KGs prove instrumental in
precise job matching, yielding advantages for
both employers and employees. Empirical
evidence from experiments with information
propagation in KGs and Graph Neural Nets,
along with case studies underscores the ef-
fectiveness of KGs in tasks such as job and
employee recommendations and job area clas-
sification. Code and data are available at :
https://github.com/azminewasi/HRGraph

1 Introduction

Knowledge Graph (KG) is a semantic network that
stores real-world entities and their relationships.
It uses nodes representing objects, places, or per-
sons, connected by edges defining relationships. It
can integrate diverse data, contextualize informa-
tion through linking and semantic metadata, and
remain flexible, accommodating dynamic knowl-
edge changes seamlessly (Hogan et al., 2021; Wasi
et al., 2024; Yang et al., 2024; Khorashadizadeh
et al., 2023).

Text

𝒕

Summary:     Dedicated  
Information Assurance 
Professional well-versed 
in analyzing and 
mitigating risk and 
finding cost-effective 
solutions…
Skills :         Management 
(PLM)  Project tracking  
Hardware and software 
upgrade..

LLM-

Prompting

Entity 

Extraction

Entity 

Refining

Know-ledge 

Graph

𝒢 = 𝒱, ℰ, 𝑋

Inputs

𝒱ℴ

𝒱

Relation 
Extraction 

(using 
information 
topology)

Node 
Feature 
Develop-
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(BERT-

embedding)
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ℰ

𝑋

HR 

Document

Figure 1: The overall framework of our HRGraph. It
involves passing text data extracted from HR documents
through a LLM to obtain entities and entity types, which
are used to build a base knowledge graph with optional
node features as BERT embeddings.

Knowledge Graphs can be highly effective for
managing HR data, integrating diverse sources into
a unified, structured representation (Zhang et al.,
2021; Wasi et al., 2024). This is crucial for appli-
cations like recruitment and career path planning.
By linking data with semantic metadata, KGs pre-
vent misinterpretation, particularly in employee
skill mapping and development. Their flexibility
allows easy adaptation to new data and require-
ments across various HR functions. KGs enhance
recruitment precision, skill and career mapping,
optimize recruitment processes, identify learning
gaps, improve retention strategies, and facilitate
organizational knowledge sharing. For employees,
KGs offer better job searches and recommenda-
tions, providing strong support from their perspec-
tive (Bourmpoulias et al., 2023; Bao et al., 2021).

In this study, we introduce a framework named
HRGraph, aimed at constructing HR knowledge
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Figure 2: An overview of Job Matching and Recommendation framework using HR KGs of job applicants or
employees. Using the intuition that company JDs and employee CVs or profiles should share matching entities like
skills, experience, and education, we can match, find, and recommend employees from a knowledge graph. On the
other hand, using a KG of many different job descriptions, we can use job-seeker skills, education, and other factors
to find an appropriate employment to recommend.

graphs from various HR documents, such as Job
Descriptions (JDs) and Curriculum Vitae (CVs).
We illustrate the framework’s utility through two
practical examples as downstream tasks: employee
and job recommendation using the HR knowledge
graph. Our approach employs Large Language
Models (LLMs) to identify and extract diverse en-
tities, then extracts node features using pre-trained
BERT, forming the knowledge graph with some
post-processing. The resulting knowledge graph
can be utilized for different downstream tasks. In
this work, we use it for effective job matching and
classification, catering to both employer and em-
ployee needs. The underlying idea is that company
JDs and employee CVs or profiles should share
matching entities like skills, experience, and edu-
cation (an illustration of the proposal is presented
in Figure 2), facilitating a comprehensive and accu-
rate job match in both job-seeking and employee-
search scenarios.

2 Related Works

2.1 Applications of Knowledge Graphs
KGs showcase versatility, excelling in applications
such as semantic search, question answering, and
recommendation systems (Wang et al., 2023b; Gao
et al., 2020; Wasi et al., 2024). Their structured rep-
resentation enhances search engine results and tai-
lors suggestions. KGs, pivotal in Natural Language
Processing (NLP), elevate information extraction
and contribute to superior machine learning pre-
dictions. From enterprise knowledge management
to biomedical research (Wu et al., 2023), KGs ex-
hibit adaptability. Their integration of diverse data,
contextualization, and inherent flexibility under-
pin effectiveness in managing and extracting in-
sights across varied domains, including Medical

AI (Wu et al., 2023), Wireless Communication Net-
works (He et al., 2022), Search Engines (Heist et al.,
2020), and Big Data Decision Analysis (Janev et al.,
2020). KGs emerge as indispensable tools, navi-
gating dynamic information landscapes seamlessly
(Hogan et al., 2021). Our work is inspired by these
different uses of knowledge graphs.

2.2 HR Data and Knowledge Graphs

Though human resource knowledge graphs have
good potential, limited efforts have been made in
this domain. Zhang et al. (2021) adopted a top-
down approach to create the ontology model of a
human resource knowledge graph. The paper de-
scribes the significance of initially establishing on-
tology and defines entities and relationships for HR
KGs. Cui (2022) presented a hypothesis to build
a job description KG using NLP-based semantic
entity extraction, but no detailed methodologies or
experiments were presented. Wang et al. (2022)
presented a job recommendation algorithm based
on KGs, using word similarity to find recommenda-
tions. Upadhyay et al. (2021) uses a NER-based ap-
proach to build knowledge graphs to aid in job rec-
ommendation. However, no practical efforts have
been made to implement a tangible HR knowledge
graph in real-world scenarios based on LLMs and
utilize one graph for multiple downstream tasks.

3 Methodology

The recent developments in LLMs, Knowledge
Graph-based systems, and GNNs served as inspi-
ration for the proposed methodology. Inspired by
Wasi et al. (2024), HR knowledge graph uses Large
Language Models (LLMs) for entity extraction and
pre-trained NLP moels for node features enables a
sophisticated representation of HR data by leverag-
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ing advanced language understanding capabilities.
Existing literature presents alternative approaches,
such as word similarity-based job recommendation
(Wang et al., 2022) and NERs to build KGs (Upad-
hyay et al., 2021). Our proposed method stands out
by leveraging LLMs for entity extraction and using
BERT for features (length 256), offering a flexible
and comprehensive approach that addresses prac-
tical challenges and enables multiple downstream
tasks.

Entity Extraction and Refining. We begin by
processing a job description (JD) or curriculum vi-
tae (CV) as HR document text t, using a Large Lan-
guage Model Gemini (Team, 2023). Prompts are
available in Section B. This step results in the ex-
traction of various entities (Vo) from the text, cap-
turing both entities and relationships. Subsequently,
we perform post-processing on the entity set (Vo)
to filter out potential noises (such as KG nodes hav-
ing more than 3 words or having no named entity
or verbs), resulting in a refined set of entities V.

Relation Extraction. To establish the initial
connections between these entities, we leverage
information topology and types, creating the initial
connections set E .

Node Feature Extraction. Employing a pre-
trained BERT model, we generate feature vec-
tors for each entity, constructing an initial fea-
ture matrix X . Thus, V represents the ensemble
of nodes (entities) {v1, v2, v3, · · · vN}, and E en-
compasses the collection of edges (relationships)
{e1, e2, e3, · · · eM}, where N and M signify the
number of nodes and edges, respectively.

Knowledge Graph Construction. Combining
V , E , and X forms our Knowledge Graph (KG),
denoted as Go = (V, E , X). The corresponding
adjacency matrix, A, has an element Aij = 1 if an
edge connects vi and vj .

Each node v ∈ V and each edge e ∈ E have
associated mapping functions, denoted as ϕ(v) :
V → A and φ(e) : E → R. Here, R represents
the edge type set, and A is the node type set, where
|A| + |R| > 2. If we choose to use Knowledge
Graph Embedding (KGE) (Cao et al., 2023), fea-
ture vector X can be excluded, and node embed-
dings can be obtained using different KGE models
containing topological and structural knowledge.

4 Experiments with Knowledge Graphs

We collect 200 CVs and 200 job descriptions from
online job portals, ensuring the CVs had minimal

Figure 3: Our CV Knowledge Graph. Green dots are
persons (CV), blue dots are skills, education and other
entities

personal information and underwent manual review
for privacy protection. Company details, openly
available in job descriptions, were retained. The
data was then manually labeled with the help of job
portal filters for subsequent experiments. Any type
of personally identifiable information (PII) such as
names, detailed locations, email addresses, mobile
numbers, etc., is thoroughly checked and removed.

This dataset includes 20 categories of jobs and
CVs targeting these jobs. The categories are: In-
formation Technology, Business Development, Fi-
nance, Advocate, Accountant, Engineering, Chef,
Aviation, Fitness, Sales, Banking, Healthcare, Con-
sultant, Construction, Public Relations, Human Re-
sources, Designer, Arts, Teacher, Apparel. In CVs,
there are 10 for each category, but in job descrip-
tions, there are more jobs in IT and engineering.

Prompts are provided in Section B. While the
core design remains the same, the prompts are
slightly different for Curriculum Vitae and Job De-
scription, each tuned to its specific modality. The
full inference code with examples is available in
the GitHub repository.

4.1 Visualizing Knowledge Graphs

Utilizing the Gemini tool, we systematically gath-
ered data and constructed two knowledge graphs
for CVs and job descriptions (JDs) as HR knowl-
edge bases, adhering to the defined methodology.
To ensure relevance, entities exceeding a length of
4 were excluded. These knowledge graphs (pre-
sented in Figures 3 and 4) show that there is a huge
connection between different jobs and the skills,
education, and experience required. By utilizing
these relationships, many downstream tasks can be
done.

58



Figure 4: Our Job Description Knowledge Graph. Red
dots are Jobs, blue dots are skills, education and other
entities

5 Downstream Tasks

5.1 Information Propagation on HRGraph

Figure 2 provides an overview of our Job Match-
ing and Recommendation Framework utilizing HR
Knowledge Graphs for job applicants or employees.
Leveraging the job description graph, we identify
matching skill, education, and experience nodes,
forming a targeted sub-graph with 3-hop neighbour-
ing nodes. Node centrality within this sub-graph
allows us to efficiently find and rank all relevant
job nodes.

5.2 Task 01: Recommendation

The information propagation framework predicts
the top N ranked jobs for each individual, enabling
us to assess prediction accuracy and precision,
thereby optimizing job recommendations. Simi-
larly, in the task described above, we extend the
methodology from Job Recommendation, utilizing
the CV Knowledge Graph to identify employees
based on matching skill, education, and experience.
R denotes random recommendations, D denotes
job recommendation using LLM entities directly
for the top 5 recommendations. Table 1 shows
that knowledge graph information propagation and
ranking can provide very strong recommendations
with good accuracy. Case studies are provided in
Appendix A.

5.3 Task 02: Job Area Classification

In this task, we use KG-based job area clas-
sification on the CVs using two basic popular
GNNs: GCN (Kipf and Welling, 2017) and GAT
(Veličković et al., 2018). We compared the re-
sults with traditional and normally used deep
learning models. Table 2 shows that Knowledge

Table 1: Recommendation Results (↑)

N Task Avg. Acc. Avg. Prec.
2 Job Rec. 0.668 0.675
2 Employee Rec. 0.684 0.685
5 Job Rec. 0.748 0.764
5 Employee Rec. 0.784 0.792
10 Job Rec. 0.702 0.700
10 Employee Rec. 0.715 0.708
D Job Rec. 0.670 0.655
D Employee Rec. 0.620 0.665
R Job Rec. 0.323 0.312
R Employee Rec. 0.373 0.361

Graph-based GNN models are equally effective
and slightly better than other models. More details
are provided in Appendix A.

Table 2: Job Area Classification Results (↑)

Model Accuracy Precision Recall
Tfidf+LogR. 0.745 0.770 0.740
Tfidf+DecT. 0.655 0.670 0.655

Tfidf+RF 0.680 0.675 0.680
Tfidf+GBC 0.775 0.805 0.775
Tfidf+MLP 0.655 0.670 0.655
Transformer 0.660 0.645 0.675

GCN 0.785 0.800 0.795
GAT 0.775 0.835 0.775

6 Discussion

We believe that transforming HR data into a knowl-
edge graph holds a great promise in shaping the
future of human resources data collection, manage-
ment, and utilization. By envisioning HR data in
this interconnected graph, organizations can unlock
unprecedented insights, streamline recruitment pro-
cesses, identify talent gaps, and foster employee
growth. This approach not only enhances decision-
making but also paves the way for a dynamic and
adaptive HR ecosystem that propels organizational
success in an ever-evolving landscape.

7 Conclusion

This study introduces a framework leveraging
LLMs and GNNs to construct HR knowledge
graphs from documents, working as a HR knowl-
edge base for different HR tasks. The resulting
KGs enhance various HR functions, including job
matching, job area classification, and many more,
demonstrating their efficacy through empirical evi-
dence, benefiting both employers and employees.
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Limitations

The framework’s primary limitation lies in its de-
pendence on LLMs, which, although powerful, can
be unreliable and prone to hallucinations (Wang
et al., 2023a). Given our model’s exclusive re-
liance on LLMs for entity extraction, we observed
instances where they deviated from the provided in-
structions. Also, a more sophisticated job-matching
algorithm can be designed. Further research can be
conducted on this to examine it in the future.

Ethical Considerations

In conducting this research, strict ethical guidelines
were followed to ensure the privacy and confiden-
tiality of the individuals whose data was used. The
primary focus was on handling personally iden-
tifiable information (PII) with the utmost care to
protect the identity and privacy of all individuals.

Data Anonymization. To safeguard privacy, all
PII such as names, detailed locations, email ad-
dresses, and mobile numbers were meticulously
identified and removed from the dataset. This pro-
cess involved thorough checks to ensure no trace-
able information was left that could potentially
identify any individual.

Consent and Permissions. The original dataset
was accessed with proper permissions and in com-
pliance with the relevant data use agreements. By
adhering to these agreements, we ensured that the
data was used within the scope of its intended pur-
pose, respecting the conditions under which the
data was collected.

Privacy Protection. In this research, the dataset
utilized was curated from an existing collection of
CVs, ensuring that all personally identifiable infor-
mation (PII) was meticulously removed to maintain
privacy and adhere to ethical guidelines. The orig-
inal data sources were accessed with proper per-
missions, and stringent anonymization techniques
were applied to eliminate any traces of identity.

Secure Data Handling. Throughout the data
curation and analysis process, secure data handling
practices were implemented. This included using
encrypted storage solutions and restricting access
to the data to only those team members who re-
quired it for their specific research tasks. These
measures were crucial in preventing unauthorized
access and potential data breaches.

Ethical Use of Data. The research team was
committed to using the data ethically, ensuring that
the analysis and interpretations were fair and un-

biased. The data was used solely for the purposes
of this research and not for any commercial or ex-
ploitative activities. Additionally, findings were
reported in a way that protected the anonymity of
the individuals in the dataset.

Transparency and Accountability Trans-
parency in our methods and accountability in our
processes were maintained throughout the research.
Detailed documentation of our data handling and
anonymization procedures was kept, ensuring that
the steps taken to protect privacy could be reviewed
and verified by external parties if necessary.
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A Experimental Details

A.1 Implementation Details
TF-IDF Vectorizer: The model employs a TF-IDF
Vectorizer with an n-gram range of 1 to 5, capturing
diverse word combinations, and a maximum fea-
ture limit set to a calculated vocabulary size. The
vocabulary size, determined as the mean plus three
times the standard deviation of the data, ensures
a comprehensive representation of relevant terms.
Additionally, English stopwords are excluded to fo-
cus on meaningful content during the vectorization
process.

Traditional Models: After getting vectors from
TF-IDF Vectorizers, we use different methods to
classify. LogR. means Logistic Regression, DecT.
means Decision Tree, RF means Random Forest
and GBC denotes Gradient Boosting Classifier. Lo-
gistic Regression employs L1 regularization with
the ’liblinear’ solver. The Decision Tree Classifier
has a maximum depth limited to 5. The Random-
Forest Classifier consists of 50 decision trees and
uses a fixed random state for reproducibility. The
Gradient Boosting Classifier incorporates an en-
semble of 50 weak learners.

MLP: The MLP model is a simple feedforward
neural network with multiple hidden layers, includ-
ing dropout regularization for each layer. It consists
of fully connected layers with decreasing dimen-
sions from 2048 to 64 (halved in each layer), all
utilizing the ReLU activation function. The output
layer employs the softmax activation function for
multi-class classification.

Transformer : The transformer model, inte-
grated with AutoML and the Hugging Face Trans-
formers library, utilizes the AutoTokenizer to pre-
process text data. The AutoModelForSequence-
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Classification class is employed with the distilbert-
base-uncased model, configured to handle se-
quence classification tasks with a number of unique
labels corresponding to the classes in the training
data.

Graph Neural Network-Based Models: Both
GCN (Kipf and Welling, 2017) and GAT
(Veličković et al., 2018) model used are the default
models from Pytorch Geometric library, with 64
hidden channels and 4 layers. Fine-tuning GNNs
will improve the results.

A.2 Case Study
In CV No. 92, it is a salesperson’s CV. It has these
matching entities with the job description graph:

’accounting’, ’managerial’, ’excel’, ’office’, ’out-
look’, ’microsoft word’, ’policies’, ’sales’, ’sap’,

’time management’. The top 5 matches job descrip-
tions were: 150, 84, 103, 123, 163. The labels
on them are ACCOUNTANT, SALES, SALES, FI-
NANCE, Sales respectively. While the individual’s
primary expertise lies in sales, the inclusion of
the ’accounting’ skill prompted a recommendation
for an accountant role. Additional skills such as
’managerial,’ ’excel,’ and ’policies’ contributed to
suggestions within the finance industry. This exem-
plifies the Knowledge Graph’s ability to provide
nuanced explanations for recommendations, offer-
ing insights into the diverse factors influencing job
suggestions. It can be very effective to make career-
switch moves for job-seekers.

B Prompts

If the information is a CV, use the following
prompt:

You are an entity extraction expert, you
can identify and extract different types
of entities from a text. Here is some in-
formation from a CV. Your task is to find
and enlist all the information entities like
education (degree, grade, school name),
skills (which skills the person has), quali-
fications (skills), experience (action verb
and nouns), and any other helpful token
that is important for a job, and share
them in a list where entities are separated
by commas. Do not write anything else.
Just the small entities separated by com-
mas in a dictionary (JSON). Each entity
can have only 1-2 words.

<Insert CV text here>

If the information is a job description, use the
following prompt:

You are an entity extraction expert, you
can identify and extract different types of
entities from a text. Here is some infor-
mation from a job description. Your task
is to find and enlist all the information
entities like education (degree require-
ment), skills (which skills the job needs),
qualifications (skills), experience (action
verb and nouns), and any other helpful to-
ken that is important for a job, and share
them in a list where entities are separated
by commas. Do not write anything else.
Just the small entities separated by com-
mas in a dictionary (JSON). Each entity
can have only 1-2 words.

<Insert job description text here>

Here is an example of the expected output:

"Education": ["ABC University",
"CGPA 3.00", "Computer Science and
Engineering", "BSc"], "Skills": ["C",
"Python", "R", "Machine Learning",
"Communication", "Team Work"],
"Experience": "ABX InfoTech":
["Team Management", "Assistant Man-
ager"], "STech": ["Manager", "Senior
Engineer", "AWS"]
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Abstract
This paper explores the integration of graph
knowledge from linguistic ontologies into mul-
tilingual Large Language Models (LLMs) us-
ing adapters to improve performance for low-
resource languages (LRLs) in sentiment analy-
sis (SA) and named entity recognition (NER).
Building upon successful parameter-efficient
fine-tuning techniques, such as K-ADAPTER
(Wang et al., 2021) and MAD-X (Pfeiffer et al.,
2020), we propose a similar approach for incor-
porating knowledge from multilingual graphs,
connecting concepts in various languages with
each other through linguistic relationships, into
multilingual LLMs for LRLs. Specifically, we
focus on eight LRLs —Maltese, Bulgarian, In-
donesian, Nepali, Javanese, Uyghur, Tibetan,
and Sinhala — and employ language-specific
adapters fine-tuned on data extracted from the
language-specific section of ConceptNet, aim-
ing to enable knowledge transfer across the
languages covered by the knowledge graph.
We compare various fine-tuning objectives, in-
cluding standard Masked Language Modeling
(MLM), MLM with full-word masking, and
MLM with targeted masking, to analyze their
effectiveness in learning and integrating the ex-
tracted graph data. Through empirical evalua-
tion on language-specific tasks, we assess how
structured graph knowledge affects the perfor-
mance of multilingual LLMs for LRLs in SA
and NER, providing insights into the potential
benefits of adapting language models for low-
resource scenarios.

1 Introduction
In recent years, the advancement of multilingual
Large Language Models (LLMs) (Devlin et al.,
2019; Conneau et al., 2020; Xue et al., 2021) has
revolutionized the field of natural language pro-
cessing (NLP), enabling impressive performance
across various languages. However, these mod-
els often struggle with low-resource languages
(LRLs), where limited data availability affects

their effectiveness (Wu and Dredze, 2020). To ad-
dress this limitation, researchers have explored in-
tegrating external knowledge sources into multilin-
gual LLMs to enhance their performance in both
high-resource and low-resource contexts (Wang
et al., 2021; Lauscher et al., 2020; Pfeiffer et al.,
2020) via adapters (Houlsby et al., 2019) and full
fine-tuning.

Adapters, introduced by Houlsby et al. (2019),
are small modules inserted between the layers
of a model and trained while the model is kept
frozen. Previous work has used such Adapters
to integrate external knowledge into LLMs. For
instance, Wang et al. (2021) demonstrated im-
provements in relation classification, entity typ-
ing, and question answering tasks by integrat-
ing graph knowledge from Wikidata (Vrandečić
and Krötzsch, 2014) into RoBERTa (Liu et al.,
2019) using adapters. Similarly, Lauscher et al.
(2020) enhanced BERT (Devlin et al., 2019) with
graph knowledge from ConceptNet (Speer et al.,
2017), achieving significant performance gains on
tasks requiring common-sense knowledge. How-
ever, these efforts primarily focused on the En-
glish language. In contrast, Pfeiffer et al. (2020)
addressed low-resource languages by integrating
textual knowledge from Wikipedia into XLM-
R (Conneau et al., 2020) via language adapters.
Their approach demonstrated improvements over
the baseline model for named entity recognition
(NER) task.

Motivated by recent advancements in the inte-
gration of graph knowledge into language models,
particularly for English, this paper investigates the
incorporation of graph knowledge from linguis-
tic ontologies, specifically ConceptNet, into mul-
tilingual LLMs particularly for LRLs. Injecting
such data might be beneficial due to the scarcity
of training data for these languages and the addi-
tional semantic and multilingual information pro-
vided by knowledge graphs (Miller, 1995; Speer
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et al., 2017). Our focus is on a subset of LRLs,
aiming to extend the success observed in graph
knowledge integration to linguistically diverse and
resource-scarce contexts. We work with Maltese,
Bulgarian, Indonesian, Nepali, Javanese, Uyghur,
Tibetan, and Sinhala, identified as low-resource
according to Joshi et al. (2020). Our primary
objective is to evaluate whether injecting multi-
lingual graph knowledge, connecting various lan-
guages through linguistic relationships, into pre-
trained multilingual LLMs through adapters im-
proves performance for LRLs. We train language-
specific adapters on ConceptNet data using differ-
ent objective functions, including standard Masked
Language Modeling (MLM) (Devlin et al., 2019),
MLM with full-word masking (Cui et al., 2021),
and MLM with targeted masking, and evaluate the
downstream performance of the adapted model on
sentiment analysis (SA) and NER tasks.

Our work extends existing advancements by
proposing an approach that utilizes adapters to in-
tegrate graph knowledge specifically for LRLs, fol-
lowing a modular design similar to the one intro-
duced by Pfeiffer et al. (2020). Our contributions
include:

• Low-Resource Languages Focus: Unlike
prior works on graph knowledge integration
(Lauscher et al., 2020; Wang et al., 2021), our
research concentrates explicitly on improv-
ing multilingual LLMs through the external
graph knowledge injection for low-resource
scenarios.

• Exploiting Various Knowledge Sources
and Types: We investigate the integration
of language adapters based on Wikipedia and
ConceptNet, both individually and in combi-
nation. This expands the approach of Pfeiffer
et al. (2020), which solely utilized Wikipedia
data, enabling a comprehensive assessment
of different knowledge sources’ impact on
model performance. We assume that lan-
guage models can benefit from the multilin-
gual connections in ConceptNet.

• Single-Language Training Approach: In
contrast to the multilingual transfer learning
approach used by Pfeiffer et al. (2020), which
primarily focuses on cross-lingual adaptation,
our methodology involves training language
and task adapters using data in the same
LRL. This training strategy aims to maximize

model performance and adaptability to the
specific linguistic characteristics of each tar-
get language.

Figure 1: Proposed method. One of the Wiki or Con-
ceptNet language adapters is used during inference.
The outputs then go to a task adapter, which is followed
by a classification head. If fusion is specified, the fu-
sion mechanism is activated.

Our study provides insights into the potential
benefits of adapting multilingual LLMs for low re-
source scenarios, contributing to the ongoing ex-
ploration of multilingual language model adapta-
tion and graph knowledge integration.

The complete code for our experiments is pub-
licly available on GitHub1.
2 Related Work
Our work extends recent advancements in inte-
grating external graph knowledge into pre-trained
LLMs (Lauscher et al., 2020; Wang et al., 2021)
and adapting pre-trained multilingual LLMs to
specific languages (Pfeiffer et al., 2020). We use
the methodologies proposed in these studies as a
foundation for enhancing the performance of mul-
tilingual LLMs on downstream tasks, particularly
for LRLs. To this end, we provide the overview of
these methods as well as other strategies of adapt-
ing multilingual LLMs to LRLs (Artetxe et al.,
2020; Muller et al., 2021; Vernikos and Popescu-
Belis, 2021; Pfeiffer et al., 2022).
2.1 Adapter-based Knowledge Integration
In our approach, we draw inspiration from re-
cently proposed adapter-based knowledge integra-
tion techniques, particularly the concept of K-
Adapters (Wang et al., 2021) and the work by

1https://github.com/d-gurgurov/
Injecting-Commonsense-Knowledge-into-LLMs
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Lauscher et al. (2020). K-Adapters introduced a
novel approach for injecting knowledge into pre-
trained models like RoBERTa (Liu et al., 2019)
without modifying their original parameters. This
method utilizes two types of adapters dedicated
to factual and linguistic knowledge, demonstrating
improvements in tasks such as entity typing and
question answering. Factual adapters are trained
with a relation classification objective using data
aligned from Wikipedia text to Wikidata triplets
(Vrandečić and Krötzsch, 2014), while linguistic
adapters are trained with a dependency relation
prediction objective using linguistic information
obtained from available dependency parsers.

Similarly, Lauscher et al. (2020) explored in-
jecting external knowledge, specifically from Con-
ceptNet (Speer et al., 2017) and the Open Mind
Common Sense (OMCS) corpus (Singh et al.,
2002), into language models. They introduced two
boosted models: CN-ADAPT and OM-ADAPT.
CN-ADAPT involves creating a synthetic corpus
through random traversal of the ConceptNet graph,
with adapter parameters learned through Masked
Language Modeling (MLM) training on this syn-
thetic corpus. In OM-ADAPT, adapter parameters
are learned directly through MLM training on the
OMCS corpus. Both models employ a parameter-
efficient adapter-based architecture (Houlsby et al.,
2019), injecting bottleneck adapters into BERT’s
(Devlin et al., 2019) transformer layers.

An approach similar to ours is presented in Hou
et al. (2022), who however make stronger assump-
tions on the training data (such as the alignment of
entities in the data with a knowledge graph) and
rather train models to represent entities explicitly.
2.2 Language Adapters
In our exploration of injecting graph knowledge
for LRL scenarios, we follow the MAD-X archi-
tecture presented by Pfeiffer et al. (2020). MAD-
X offers an efficient approach to adapt pre-trained
language models to LRLs by utilizing a modu-
lar structure consisting of language adapters, task-
specific adapters, and invertible adapters.

The MAD-X framework utilizes language
adapters as a fundamental component to adapt
the model to specific languages. These adapters
are trained on language-specific Wikipedia data
and stacked onto the pre-trained model, allowing
the model to capture language-specific nuances
and patterns effectively. Following the enhanced
bottleneck architecture (Pfeiffer et al., 2021),

the language adapter involves down- and up-
projections with ReLU activation and is trained
via MLM on unlabeled data.

During downstream task training, such as
named entity recognition (NER), the fixed lan-
guage adapter corresponding to the source lan-
guage is used, ensuring adaptability to differ-
ent languages without changing the underlying
multilingual model. The embeddings are passed
through the fixed language adapter before enter-
ing the task adapter, facilitating efficient adapta-
tion to diverse linguistic contexts and specific task
requirements.

Additionally, MAD-X introduces invertible
adapters to mitigate the mismatch between multi-
lingual and target language vocabulary. These in-
vertible adapters are stacked on top of the embed-
ding layer, with their respective inverses preceding
the output embedding layer.

Task-specific adapters are then stacked on top
of the language and invertible adapters to capture
task-specific knowledge and specialize a language
model in a certain task.

These insights from the MAD-X framework
serve as a valuable reference for our research on
injecting structured graph knowledge into multilin-
gual LLMs for low-resource cases.
2.3 Adapting LLMs to Low-Resource

Languages
Various other strategies have been proposed to
address the challenges of adapting multilingual
LLMs to LRLs, particularly for languages with
limited pre-training data. Pfeiffer et al. (2022) pro-
pose X-MOD, a modular multilingual architecture
that integrates shared and language-specific pa-
rameters to overcome the curse of multilinguality
(Conneau et al., 2020), allowing efficient handling
of linguistic diversity and supporting the exten-
sion to new languages with minimal performance
impact on pre-trained languages. Additionally,
Artetxe et al. (2020) train a new embedding layer
with a corresponding target-language tokenizer to
extend monolingual models to new languages, aid-
ing language extension while maintaining model
stability. Moreover, approaches based on translit-
eration and subword mappings have been proposed
to incorporate additional languages into multilin-
gual models, contributing to the expansion of mul-
tilingual capabilities of LLMs (Muller et al., 2021;
Vernikos and Popescu-Belis, 2021). Hangya et al.
(2022) present a bootstrapping-based approach for
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ConceptNet Relationship Natural Language Predicate
Antonym is the opposite of
DerivedFrom is derived from
EtymologicallyDerivedFrom is etymologically derived from
EtymologicallyRelatedTo is etymologically related to
FormOf is a form of
HasContext has context of
IsA is a type of
RelatedTo is related to
SimilarTo is similar to
Synonym is a synonym of
SymbolOf is a symbol of
DistinctFrom is distinct from

Table 1: Predefined mapping from ConceptNet relations to natural language predicates used for training
ConceptNet-based Language Adapters.

enhancing low-resource languages in multilingual
LLMs, which relies on unsupervised word transla-
tion pairs from monolingual corpora.
3 Injecting External Knowledge into

LLMs for LRLs
This section describes our approach for enhanc-
ing multilingual LLMs for LRLs by injecting ex-
ternal knowledge. We discuss the use of language
adapters trained on ConceptNet and Wikipedia
data, explore Adapter Fusion (Pfeiffer et al., 2021)
for combining knowledge sources, and describe
task adapters for fine-tuning multilingual LLMs for
specific tasks. Our proposed method is illustrated
in Figure 1.
3.1 Language Adapters
We use language adapters for integrating exter-
nal knowledge into multilingual LLMs and adapt-
ing these models to a specific language. In our
study, two types of language adapters are em-
ployed: those trained on ConceptNet data and
those trained on Wikipedia.
3.1.1 ConceptNet Data Preparation
ConceptNet-based language adapters are trained
on knowledge extracted from ConceptNet, provid-
ing a rich source of linguistic relationships and se-
mantic information across various languages. Data
preparation involves retrieving and formatting data
from ConceptNet and converting it into natural
text2. The number of triples extracted for the cho-

2For the extraction process, we utilized a dedicated self-
built module for fetching data from CN, built on top of
the CN API (https://github.com/commonsense/
conceptnet5/wiki/API) for an easier extraction of per-
language data. Code available on https://github.
com/d-gurgurov/Conceptnet-Embeddings

sen languages are given in Table 2. These triples
were converted into natural language using a pre-
defined mapping from ConceptNet relationships to
natural language predicates. This mapping allows
for a straightforward method for injecting the graph
knowledge through MLM-like objectives. The re-
lationship mapping includes all possible connec-
tions from the ontology for the selected languages
and is as specified in Table 1. An example of con-
structing a natural language sentence from an ex-
tracted triple is as follows: the triple (kiel, Relat-
edTo, eat) is converted into the sentence "kiel is re-
lated to eat". In this context, "kiel" is the Maltese
word for "eat." The natural language predicates are
always kept in English, resulting in the generated
text for a triple being multilingual.

3.1.2 ConceptNet-based Language Adapters

The ConceptNet language adapters are sequential
bottleneck adapters (Pfeiffer et al., 2021), simi-
lar to the ones used in MAD-X, with modifica-
tions to exclude invertible adapter layers for sim-
plicity. Further, different objective functions were
used for various downstream tasks at hand. For
Sentiment Analysis (SA), we used the standard
MLM objective, whereas for Named Entity Recog-
nition (NER) another self-designed objective func-
tion, targeted Masked Language Modeling (TLM),
was used for training the language adapters on the
graph knowledge. The latter objective implies pre-
dicting the masked tokens not included in a natural
language predicates specified in Table 1. Follow-
ing the earlier provided example with the sentence
"kiel is related to eat", only either the word "kiel"
or "eat" would be masked.
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3.1.3 Wikipedia-based Language Adapters
In contrast, the language adapters trained on
Wikipedia data utilize the Wikimedia dataset3 for
selected LRLs. This dataset provides a diverse and
extensive collection of textual information scraped
from Wikipedia for each language of interest. The
number of articles available for each language is as
in Table 2. The adapter architecture for Wikipedia
language adapters is the same as the ConceptNet
language adapters and uses the standard MLM ob-
jective function4.
3.2 Fusion of Language Adapters
In our search of enhancing multilingual LLMs for
LRLs, we extend our investigation to the fusion of
knowledge sources through Adapter Fusion (Pfeif-
fer et al., 2021). The Adapter Fusion mechanism
facilitates the integration of knowledge extracted
from ConceptNet and Wikipedia-based language
adapters, providing a non-destructive method to
combine multiple pre-trained adapters for new
downstream tasks.

An adapter fusion block introduces a set of pa-
rameters that dynamically combines adapters and
the shared pre-trained model at each layer of the
transformer. The fusion layer incorporates Key,
Value, and Query matrices at each layer to learn
contextual activation of each adapter. This dy-
namic combination is achieved through a con-
textual activation mechanism similar to attention
mechanisms (Vaswani et al., 2017).

We activate the fusion layer with two language
adapters for each language - the Wikipedia adapter
and the ConceptNet adapter. This fusion layer is
introduced to allow the model to learn the optimal
way to dynamically compose the knowledge from
different sources. The learnable weights (Query,
Key, and Value) within adapter fusion should en-
able the model to identify and activate the most rel-
evant information from each adapter based on the
context of the task.
3.3 Task Adapters
To fine-tune multilingual LLMs for specific down-
stream tasks such as sentiment analysis (SA) and
named entity recognition (NER), we employ task
adapters stacked on top of language adapters.

3https://huggingface.co/datasets/
wikimedia/wikipedia

4All extracted ConceptNet data used for the language
adapters, along with the language adapters themselves, can be
found on HuggingFace (https://huggingface.co/
DGurgurov).

Language ISO CN Wiki mBERT?
Bulgarian bg 58060 297516 ✓
Indonesian ms 44190 689034 ✓
Nepali ne 7497 33040 ✓
Javanese jv 5082 73311 ✓
Maltese mt 8578 6310
Uyghur ug 3225 5979
Tibetan bo 9532 7090
Sinhala si 3350 20454

Table 2: Number of ConceptNet triples and Wikipedia
articles per language. The last column indicates if the
respective language was included in the mBERT pre-
training data.

The architecture of the task adapters follows
the established design, featuring a stack of task-
specific adapters on the top layers of a multilin-
gual LLM and language adapter. For our study,
we specifically focus on SA and NER, aiming to
evaluate the impact of external knowledge injec-
tion on sentiment classification and entity recogni-
tion in LRLs, as these tasks are the most accessible
in terms of labeled data availability for the selected
languages.

To maintain the knowledge of the pre-trained
model and language adapters during task adap-
tation, we adopt a weight freezing strategy, as
in MAD-X. This involves preventing further fine-
tuning of the weights in the pre-trained model and
language adapters when training the task adapters.
By doing so, we ensure that the foundational
knowledge captured by the language adapters,
whether sourced from Wikipedia, ConceptNet, or
their fusion, remains unchanged.

The task adapters are stacked on top of the lan-
guage adapters, like in the original MAD-X archi-
tecture. This stacking configuration facilitates the
flow of information from the base model and the
external knowledge sources through the language
adapters to the task-specific adapters.
4 Experiments
In this section, we detail the experiments and data
used for conducting the study.
4.1 Languages
The focus languages, classified as low-resource
according to Joshi et al. (2020), are Maltese,
Bulgarian, Indonesian, Nepali, Javanese, Uyghur,
Tibetan, and Sinhala, as presented in Table 2.
These languages serve as a subset of underrep-
resented languages for injecting external knowl-
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Model/Language bg ms ne jv mt ug bo si
Sentiment Analysis (SA)

mBERT 0.860 0.888 0.565 0.728 0.557 0.696 0.687 0.646
mBERT+TA 0.885 0.917 0.565 0.761 0.598 0.734 0.801 0.661

mBERT+Wiki+TA 0.893 0.919 0.584 0.746 0.702 0.706 0.816 0.663
mBERT+CN+TA 0.893 0.915 0.636 0.751 0.658 0.699 0.803 0.653

mBERT+F(CN&Wiki)+TA 0.882 0.906 0.627 0.750 0.662 0.784 0.804 0.689

Named Entity Recognition (NER)
mBERT 0.919 0.934 0.694 0.575 0.595 0.402 0.520 0.197

mBERT+TA 0.917 0.934 0.644 0.564 0.601 0.383 0.575 0.172
mBERT+Wiki+TA 0.915 0.932 0.610 0.543 0.603 0.411 0.576 0.172
mBERT+CN+TA 0.915 0.928 0.649 0.571 0.576 0.403 0.544 0.244

mBERT+F(CN&Wiki)+TA 0.888 0.889 0.713 0.503 0.563 0.401 0.540 0.165

Table 3: Experimental Results. All numbers are averaged over 3 independent runs. The scores in bold are the ones
that outperform both baseline models.

edge through ConceptNet and Wikipedia-based
language adapters. The choice is bounded to
the ConceptNet and downstream tasks data avail-
able for the languages. While Bulgarian, Indone-
sian, Nepali and Javanese data were used for pre-
training mBERT (Devlin et al., 2019), which is the
multilingual LLM we will use for our experiments,
Maltese, Tibetan, Uyghur and Sinhala were not in-
cluded in the pre-training dataset.
4.2 Tasks
Two tasks considered for empirical evaluation
are Sentiment Analysis (SA) and Named En-
tity Recognition (NER). Datasets for SA for all
the languages are acquired from different sources
(Martínez-García et al., 2021; Purwarianti and
Crisdayanti, 2019; Cortis and Davis, 2019; Dingli
and Sant, 2016; Singh et al., 2020; Wongso et al.,
2021; Li et al., 2022; Zhu et al., 2023; Ranathunga
and Liyanage, 2021) and available in our Hug-
gingFace repositories5. For NER, the datasets are
obtained from the WikiANN project (Pan et al.,
2017). All datasets for both SA and NER contain
various amounts of data, depending on language
and task, and described in more detail in Appendix
A. We use the vanilla F1 score (Sokolova et al.,
2006) for SA performance monitoring and the "se-
qeval" F1 score (Nakayama, 2018) for NER.

While these datasets do not allow for a full as-
sessment of the impact of injected graph knowl-
edge on LRLs due to a lack of labeled data for other
tasks, they serve as a good starting point for mea-

5https://huggingface.co/DGurgurov

suring the effects of multilingual graph knowledge
integration on LRLs.

4.3 Baselines

In establishing baseline models for our study,
we fine-tune the widely used mBERT (bert-base-
multilingual-cased) (Devlin et al., 2019) from the
transformer library (Wolf et al., 2020). The focus
is on two baseline scenarios for each task—SA and
NER.

The first baseline involves fine-tuning mBERT
directly on the respective datasets for SA and NER.
We employ common hyperparameters for train-
ing, including a learning rate of {1𝑒 − 4, 2𝑒 − 4},
a batch size of 64, {50, 100} epochs with best-
model-saving, and a dropout rate of {0.5, 0.2}, re-
spectively for each task. The choice of hyper-
parameters is aligned with standard practices in
transformer-based model training and our own ex-
periments on the given datasets.

For the second baseline (mBERT+TA), we in-
troduce a single task adapter on top of mBERT
and fine-tune it on the SA and NER datasets, while
keeping the parameters of mBERT frozen, using
the same hyperparameters as used for the first base-
line configuration. This single adapter architecture
allows us to explore the effectiveness of a more
compact adaptation strategy compared to the tra-
ditional fine-tuning approach.

For all models, the best checkpoint for evalu-
ation is selected based on validation loss perfor-
mance.
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4.4 Language Adapter Training
In this section, we provide technical details of the
training process for language adapters, focusing
on both ConceptNet (CN) and Wikipedia (Wiki)
variants. We use sequential bottleneck architec-
ture without invertible layers for training language
adapters.

We maintain identical hyperparameters during
the training of both Wikipedia and ConceptNet
language adapters: reduction factor 16, learning
rate 5𝑒 − 05, train and eval batch size 16,training
steps 50, 000 for CN and 100, 000 for Wiki. These
hyperparameters ensure a stable and uniform train-
ing environment for both variants. The training
process is monitored through loss and accuracy
metrics on the validation sets.
4.5 Task Adapters Training
In this setting, we stack task-specific adapters on
top of language adapters and train the task adapters
while keeping the language adapters frozen. Af-
ter empirical investigations, we employ similar hy-
perparameters to those used for training the base-
lines: a learning rate of {1𝑒 − 5, 1𝑒 − 4}, a
batch size of 64, {50, 100} epochs with best-model
saving, and a dropout of {0.5, 0.2} for SA and
NER, respectively. The experiment involves stack-
ing the task adapters on top of either Wikipedia-
based (Wiki+TA) or ConceptNet-based (CN+TA)
language adapters, as well as on top of the fusion
of both (F(CN&Wiki)+TA) (Pfeiffer et al., 2021).
4.6 Objective Functions
In this section, we compare different objective
functions used for training language adapters on
graph knowledge and examine their influence on
the performance on the downstream tasks at hand.
We experiment with three objectives for lan-
guage modeling - standard token Masked Lan-
guage Modeling (MLM) (Devlin et al., 2019), full-
word Masked Language Modeling (FLM) (Cui
et al., 2021), and targeted Masked Language Mod-
eling (TLM). MLM and FLM were implemented
as provided by the Transformers library, and TLM
was self-designed. MLM masks individual tokens
with a 15% probability, FLM performs the same
but masks full words, and TLM masks targeted
words which are not part of the natural language
predicates list extracted from ConceptNet with a
50% probability. The implied goal of TLM is to
create the connections between the words of a LRL

to the words of other languages, which might come
in bigger quantities, within the parameters of a
model. The downstream results for all the objec-
tives are as in Table 4. Upon the inspection of the
results, different objective functions were chosen
for SA and NER, according to the outcomes of the
experiments. MLM was utilized as an objective for
the language adapters used for SA, and TLM was
chosen as an objective for the language adapters
used for NER.
5 Results and Discussion
The experimental results, summarized in Table 3,
demonstrate the results of different model config-
urations in improving SA and NER tasks across
LRLs. This section discusses the performance
of each model configuration and provide insights
into the impact of external knowledge through lan-
guage and task adapters on enhancing multilingual
LLMs for LRLs. All scores are an average over
three independent runs.
5.1 Sentiment Analysis
In SA, the performance of various model config-
urations on different languages reveals interesting
insights. First, considering the baseline perfor-
mance of fully fine-tuned mBERT across all lan-
guages, we observe moderate to high F1-scores.
However, when single task-specific adapters are
added to mBERT, we notice consistent improve-
ments across all languages, indicating the effec-
tiveness of using parameter-efficient fine-tuning
techniques for adapting the model for specific lan-
guages, especially in low-resource scenarios. This
confirms the findings by Li and Liang (2021), He
et al. (2021), and Jukić and Snajder (2023).

When incorporating language adapters trained
on CN and Wiki, relatively good results are ob-
served. For nearly all languages, using language
adapters trained on CN and Wiki leads to perfor-
mance gains compared to the baselines-mBERT
and mBERT with a single task adapter. The CN
language adapter boosts the performance for Bul-
garian, Nepalese, Maltese, and Tibetan over both
baselines. As for the Wiki language adapters,
they improve the scores for Bulgarian, Indonesian,
Nepalese, Maltese, Tibetan, and Sinhala when
compared to both mBERT and mBERT with a sin-
gle adapter. The fusion of language adapters yields
improvements over the baselines for Nepalese,
Maltese, Uyghur, Tibetan, and Sinhala.
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Sentiment Analysis (SA)
Configuration Objective bg ms ne jv mt ug bo si

CN+TA
MLM 0.893 0.915 0.636 0.751 0.658 0.699 0.803 0.653
FLM 0.898 0.916 0.575 0.756 0.639 0.685 0.811 0.650
TLM 0.893 0.918 0.625 0.749 0.661 0.638 0.797 0.653

F(CN&Wiki)+TA
MLM 0.882 0.906 0.627 0.750 0.662 0.784 0.804 0.689
FLM 0.877 0.906 0.669 0.745 0.640 0.677 0.806 0.661
TLM 0.884 0.912 0.598 0.742 0.667 0.712 0.816 0.659

Named Entity Recognition (NER)
Configuration Objective bg ms ne jv mt ug bo si

CN+TA
MLM 0.915 0.932 0.657 0.603 0.471 0.341 0.559 0.196
FLM 0.918 0.930 0.626 0.578 0.476 0.398 0.572 0.242
TLM 0.915 0.928 0.649 0.571 0.576 0.403 0.544 0.244

F(CN&Wiki)+TA
MLM 0.889 0.901 0.670 0.504 0.540 0.373 0.514 0.261
FLM 0.887 0.900 0.688 0.496 0.580 0.387 0.509 0.250
TLM 0.888 0.889 0.713 0.503 0.563 0.401 0.540 0.165

Table 4: Comparison of various objective functions used for training ConceptNet based Language Adapters-Token
Masked Language Modeling (MLM), Full-Word Masked Language Modeling (FLM), and Targeted Masked Lan-
guage Modeling (TLM). Maximum score per configuration in bold. SA results are based on MLM, and NER
results are based on TLM.

5.2 Named Entity Recognition
In NER, the performance trends across different
model configurations and languages exhibit sim-
ilar patterns to SA but with some notable differ-
ences. mBERT demonstrates moderate to high F-
1 scores across languages, indicating its ability to
recognize named entities to some extent. However,
the addition of single task-specific adapters leads
to marginal improvements in only some cases,
suggesting that named entity recognition might
not benefit significantly from single task-specific
adapter fine-tuning compared to SA. The improve-
ments are only observed for Maltese and Tibetan.

When incorporating language adapters, particu-
larly those trained on CN and Wiki, we observe
mixed results. Utilizing CN language adapters
leads to slight improvements over the baselines
only in the case of Uyghur and Sinhala. Wiki lan-
guage adapters, on the other hand, give improve-
ments over both baseline models only for Mal-
tese, Uyghur, and Tibetan. The combination of CN
and Wiki adapters shows positive impact only on
Nepalese.
5.3 Effects of Data Quantity and Language

Presence in LLM pre-training Data
The data quantity of external data sources might
play a crucial role in the performance of language
adapters and their impact on downstream tasks.

Looking at the data quantities provided in Table 2,
languages like Maltese, Nepali, Uyghur, Tibetan,
and Sinhala have notably fewer CN and Wiki
resources compared to languages like Bulgarian
and Indonesian. Despite this, language adapters
trained on these limited resources still contribute to
performance enhancements in SA and NER tasks
for these languages compared to the baseline mod-
els. This indicates the effectiveness of leverag-
ing even small amounts of external knowledge for
adapting LLMs to low-resource languages.

Another interesting observation is the perfor-
mance improvement in languages like Maltese,
Uyghur, Tibetan, and Sinhala, which are not in-
cluded in the mBERT pre-training data. This em-
phasizes that the method might be more useful
for languages absent in the pre-training corpus as
mBERT benefits from this adaptation using task-
specific and language adapters, allowing them to
effectively learn from external knowledge sources
and adapt to new languages.

5.4 Take-aways
The experimental results shed light on the ef-
fectiveness of integrating graph knowledge from
linguistic ontologies into multilingual LLMs via
adapters for LRLs. Across both SA and NER tasks,
we observe that single task-specific adapters gener-
ally lead to performance improvements, emphasiz-
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ing the benefits of parameter-efficient fine-tuning
for specific tasks (Li and Liang, 2021; He et al.,
2021; Jukić and Snajder, 2023).

In turn, the impact of language adapters trained
on external knowledge sources such as CN and
Wiki varies across languages and tasks. CN-based
adapters generally show promise in enhancing SA
but not NER. Wiki language adapters are also more
beneficial for SA than NER.

The combination of both ConceptNet and
Wikipedia adapters through the Adapter Fusion
demonstrates competitive performance, in some
cases outperforming individual adapters alone,
suggesting that leveraging diverse knowledge
sources can effectively enhance the capabilities of
multilingual LLMs for low resource scenarios.

Our findings underscore the partial effectiveness
of our method in leveraging external graph knowl-
edge to enhance SA and NER tasks for individual
LRLs. This highlights the need for further research
to develop more effective strategies for adapting
multilingual LLMs to low-resource contexts us-
ing various types of knowledge. Further, the re-
sults emphasize that each LRL needs an individual
approach when building the dedicated NLP tools,
where some languages might benefit from a certain
method and the others might not need it.

6 Conclusion
In this study, we investigated the integration
of structured graph knowledge into multilingual
LLMs for LRLs using language adapters and task-
specific adapters. We explored the use of Con-
ceptNet and Wikipedia data for training language
adapters, and we examined Adapter Fusion as a
method to combine knowledge sources. Addition-
ally, we implemented task adapters for fine-tuning
LLMs for specific downstream tasks such as Sen-
timent Analysis (SA) and Named Entity Recogni-
tion (NER).

Our experiments revealed insights into the effec-
tiveness of different model configurations in im-
proving SA and NER tasks performance across
LRLs. We observed a positive effect of incorporat-
ing external graph and textual knowledge through
language adapters for a number of languages, in-
cluding Bulgarian, Indonesian, Maltese, Nepali,
Uyghur, Tibetan, and Sinhala, some of which did
not possess extensive data for training both lan-
guage adapters and task adapters. Fusion of knowl-
edge sources yielded improvements in less cases,

suggesting the need for further refinement in this
area.

Overall, our findings underscore the importance
of parameter-efficient fine-tuning methods and the
potential benefits of leveraging external knowledge
for enhancing multilingual LLMs in low resource
contexts. However, there are limitations to our ap-
proach, including the choice of objective functions
and the need for tasks better suited to leverage ex-
ternal knowledge.
Limitations and Future Work
Our approach shows several limitations that should
be taken into consideration in future investiga-
tions aiming to integrate graph knowledge into
multilingual LLMs for enhancing LRL perfor-
mance. Firstly, the choice of objective function
employed for learning graph knowledge plays a
critical role in effectively acquiring underlying
knowledge. The objectives we explored may not
be optimally suited for this purpose, highlighting
the need for more tailored approaches to graph
knowledge acquisition. Secondly, the tasks we se-
lected for evaluating the effectiveness of knowl-
edge injection may not inherently require the type
of knowledge provided by graph sources. Future
work should explore tasks that better leverage the
acquired knowledge. Thirdly, our study was lim-
ited to a subset of LRLs, and expanding the scope
to include a broader range of languages would
provide a more comprehensive assessment of our
approach’s effectiveness. Lastly, larger models
should be explored as backbones to build upon.
Acknowledgments
We are thankful to the anonymous reviewers for
their insightful comments and suggestions. This
research was supported by the EU-funded LT-
Bridge project, GA No. 952194; and the EU-
funded project DisAI - Improving scientific excel-
lence and creativity in combating disinformation
with artificial intelligence and language technolo-
gies, GA No. 101079164.

References
Mikel Artetxe, Sebastian Ruder, and Dani Yogatama.

2020. On the cross-lingual transferability of mono-
lingual representations. In Proceedings of the 58th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 4623–4637, Online. Asso-
ciation for Computational Linguistics.

71

https://doi.org/10.18653/v1/2020.acl-main.421
https://doi.org/10.18653/v1/2020.acl-main.421


Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440–
8451, Online. Association for Computational Lin-
guistics.

Keith Cortis and Brian Davis. 2019. A social opin-
ion gold standard for the Malta government budget
2018. In Proceedings of the 5th Workshop on Noisy
User-generated Text (W-NUT 2019), pages 364–369,
Hong Kong, China. Association for Computational
Linguistics.

Yiming Cui, Wanxiang Che, Ting Liu, Bing Qin, and
Ziqing Yang. 2021. Pre-training with whole word
masking for chinese bert. IEEE/ACM Transac-
tions on Audio, Speech, and Language Processing,
29:3504–3514.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Alexiei Dingli and Nicole Sant. 2016. Sentiment anal-
ysis on maltese using machine learning. In Proceed-
ings of The Tenth International Conference on Ad-
vances in Semantic Processing (SEMAPRO 2016),
pages 21–25.

Viktor Hangya, Hossain Shaikh Saadi, and Alexander
Fraser. 2022. Improving low-resource languages in
pre-trained multilingual language models. In Pro-
ceedings of the 2022 Conference on Empirical Meth-
ods in Natural Language Processing, pages 11993–
12006, Abu Dhabi, United Arab Emirates. Associa-
tion for Computational Linguistics.

Ruidan He, Linlin Liu, Hai Ye, Qingyu Tan, Bosheng
Ding, Liying Cheng, Jiawei Low, Lidong Bing, and
Luo Si. 2021. On the effectiveness of adapter-based
tuning for pretrained language model adaptation. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 2208–
2222, Online. Association for Computational Lin-
guistics.

Yifan Hou, Wenxiang Jiao, Meizhen Liu, Carl
Allen, Zhaopeng Tu, and Mrinmaya Sachan. 2022.
Adapters for enhanced modeling of multilingual
knowledge and text. In Findings of the Association
for Computational Linguistics: EMNLP 2022, pages
3902–3917.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly.
2019. Parameter-efficient transfer learning for nlp.
In International Conference on Machine Learning,
pages 2790–2799. PMLR.

Pratik Joshi, Sebastin Santy, Amar Budhiraja, Kalika
Bali, and Monojit Choudhury. 2020. The state and
fate of linguistic diversity and inclusion in the NLP
world. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
6282–6293, Online. Association for Computational
Linguistics.

Josip Jukić and Jan Snajder. 2023. Parameter-efficient
language model tuning with active learning in low-
resource settings. In Proceedings of the 2023 Con-
ference on Empirical Methods in Natural Language
Processing, pages 5061–5074, Singapore. Associa-
tion for Computational Linguistics.

Anne Lauscher, Olga Majewska, Leonardo F. R.
Ribeiro, Iryna Gurevych, Nikolai Rozanov, and
Goran Glavaš. 2020. Common sense or world
knowledge? investigating adapter-based knowledge
injection into pretrained transformers. In Proceed-
ings of Deep Learning Inside Out (DeeLIO): The
First Workshop on Knowledge Extraction and Inte-
gration for Deep Learning Architectures, pages 43–
49, Online. Association for Computational Linguis-
tics.

Siyu Li, Kui Zhao, Jin Yang, Xinyun Jiang, Zhengji
Li, and Zicheng Ma. 2022. Senti-exlm: Uyghur
enhanced sentiment analysis model based on xlm.
Electronics Letters, 58(13):517–519.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 4582–
4597, Online. Association for Computational Lin-
guistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining ap-
proach. CoRR, abs/1907.11692.

Antonio Martínez-García, Toni Badia, and Jeremy
Barnes. 2021. Evaluating morphological typology
in zero-shot cross-lingual transfer. In Proceedings of
the 59th Annual Meeting of the Association for Com-
putational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 3136–3153.

George A Miller. 1995. Wordnet: a lexical database for
english. Communications of the ACM, 38(11):39–
41.

72

https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/D19-5547
https://doi.org/10.18653/v1/D19-5547
https://doi.org/10.18653/v1/D19-5547
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2022.emnlp-main.822
https://doi.org/10.18653/v1/2022.emnlp-main.822
https://doi.org/10.18653/v1/2021.acl-long.172
https://doi.org/10.18653/v1/2021.acl-long.172
https://doi.org/10.18653/v1/2020.acl-main.560
https://doi.org/10.18653/v1/2020.acl-main.560
https://doi.org/10.18653/v1/2020.acl-main.560
https://doi.org/10.18653/v1/2023.emnlp-main.307
https://doi.org/10.18653/v1/2023.emnlp-main.307
https://doi.org/10.18653/v1/2023.emnlp-main.307
https://doi.org/10.18653/v1/2020.deelio-1.5
https://doi.org/10.18653/v1/2020.deelio-1.5
https://doi.org/10.18653/v1/2020.deelio-1.5
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2021.acl-long.353
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692


Benjamin Muller, Antonios Anastasopoulos, Benoît
Sagot, and Djamé Seddah. 2021. When being un-
seen from mBERT is just the beginning: Handling
new languages with multilingual language models.
In Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 448–462, Online. Association for Computa-
tional Linguistics.

Hiroki Nakayama. 2018. seqeval: A python framework
for sequence labeling evaluation. Software available
from https://github.com/chakki-works/seqeval.

Xiaoman Pan, Boliang Zhang, Jonathan May, Joel
Nothman, Kevin Knight, and Heng Ji. 2017. Cross-
lingual name tagging and linking for 282 languages.
In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 1946–1958, Vancouver,
Canada. Association for Computational Linguistics.

Jonas Pfeiffer, Naman Goyal, Xi Lin, Xian Li, James
Cross, Sebastian Riedel, and Mikel Artetxe. 2022.
Lifting the curse of multilinguality by pre-training
modular transformers. In Proceedings of the 2022
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 3479–3495, Seattle,
United States. Association for Computational Lin-
guistics.

Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé,
Kyunghyun Cho, and Iryna Gurevych. 2021.
AdapterFusion: Non-destructive task composi-
tion for transfer learning. In Proceedings of the
16th Conference of the European Chapter of the
Association for Computational Linguistics: Main
Volume, pages 487–503, Online. Association for
Computational Linguistics.

Jonas Pfeiffer, Ivan Vulić, Iryna Gurevych, and Se-
bastian Ruder. 2020. MAD-X: An Adapter-Based
Framework for Multi-Task Cross-Lingual Transfer.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 7654–7673, Online. Association for Computa-
tional Linguistics.

Ayu Purwarianti and Ida Ayu Putu Ari Crisdayanti.
2019. Improving bi-lstm performance for indonesian
sentiment analysis using paragraph vector. In 2019
International Conference of Advanced Informat-
ics: Concepts, Theory and Applications (ICAICTA),
pages 1–5. IEEE.

Surangika Ranathunga and Isuru Udara Liyanage.
2021. Sentiment analysis of sinhala news comments.
Transactions on Asian and Low-Resource Language
Information Processing, 20(4):1–23.

Oyesh Mann Singh, Sandesh Timilsina, Bal Krishna
Bal, and Anupam Joshi. 2020. Aspect based abu-
sive sentiment detection in nepali social media texts.
In 2020 IEEE/ACM International Conference on

Advances in Social Networks Analysis and Mining
(ASONAM), pages 301–308.

Push Singh, Thomas Lin, Erik T Mueller, Grace Lim,
Travell Perkins, and Wan Li Zhu. 2002. Open
mind common sense: Knowledge acquisition from
the general public. In On the Move to Mean-
ingful Internet Systems 2002: CoopIS, DOA, and
ODBASE: Confederated International Conferences
CoopIS, DOA, and ODBASE 2002 Proceedings,
pages 1223–1237. Springer.

Marina Sokolova, Nathalie Japkowicz, and Stan Sz-
pakowicz. 2006. Beyond accuracy, f-score and roc:
a family of discriminant measures for performance
evaluation. In Australasian joint conference on arti-
ficial intelligence, pages 1015–1021. Springer.

Robyn Speer, Joshua Chin, and Catherine Havasi. 2017.
Conceptnet 5.5: An open multilingual graph of gen-
eral knowledge. In Proceedings of the AAAI confer-
ence on artificial intelligence, volume 31.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. CoRR, abs/1706.03762.

Giorgos Vernikos and Andrei Popescu-Belis. 2021.
Subword mapping and anchoring across languages.
In Findings of the Association for Computational
Linguistics: EMNLP 2021, pages 2633–2647, Punta
Cana, Dominican Republic. Association for Compu-
tational Linguistics.

Denny Vrandečić and Markus Krötzsch. 2014. Wiki-
data: a free collaborative knowledgebase. Commu-
nications of the ACM, 57(10):78–85.

Ruize Wang, Duyu Tang, Nan Duan, Zhongyu Wei, Xu-
anjing Huang, Jianshu Ji, Guihong Cao, Daxin Jiang,
and Ming Zhou. 2021. K-Adapter: Infusing Knowl-
edge into Pre-Trained Models with Adapters. In
Findings of the Association for Computational Lin-
guistics: ACL-IJCNLP 2021, pages 1405–1418, On-
line. Association for Computational Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language process-
ing. In Proceedings of the 2020 Conference on Em-
pirical Methods in Natural Language Processing:
System Demonstrations, pages 38–45, Online. Asso-
ciation for Computational Linguistics.

Wilson Wongso, David Samuel Setiawan, and Derwin
Suhartono. 2021. Causal and masked language mod-
eling of javanese language using transformer-based
architectures. In 2021 International Conference on
Advanced Computer Science and Information Sys-
tems (ICACSIS), pages 1–7. IEEE.

73

https://doi.org/10.18653/v1/2021.naacl-main.38
https://doi.org/10.18653/v1/2021.naacl-main.38
https://doi.org/10.18653/v1/2021.naacl-main.38
https://github.com/chakki-works/seqeval
https://github.com/chakki-works/seqeval
https://doi.org/10.18653/v1/P17-1178
https://doi.org/10.18653/v1/P17-1178
https://doi.org/10.18653/v1/2022.naacl-main.255
https://doi.org/10.18653/v1/2022.naacl-main.255
https://doi.org/10.18653/v1/2021.eacl-main.39
https://doi.org/10.18653/v1/2021.eacl-main.39
https://doi.org/10.18653/v1/2020.emnlp-main.617
https://doi.org/10.18653/v1/2020.emnlp-main.617
https://doi.org/10.1109/ASONAM49781.2020.9381292
https://doi.org/10.1109/ASONAM49781.2020.9381292
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
https://doi.org/10.18653/v1/2021.findings-emnlp.224
https://doi.org/10.18653/v1/2021.findings-acl.121
https://doi.org/10.18653/v1/2021.findings-acl.121
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6


Shijie Wu and Mark Dredze. 2020. Are all languages
created equal in multilingual BERT? In Proceedings
of the 5th Workshop on Representation Learning for
NLP, pages 120–130, Online. Association for Com-
putational Linguistics.

Linting Xue, Noah Constant, Adam Roberts, Mihir
Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua,
and Colin Raffel. 2021. mT5: A massively mul-
tilingual pre-trained text-to-text transformer. In
Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 483–498, Online. Association for Computa-
tional Linguistics.

Yulei Zhu, Baima Luosai, Liyuan Zhou, Nuo Qun, and
Tashi Nyima. 2023. Research on sentiment analy-
sis of tibetan short text based on dual-channel hy-
brid neural network. In 2023 IEEE 4th Interna-
tional Conference on Pattern Recognition and Ma-
chine Learning (PRML), pages 377–384.

Appendix
A SA and NER Data Details
Table 5 and 6 provide a more detailed description
of the datasets used for training task adapters.

Language ISO code Source #pos #neg #train #val #test
Bulgarian bg Martínez-García et al., 2021 6652 1271 5412 838 1673
Indonesian ms Purwarianti and Crisdayanti, 2019 7319 4005 7926 1132 2266
Maltese mt Cortis and Davis, 2019; Dingli and Sant, 2016 271 580 595 85 171
Nepali ne Singh et al., 2020 680 1019 1189 255 255
Javanese jv Wongso et al., 2021 12500 12500 17500 5025 2475
Uyghur ug Li et al., 2022 2450 353 1962 311 530
Tibetan bo Zhu et al., 2023 5006 5000 7004 1501 1501
Sinhala si Ranathunga and Liyanage, 2021 2487 2516 3502 750 751

Table 5: Sentiment Analysis Data Details

Language ISO code #train #val #test
Bulgarian bg 20000 10000 10000
Indonesian ms 20000 1000 1000
Maltese mt 100 100 100
Nepali ne 100 100 100
Javanese jv 100 100 100
Uyghur ug 100 100 100
Tibetan bo 100 100 100
Sinhala si 100 100 100

Table 6: Named Entity Recognition Data Details
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Abstract

Large-scale knowledge graph construction re-
mains infeasible since it requires significant
human-expert involvement. Further complica-
tions arise when building graphs from domain-
specific data due to their unique vocabular-
ies and associated contexts. In this work, we
demonstrate the ability of open-source large
language models (LLMs), such as Llama-2 and
Llama-3, to extract facts from domain-specific
Maintenance Short Texts (MSTs). We em-
ploy an approach which combines ontology-
guided triplet extraction and in-context learn-
ing. By using only 20 semantically similar ex-
amples with the Llama-3-70B-Instruct model,
we achieve performance comparable to previ-
ous methods that relied on fine-tuning tech-
niques like SpERT and REBEL. This indi-
cates that domain-specific fact extraction can
be accomplished through inference alone, re-
quiring minimal labeled data. This opens up
possibilities for effective and efficient semi-
automated knowledge graph construction for
domain-specific data.

1 Introduction

Knowledge Graphs (KGs) have emerged as a pow-
erful tool for representing complex relationships be-
tween entities across various domains and in aiding
in various tasks (e.g., in search, recommendation
systems, and others) (Hogan et al., 2021).

Constructing a KG presents several challenges.
The process requires extracting structured infor-
mation from unstructured data, such as text, us-
ing Information Extraction (IE) techniques. Much
research has focused on large, publicly available
general-purpose KGs like DBPedia, YAGO, or
Wikidata, as well as on domain-specific KGs in
areas like medicine (Li et al., 2020) or railway
safety (Liu et al., 2021). More recent studies have
explored the use of KGs to support industrial main-
tenance activities (Hossayni et al., 2020; Stewart
et al., 2022). However, building a maintenance

KG involves overcoming several additional obsta-
cles: off-the-shelf Natural Language Processing
solutions often fail to handle domain-specific data
adequately, existing benchmarks do not align with
industrial realities, the costs of annotating domain-
specific data can be prohibitive, and the typically
low volume of domain-specific data makes it chal-
lenging to train robust models that generalize well
to new instances (Brundage et al., 2021; Dima
et al., 2021). Additional difficulties arise when data
evolves (e.g., triggering changes in the label space)
necessitating computationally-expensive retraining
or fine-tuning of models in traditional approaches.

In-context-learning (Dong et al., 2022)
and ontology-guided KG construction from
Text2KGBench (Mihindukulasooriya et al., 2023)
offer the ability to overcome some of these
challenges. Both these methods are dynamic and
adaptable to changes in the ontology or label
space without the need for re-training. In-context
learning does not require large collection of
annotated labeled data upfront but only at time
of inference. Ontology-guided KG construction
allows for seamless changes to the ontology if
desired. This makes these methods particularly
useful in domains where ontologies evolve over
time.

Recently, Large Language Models (LLMs) have
demonstrated remarkable capabilities in the ability
to perform information extraction (Xu et al., 2023).
However, most of this work focuses on general do-
main datasets, e.g. ACE datasets 12, CoNLL2003
(Tjong Kim Sang and De Meulder, 2003) or Ta-
cRED (Zhang et al., 2017) and little work exists
on specialized domain-specific datasets. An anno-
tated dataset of fine-grained schema and corpora
for information extraction of Maintenance Short
Texts (MST) recently became publicly available:

1https://catalog.ldc.upenn.edu/LDC2005T09
2https://catalog.ldc.upenn.edu/LDC2006T06
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MaintIE (Bikaun et al., 2024a).
In this work, we show how LLMs can assist

with the knowledge graph construction on domain-
specific texts. Our contributions are as follows:

1. We evaluate the LLama-2 (Touvron et al.,
2023a) and LLama-33 family models on
ontology-guided KG construction using in-
context-learning on a dataset of Maintenance
Short Texts (Bikaun et al., 2024a).

2. We show that, using only a few in-context
examples, Llama-3-70B-Instruct can extract
fact extracts comparable to previous state-of-
the-art with a near-zero hallucination rate. We
find that for other models of the Llama-family,
hallucinations come into play where generated
triples contain objects/subjects from (mostly)
in-context examples.

3. We study the effects of choosing certain token
prediction penalties and the effects on halluci-
nations. We show that by carefully selecting
these parameters can minimize the number of
hallucinations, but that the wrong settings can
stimulate this behaviour.

4. Finally, we show that the pruning of such hal-
lucinations is relatively easy and increases
performance (in both precision and F1) by a
large margin. Performing this pruning makes
smaller models such as Llama-3-8B a suitable
alternative.

Our work implies that LLMs are well-suited for
building domain-specific knowledge graphs, even
with limited supervised data. In addition, if large-
scale data annotation is required, LLMs can be
combined with a human-in-the-loop process that
pre-annotates data at an incremental rate. Our code,
prompts and data are publicly available4.

2 Task description

In this work, we consider the task of LLM-assisted
KG construction as automatically extracting graph
structured information (subject, object and (direc-
tional) relation) from unstructured text data. In line
with Text2KGBench, we also regard this task as
"Given an ontology and text corpora, the goal is to
construct prompts to instruct the model to extract
facts relevant to the ontology". An example of how
this is setup in the prompt is given in Figure 1.

3https://ai.meta.com/blog/meta-llama-3/
4https://github.com/zeno17/MaintIE2KGBench

3 Methodology

3.1 Data

MaintIE (Bikaun et al., 2024a) provides a collec-
tion of Maintenance Short Texts (MST’s) which
encapsulates information from Maintenance Work
Orders (MWOs) in a lexically-normalised concise
format (Bikaun et al., 2024b). It comes in 2 an-
notation versions: 1) Fine-grained, spanning 224
entity classes or 2) Course-grained, spanning 6
entity classes. The fine-grained version is the re-
sult of pure intensive expert annotation, and the
course-grained version was created by performing
pre-annotation using fine-tuned SpERT (Eberts and
Ulges, 2019) which was followed by expert correc-
tion. An example text with corresponding triplets
is provided below.

Text:
cabin lights require replacing
Ground truth triples:
hasPart(cabin,lights)
hasAgent(require,lights)
hasPatient(require,replacing)

As both versions come with the same 6 rela-
tion types, we opt for the course-grained data as
it is more numerous (7.000 compared to 1.067).
From this, we filter out MST’s that don’t have
actual triples annotated to them. This follows
Text2KGBench which 1) also only uses triple-
containing texts and 2) whose evaluation frame-
work is not equipped to measure performance over
non-triple containing texts. This only filters out
272 examples or 3.9% of the data.

From the remaining 6.728 examples, we create
a 75/25 train-test split (or 5.046/1.682 examples re-
spectively). During the experiments, the examples
given to the model in the context are drawn from
the train split, and performance is measured over
the held-out test-split. More on this is covered in
Subsection 3.5.

3.2 Prompt

For the prompting, we include a basic instruction,
an ontology, k examples and the test sentence. The
prompt template is provided in Figure 1. This dif-
fers from Text2KGBench as follows: 1) we feed
multiple examples to model, and 2) we do not pro-
vide relation constraints to the model (which enti-
ties can have which relations). We do not provide
the relation constraints as this takes a considerable
amount of space in the context-window of the LLM.
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Figure 1: Used prompt template

While this space is limited for the course-grained
data (5 entity types, 6 relations), the amount of
space required can grow intractably for larger on-
tologies (e.g. the fine-grained dataset has 224 entity
types and 6 relations). We consider this an avenue
for future work.

3.3 Metrics

For evaluation Text2KGBench focuses on three di-
mensions: 1) fact extraction performance 2) ontol-
ogy conformance, and 3) hallucination rate. Below,
we provide brief explanations of the evaluation met-
rics, where we deviate from them and why.

1. Fact Extraction: From the generated text,
triplets of the form "relation(subject, object)"
are extracted using regular expressions. The
extracted triples are then compared to the
set of ground truth triples, and performance
is measured using Precision, Recall and F1-
score. Any triple that is not an exact match for
relation type, object or subject is considered
incorrect.

2. Ontology Conformance: Is the predicted
relation in the provided ontology (provided
in Figure 1). In this work, we limit our-
selves to the relations: [’contains’, ’has-
Part’, ’hasAgent’, ’hasPatient’, ’hasProperty’,
’isA’].

3. Hallucination rate: Whether the LLM pre-
dicts relations that are not in the ontology,
or objects/subjects that are not in the pro-
vided text. As Text2KGBench introduces two
benchmark datasets based on Wikidata and
DBpedia. This data carries more linguistically
variation for the entities, and therefore they
use a loose regime where objects/subjects are
matched through stemmed words (using the
Porter stemming algorithm (Van Rijsbergen
et al., 1980)). In our work, we only count ex-
act matches as correct because the MaintIE
data is of limited vocabulary variation. We
only consider exact matches and anything out-
side of that we consider a hallucination. For
example, if the word "filter" is in the target
sentence, a triple containing "filters" as an ob-
ject/subject is considered a hallucination. This
is important in a maintenance setting as, for
example, having a singular or multiple com-
ponent carries different semantics or may not
even possible (e.g. if a machine only has the
component once).

3.4 Models

LLMs are neural-inspired models that are trained
on immense amounts of data. While initially de-
signed for machine translation (Vaswani et al.,
2017), adaptations such as encoder-only BERT (De-
vlin et al., 2018) or decoder-only GPT (Radford
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and Narasimhan, 2018) found use for a plethora
of tasks. Recently, GPT-based models have been
found to be the most versatile and flexible through
its generative nature, including for generative infor-
mation extraction (Xu et al., 2023).

LLaMa (Touvron et al., 2023a,b)5, is an open-
source LLM, and comes in different sizes and both
only pre-trained and instruction-tuned versions.

In this work, we will assess several releases of
the Llama family and assess their capabilities of
performing fact extraction in the maintenance do-
main. We consider the following versions:

1. Llama-2-7B6

2. Llama-2-70B7

3. Llama-3-8B8

4. Llama-3-8B-Instruct9

5. Llama-3-70B10

6. Llama-3-70B-Instruct11

3.5 In-Context Learning
In-context-learning (ICL) is a technique of provid-
ing an LLM with a few examples to create a demon-
stration context. It then combines a query question
with this context to form a prompt, which is fed
into a language model for prediction. The model is
expected to discern the pattern in the demonstration
and make the appropriate prediction (Dong et al.,
2022).

The model’s context length is a hard limit on
how many examples can be used, and the num-
ber of examples that necessary or effective can
differ per model. In the context of maintenance
data, availability is an important bottleneck as hu-
man annotated data is time-consuming and expen-
sive. For this reason, we will experiment how
many examples the model needs to be provided
with in the context to do an effective fact extrac-
tion. For every example in the test set, semanti-
cally similar examples are retrieved using sentence-
transformers12 (Reimers and Gurevych, 2019) and
the all-mpnet-base-v2 model13. In Text2KGBench,
the models are only provided a single example

5https://ai.meta.com/blog/meta-llama-3/
6https://huggingface.co/meta-llama/Llama-2-7b
7https://huggingface.co/meta-llama/Llama-2-70b
8https://huggingface.co/meta-llama/Meta-Llama-3-8B
9https://huggingface.co/meta-llama/Meta-Llama-3-8B-

Instruct
10https://huggingface.co/meta-llama/Meta-Llama-3-70B
11https://huggingface.co/meta-llama/Meta-Llama-3-70B-

Instruct
12https://github.com/UKPLab/sentence-transformers
13https://huggingface.co/sentence-transformers/all-mpnet-

base-v2

(k=1). In our case, we will experiment with k ∈
{1, 2, 3, 5, 10, 20, 50, 100, 150} except for Llama-
2 where 100 and 150 examples are not possible
due to hitting the context length limit. Still, this
is a high number of examples which is possible
largely because the maintenance short text data is
of limited length.

3.6 Token prediction penalties

Text2KGBench demonstrated that ontology-guided
information extraction suffers from hallucinations.
This means triples are generated where the relation
does not conform to the ontology or where subjects
and objects that were not in the test sentence in the
first place. During early experimentation, we found
that the used LLM’s tend to do (among others) the
following: 1) repeat the same tokens until maxi-
mum sequence length was reached, and 2) provide
lengthy explanations despite only asking for triples,
including the generation of code.

For our LLM implementation, the parameters
"frequency penalty" and "presence penalty" can
be used. These change the logits if the LLM uses
same tokens repeatedly or encourages it to use dif-
ferent tokens than already seen. Using Llama-3-8B
(for computational reasons) we experiment with
different settings in the full available range ([-2, 2])
to see how restricting the output logits affects the
LLMs performance. As ontology conformance is
generally high (and thus relation hallucination rate
low), we look at the averaged hallucination rate of
the object and subject. From our preliminary find-
ings, we decided to run all other experiments with
a frequency penalty of 0 and a presence penalty of
-1.

3.7 Hallucination types

Next, we inspect some intricacies of the halluci-
nations that we found. We select the predictions
from Llama-3-8B on 10 examples with frequency
penalty 0, and presence penalty 2, which has the
highest combined subject-object hallucination rate
in our work (0.22 and 0.21 respectively). How-
ever, a solid inspection framework grows fast in
complexity considering hallucination intricacies,
let alone proving direct causality. We scope our
approach in order to provide some quantitative
inspection, and leave a hallucination inspection
framework for future work. In the end, we limit
ourselves to the following:

1. We only expand upon subject/object halluci-
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nations for simplicity.

2. We only consider subjects consisting of 1
word (e.g. "replace" but not "change out" or
"chain hoist) due to difficulties with proper
stemming.

3. We adopt an assumed hierarchy of errors
of most probable cause of the hallucination,
which is as follows (in order):

(a) The stemmed subject/object is in a
stemmed sentence (this matches e.g. re-
place and replacing).

(b) The subject/object is in one of the exam-
ples provided to the LLM.

(c) The stemmed subject/object is in one of
the stemmed examples.

3.8 Hallucination-filtered performance

Lastly, we look at what the fact extraction perfor-
mance can be without hallucinations. If a triple
contains a relation not in the provided ontology,
or a subject/object which is not in the original in-
put string, then it simply cannot be a factual triple.
These conditions can be verified automatically and
triples that violate them filtered from the fact ex-
traction process. This leads to less produced triples,
but the remaining extracted triples should match
better with the ground truth and thus increase pre-
cision.

4 Results

4.1 Fact Extraction

Figure 2 shows how effective each LLM is at ob-
taining correct facts and hallucination rate versus
the number of examples. It can be seen that there
are stark differences between model performance
with both highest and lowest performance com-
ing from the instruction-tuned and untuned Llama-
3-70B respectively. Conversely, for Llama-3-8B
instruction-tuning seems to decrease performance
across the board. In addition, Llama-3-8B-Instruct
has a visibly lower ontology conformance com-
pared to the other models which all adhere to
the provided ontology systematically. Eventually,
Llama-3-70B-Instruct obtains 0.77 F1-score when
given 150 examples. For both versions of Llama-3-
8B, further increasing the number of examples to
a 150 hurts performance compared to fewer exam-
ples. The scores of k=20 (which we consider a low
amount) are also displayed in Table 1.

4.2 Token prediction penalties

Figure 3 shows how Llama-3-8B’s performance
varies when tuning different parameters as de-
scribed in Subsection 3.6. It can be seen that shift-
ing frequency penalty and token penalty leads to
an optimal fact extraction performance on an off-
diagonal line. In addition, the lower right triangle
is the generally lower performing side in terms of
fact extraction. Conversely, this lower performance
is combined with an increasing hallucination rate.

4.3 Ontology conformance & Hallucination
rate

Text2KGBench reports that ontology conformance
is consistently high across a variety of ontologies,
which resonates with our results. In Figure 2 the
ontology conformance is near 1 for all models, with
the exception to this are Llama-2-7b and Llama-3-
8B-Instruct where we see a decline throughout the
number of examples. This means that the LLM’s
generally adhere to the provided Ontology, at a
much higher rate found for the Text2KGBench
benchmark.

Next, we look at how performance and hallu-
cination progresses as the number of in-context
examples increases in Figure 4. For Llama-3-8B-
Instruct, the hallucination rate first increases follow
by stabilization. Both Llama-3-8B and Llama-3-
8B-Instruct suffer from a the hallucination rate and
this is relatively stable as the number of examples
increases. On the contrary, Llama-3-70B-Instruct
does not suffer from this problem and sees a steady
performance increase while the hallucination rate
actually goes down. Thus, this seems to be a model-
dependent issue.

4.4 Hallucination types

From inspection, we found that most subject/object
hallucinations conform to the following scenarios:
1) objects/subjects contain tokens from the exam-
ples provided in the context, 2) objects/subjects
being changed from plural to singular or vice versa,
3) object/subject verbs having active instead or pas-
sive form or vice versa. In some cases, these obser-
vations are not mutually exclusive for a single sen-
tence. For example: if a test sentence contains "re-
placed", an extracted triple has a subject ’replace’,
and the word "replace" occurs in an example, then
both 1) and 3) are true simultaneously. For rela-
tion hallucinations, the LLM sometimes used the
provided ontology concepts as a relation (e.g. Phys-
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Figure 2: Left: Per-model performance on fact extraction. Right: Ontology conformance. Higher is better. Scale is
logarithmic

Model P (↑) R (↑) F1 (↑) OC (↑) SH (↓) RH (↓) OH (↓)

REBEL (MaintIE) - - 0.77 - - - -
Llama-2-7b-hf 0.31 0.26 0.27 1.00 0.03 0.00 0.01
Llama-3-8B 0.62 0.70 0.63 1.00 0.03 0.00 0.03
Llama-3-8B-Instruct 0.48 0.70 0.53 0.98 0.08 0.02 0.09
Llama-3-70B 0.04 0.04 0.04 1.00 0.00 0.00 0.00
Llama-3-70B-Instruct 0.67 0.74 0.69 1.00 0.00 0.00 0.01

Table 1: Per-Model Fact Extraction Performance, Ontology Conformance and Hallucination rate. Scores reported are
Precision, Recall, F1-score, Ontology Conformance, Subject Hallucination, Relation Hallucination and Objection
Hallucination. Number of examples (k) is 20. For P, R, F1 and OC higher is better (↑). For SH, RH and OH lower is
better (↓).

icalObject, Process, etc.), or it combined them into
new relations (e.g. the relation hasProcess from the
concept Process, hasState from State, etc.). It also
occured the generated answer contained Python
code (despite being asked not to) where certain
lines contained substrings matching a "r(a,b)" form
which were extracted unintentionally.

Figure 5 partially quantifies some of these as-
pects and it can be seen that for both subject and
both, a large part of hallucinations overlap with
being present in the context examples.

4.4.1 Hallucination-filtered performance
If triples that contain a hallucinated relation, object
or subject are pruned, we obtain the performance
as reported in Table 2. We observe that by applying
a simple filter for triples of which we know they are
non-factual, all models gain a significant amount of
performance. The exception being Llama-3-70B-
Instruct as it already obtained high performance
with near-zero hallucination rate. We observe that
for all models, the precision improves (as expected)
compared to the results in Table 1. This heuristic

pruning of extracted triples can thus be a useful way
of increasing fact extraction performance, specifi-
cally smaller models which require less compute
power.

5 Discussion

Firstly, we will draw a comparison to the results
of MaintIE (Bikaun et al., 2024a). Since we only
focus on triplet extraction without entity recogni-
tion, a comparison must be done between our work
and MaintIE’s evaluation of REBEL on loose re-
lation extraction (as it only requires agreement on
the relation type and entity spans) (Bikaun et al.,
2024a). In a supervised fine-tuning setting called
curriculum learning, MaintIE (Bikaun et al., 2024a)
obtained an F1-score of 0.77. For comparison,
Llama-3-70B-Instruct matches this score by us-
ing 150 examples and obtains 0.69 F1-score using
only 20 semantically similar in-context examples,
making the performance remarkably close. The
effectiveness of using only a few semantically simi-
lar examples can significantly improve the model’s
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Figure 3: Fact extraction performance and hallucination rate for different settings of frequency and presence
penalties. Selected model was Llama-3-8B. Number of in-context examples was set to 10. Left: higher is better.
Right: lower is better.

Figure 4: Number of in-context examples versus hallucination rate. Llama-3-8B, Llama-3-8B-Instruct and Llama-3-
70B-Instruct selected for their overall performance.

ability to recognize patterns in the data.

However, this performance is only close when
comparing it to the largest state-of-the-art open and
instruction-tuned models. For Llama-3-70B, its
low performance is explained that a significant por-
tion of its “generations” are empty, which means
its low performance is caused by the model’s fail-
ure to even generate a sequence with triples at all.
The associated performance in terms of hallucina-
tion is therefore void, given that empty generations
by default don’t contain tokens that fall outside
the given sentence of the ontology. Llama-3-70B
without instruction-tuning is thus incapable of per-
forming fact extraction, while instruction-tuning
Llama-3-8B slightly decreases performance rather
than improve it.

Second, we would like to draw a comparison
methodologically between REBEL, SpERT and
LLMs and review differences and corresponding
consequences. Both REBEL and SpERT use a fine-

tuning approach that requires the labelled data to be
available upfront. For SpERT, a relation classifier is
used and as it constrains its output to a label space,
it doesn’t suffer from hallucinations. LLMs do
not require this labelled data for fine-tuning, and,
in this work, we have shown that even with few
examples they can already be effective. However,
this at-inference requirement of LLM comes with
the drawback of hallucinations and is a subject of
research (McKenna et al., 2023; Agrawal et al.,
2023).

Thirdly, we will discuss how these hallucina-
tions can be dealt with. We find that changing
token penalties can simultaneously maximize fact
extraction performance and minimize hallucina-
tion rate. By stimulating the model to diversify
through presence penalty, the generated halluci-
nated triples will contain objects/subjects that are
outside of the target sentence, likely sourced by
in-context-examples. The exact reason for why
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Figure 5: Types of hallucinations and subject sub-classifications. Based on predictions from Llama-3-8B with fre-
quency penalty 0 and presence penalty 2. These parameter values induce a relatively high number of hallucinations.

Before pruning After pruning
Model P R F1 P R F1
REBEL (MaintIE) - - 0.77 - - -
Llama-2-7b-hf 0.31 0.26 0.27 0.32 0.26 0.28
Llama-3-8B 0.62 0.70 0.63 0.64 0.70 0.65
Llama-3-8B-Instruct 0.48 0.70 0.53 0.58 0.69 0.61
Llama-3-70B 0.04 0.04 0.04 0.04 0.04 0.04
Llama-3-70B-Instruct 0.67 0.74 0.69 0.68 0.74 0.69

Table 2: Fact extraction performance where hallucinations are pruned. Scores reported are Precision, Recall,
F1-score where higher is better. Number of examples (k) is 20.

this occurs is unclear, and we consider an extended
evaluation framework an interesting area for further
research. Despite these hallucinations occurring, it
is relatively straight-forward to prune them. Hallu-
cinations are fairly easy to detect in this setting, as
the relation must conform to the provided ontology
and the subject/object must occur in the target text.
The filtering of these verifiable hallucinations gen-
erally leads to a higher precision and thus higher
F1-score, while ensuring ontology conformity in a
domain-specific setting.

Lastly, we would like to discuss the implica-
tions of our findings. Building domain-specific
Knowledge Graphs is a time-consuming effort, and
building NLP-pipelines to do this often requires
considerable resources. Our work implies that an
incremental human-in-the-loop process could sig-
nificantly assist with fact extraction. In (Bikaun
et al., 2024a), pre-annotation was done by fully
fine-tuning SpERT on an already annotated corpus
and annotating a second corpus. Our work im-

plies that by using LLMs and in-context learning,
pre-annotation could start both earlier (using few
examples) and continuously (building the number
of examples as you go) using inference-only. This
could considerably reduce workload for domain
experts that need to be involved.

6 Conclusion

This study explores the use of Large Language
Models for constructing knowledge graphs from
Maintenance Short Texts. We assess models from
the Llama family, focusing on fact extraction
through two main methods: 1) ontology-guided
triplet extraction and 2) in-context learning. Utiliz-
ing these techniques with the Llama-3-70B-Instruct
model, we achieve fact extraction performance
comparable to the current state-of-the-art methods
that require fine-tuning. During this process, the
issue of hallucinations (incorrect or fabricated infor-
mation) can arise, often exacerbated by suboptimal
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settings for token prediction penalties. However,
for the Llama-3-70B-Instruct model, hallucinations
are almost non-existent. For other models, it’s fea-
sible to prune hallucinated triples from the out-
put. This capability extends even to smaller models
like Llama-3-8B, making them viable alternatives.
This approach facilitates human-in-the-loop pre-
annotation for domain-specific datasets, potentially
reducing the time investment required from domain
experts. Our work shows that Large Language
Models are a fitting solution for Knowledge Graph
construction, specifically where labelled data is
scarce or the ontology dynamic.
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Abstract

This article argues that digital educational con-
tent should be structured as knowledge graphs
(KGs). Unlike traditional repositories such as
Moodle, a KG offers a more flexible represen-
tation of the relationships between concepts,
facilitating intuitive navigation and discovery
of connections. In addition, it integrates effec-
tively with Large Language Models, enhancing
personalized explanations, answers, and rec-
ommendations. This article studies different
proposals based on semantics and knowledge
modelling to determine the most appropriate
ways to strengthen intelligent educational tech-
nologies.

1 Introduction

Knowledge graphs (KGs) structure complex infor-
mation into nodes and relationships, allowing an
intuitive and manipulable representation of knowl-
edge. This structure facilitates the integration of
information from diverse sources, improves the
ability to perform precise semantic searches, and
enhances the inference of new knowledge from
existing data (Kejriwal, 2022; Zhu et al., 2023).
Given these capabilities, KGs have shown signif-
icant potential across various domains, including
education (Ain et al., 2023).

In the educational environment, KGs can trans-
form how educational information is organized
and accessed. They integrate data from multiple
sources, such as textbooks, research articles and
online resources, to link key concepts, theories and
relevant authors (Dang et al., 2021). In addition,
integration with Large Language Models (LLMs)
can enhance this approach, enabling detailed ex-
planations and accurate answers (Zhu et al., 2023).
This approach facilitates the search for specific
information for students and educators and helps
identify hidden relationships between different top-
ics, promoting deeper, interdisciplinary learning
(Abu-Salih and Alotaibi, 2024).

Although many KGs have been proposed in the
literature, due to their complexity, they are often
limited to small environments (Yuan et al., 2024).
The construction of KGs has traditionally required
laborious data extraction and linking processes
based on natural language processing (NLP) and
data mining techniques (Zhu et al., 2023). How-
ever, in recent years, LLMs have revolutionized the
field of NLP, demonstrating a remarkable ability to
understand and generate natural language and pro-
gramming. The potential of LLMs for automatic
KG generation is an emerging area of research (Pan
et al., 2023; Melnyk et al., 2022).

To address the problem of converting educa-
tional materials into KGs for improved content
structuring, navigation, and personalization with
large language models, this paper explores several
key areas:

• Identifying the advantages of using KGs in
the educational environment.

• Highlighting the most relevant KGs in educa-
tion and their significant contributions.

• Examining the latest models based on LLMs
that facilitate the conversion from text to KG.

• Proposing an innovative approach to enhance
the educational material to KG task.

2 Advantages of using knowledge graphs
in the educational environment

2.1 Representation and efficient access to
knowledge

As indicated in Dang et al. (2021), representation
and efficient access to knowledge is fundamental
in KGs applied in education. These graphs allow
large amounts of information to be organized and
visualized in a structured manner, facilitating under-
standing and retrieval of relevant data. Abu-Salih
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and Alotaibi (2024) note that KGs significantly im-
prove semantic searchability, allowing students and
educators to access the specific information they
need quickly.

2.2 Enhancement of learning and discovery of
connections

According to Ain et al. (2023), KGs facilitate a
more flexible and dynamic representation of con-
cepts and their interrelationships, allowing students
to explore and better understand how different top-
ics are connected. This approach improves infor-
mation retention and fosters deeper and more con-
textualized learning.

Furthermore, KGs can significantly improve the
ability of educational systems to provide personal-
ized and relevant recommendations. Chicaiza and
Valdiviezo-Diaz (2021) demonstrate that systems
can suggest materials integrated into the student’s
learning process by mapping the relationships be-
tween concepts and educational resources. This
optimizes the learning process by aligning with
each student’s progress and specific interests and
facilitates discovering new connections and areas
of interest that might not be evident in a more tra-
ditional, linear learning environment.

2.3 Personalization and integration with
LLMs

Research by Li et al. (2019) analyses the use of
KGs in online learning platforms. The authors find
that these graphs improve the organization of edu-
cational content and facilitate learning personaliza-
tion. Educational systems using KGs can provide
content recommendations based on each learner’s
progress and interests.

In addition, KGs can play a crucial role in creat-
ing intelligent tutoring systems. According to Li
and Wang (2023), these graphs enable virtual tutors
to provide more detailed explanations tailored to
the individual needs of learners.

3 Review of knowledge graphs in
education

This section discusses three recent studies that re-
view using KGs and ontologies in education. Each
study addresses different aspects and applications
of these technologies, assessing their impact and
challenges. The conclusions of each of these stud-
ies are then presented, providing a comprehensive
view of the current and future state of KGs in ed-
ucation. Additionally, we add the article (Chen

et al., 2018) that proposes a methodology to build
KGs in the educational environment. The proposed
scheme will be relevant to the proposed method in
Section 5.

Abu-Salih and Alotaibi (2024) conclude that
KGs are transforming education by providing per-
sonalized learning experiences and enriched data
for curriculum planning. However, they face chal-
lenges such as a lack of standardized formats, lim-
ited interoperability, incomplete data, and scalabil-
ity issues. Future research is suggested to address
these limitations and explore integrating advanced
language models and creating multidomain KGs.

Stancin et al. (2020) highlights the crucial role
of ontologies in educational systems, facilitating
structured knowledge representation and curricu-
lum management. Although there is no single
methodology for their construction, researchers
combine several methodologies. Recent literature
review shows an increase in the use of ontologies in
education, highlighting their importance and future
potential.

Khoiruddin et al. (2023) reviews the devel-
opment of ontologies in e-learning, highlighting
methodologies such as NeON and METHONTOL-
OGY, and the roles of domain experts, developers,
and end users. It uses metrics such as Relationship
Richness to assess the quality of ontologies. He
concludes that a proper understanding and applica-
tion of these methods and metrics can improve the
efficiency and effectiveness of e-learning systems.

Finally, Chen et al. (2018) describes a system
called KnowEDu developed to automatically con-
struct KGs in education using pedagogical and
learning assessment data. KnowEdu uses NLP al-
gorithms to extract meaningful instructional con-
cepts and educational relationships from hetero-
geneous data. The methods and results of this
study provide a solid foundation for the practical
implementation of educational KGs. However, this
methodology does not allow for an automatic tran-
sition from text to KG.

4 Text-to-Knowledge graph conversion
models

Many integrations exist between LLMs and KGss,
but these only cover one of the text-to-knowledge
graph process’s tasks, as seen in the review (Pan
et al., 2023). An analysis of models that perform
the complete task of moving from text to KG is
shown below. Several common features and differ-
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ences are observed in these models. The models are
commonly evaluated in Zero-Shot, One-Shot, and
Few-Shot scenarios, measuring various datasets’
accuracy and semantic relatedness capability. The
differences lie in the base LLMs chosen, the fine-
tuning techniques applied, and the specific archi-
tectures used. The results show that, although there
are improvements in certain configurations, there
is still ample room to optimize the accuracy and
efficiency of KG generation.

For instance, in the study by Giglou et al.
(2023) several models are evaluated on the text
to OWL conversion task in Zero-Shot, includ-
ing BERT-Large (Devlin et al., 2019), PubMed-
BERT (Gu et al., 2021), BART-Large (Lewis
et al., 2020), Flan-T5-Large (Chung et al., 2022),
Flan-T5-XL (Chung et al., 2022), BLOOM-1b7
(Workshop et al., 2022), BLOOM-3b (Workshop
et al., 2022), GPT-3 (Brown et al., 2020), GPT-3.5
(OpenAI, 2023), LLaMA (Touvron et al., 2023)
and GPT-4 (OpenAI et al., 2023). These mod-
els were tested on the term typing task using dif-
ferent datasets: WordNet (Miller, 1995), GeoN-
ames (Rebele et al., 2016), NCI (National Can-
cer Institute, National Institutes of Health, 2022),
SNOMEDCT_US (SNOMED International, 2023)
and MEDCIN (Medicomp Systems, 2023). The
best results were 91.7 for WordNet (Miller, 1995),
but significantly lower for the other datasets, with
scores of 43.3, 16.1, 37.7 and 29.8, respectively,
evidencing considerable room for improvement in
the models’ ability for this task. They were also
evaluated in the entity classification task with the
GeoNames (Rebele et al., 2016), UMLS (Boden-
reider, 2004), and schema.org datasets, showing
scores of 67.8, 78.1 and 74.4, again suggesting
considerable room for improvement. Finally, in
the relationship recognition task with the UMLS
(Bodenreider, 2004) dataset, a result of 49.5 was
obtained, reflecting once again the need for im-
provement.

Moreover, the same article presents two tuned
models: Flan-T5-Large (Chung et al., 2022) and
Flan-T5-XL (Chung et al., 2022), which show re-
markable improvements in several datasets of the
evaluated tasks. For example, for the datasets of the
first task, the results were improved to 32.8, 43.4
and 51.8. The results improved to 79.3 and 91.7 in
the entity classification task, and in the relationship
recognition task, 53.1 was achieved.

Similarly, in the study by Mihindukulasooriya
et al. (2023) Vicuna-13B (Chiang et al., 2023)

and Alpaca-LoRA-13B (Taori et al., 2023; Hu
et al., 2022) are evaluated in Zero-Shot on the Fact
Extraction task using the F1 metric for different
subsets of the Wikidata-TekGen (Vrandečić and
Krötzsch, 2014) and DBpedia-WebNLG (Gardent
et al., 2017) datasets. The best result for the Wiki-
data dataset (Vrandečić and Krötzsch, 2014) is 0.38
for Vicuna (Chiang et al., 2023) and 0.28 for Al-
paca (Taori et al., 2023; Hu et al., 2022) and for the
DBpedia dataset (Gardent et al., 2017) it is 0.3 for
Vicuna (Chiang et al., 2023) and 0.25 for Alpaca
(Taori et al., 2023; Hu et al., 2022). As in the pre-
vious case, it is evident that there is much room for
improvement.

Furthermore, in the study by Zhu et al. (2023), a
comprehensive evaluation of Extended Language
Models (LLMs) such as GPT-4 (OpenAI et al.,
2023) and ChatGPT(OpenAI, 2023) in KG con-
struction and reasoning tasks is performed by ex-
periments on eight datasets and four representative
tasks: entity and relationship extraction, event ex-
traction, link prediction, and question and answer.
The results show that, although GPT-4 achieves an
F1 score of 31.03 in relation extraction on DuIE2.0
(Li et al., 2019) on zero-shot and 41.91 on one-shot,
as well as an F1 score of 34.2 on MAVEN (Wang
et al., 2020) for event extraction on zero-shot, and
a hits@1 of 32.0 on FB15K-237 (Toutanova et al.,
2015) for link prediction on zero-shot, these results
are improbable.

The paper by Melnyk et al. (2022) presents an in-
novative approach for generating KGs from text in
multiple stages. This approach is divided into two
main phases: first, the generation of nodes using the
pre-trained language model T5-large (Chung et al.,
2022) and then the construction of edges using the
information from the generated nodes. This method
seeks to overcome the limitations of traditional
graph linearization approaches by breaking the pro-
cess into manageable and separately optimizable
steps. The model was evaluated on three datasets:
WebNLG 2020 (Castro Ferreira et al., 2020), TEK-
GEN (Agarwal et al., 2021) and New York Times
(Riedel et al., 2010), obtaining F1 scores of 0.722,
0.707 and 0.918 respectively, demonstrating its ef-
fectiveness. However, it highlights the need for
further improvement, especially in edge generation,
to optimize the system’s performance in various
applications.

Finally, in the study by Ain et al. (2023),
embeddings-based methods, such as SIFRank (Sun
et al., 2020) and SIFRankplus, which is an exten-
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sion made by the authors, enhanced with Squeeze-
BERT (Iandola et al., 2020), achieved an F1-
score of 40.38% in keyphrase extraction. In con-
cept weighting, the SBERT-based (Reimers and
Gurevych, 2019) strategy achieved an accuracy of
13.9% and an F1-score of 20.6% for the top ten
ranked concepts, superior results to the benchmark
models with which they were purchased. Despite
these advances, the results highlight the need to
improve the accuracy and performance of the tech-
niques to ensure the effective construction of KGs.

5 Proposed methodology

This section presents an innovative methodology
for automatically using an LLM to generate KGs
from educational materials. Existing models like
BERT-Large, GPT-4, Vicuna-13B, PubMedBERT,
BART-Large, Flan-T5, BLOOM, GPT-3, GPT-
3.5, LLaMA, and Alpaca-LoRA-13B have shown
progress in converting text to KGs but still have
significant limitations, as seen in the previous sec-
tion. For example, in term typing tasks, scores
were 43.3 for GeoNames, 16.1 for NCI, 37.7 for
SNOMEDCT_US, and 29.8 for MEDCIN, com-
pared to 91.7 for WordNet. In entity classification,
the highest scores were 78.1 for UMLS and 74.4 for
schema.org. Fact extraction tasks showed Vicuna-
13B scoring 0.38 and Alpaca-LoRA-13B scoring
0.28 on Wikidata-TekGen. These results highlight
the need for new strategies to improve model per-
formance in text-to-knowledge graph conversion in
general and particularly in education.

To address these limitations, we propose a
methodology that involves creating an expert model
in natural language and KG language. This model
is subsequently refined to convert learning materi-
als into KGs, following a learning object structure
that offers a guided and comprehensive teaching
experience with multimedia educational content.
The methodology comprises two phases: continu-
ous pre-training using a large dataset of KGs and
specific fine-tuning with didactic materials.

During pre-training, a diverse dataset of KGs
from sources like Wikidata (Vrandečić and
Krötzsch, 2014), DBpedia (Lehmann et al., 2015),
and YAGO (Rebele et al., 2016) will be used to
train the model with masking and self-supervised
learning. This will enhance the model’s understand-
ing of semantic relationships and hierarchical struc-
tures, improving its ability to generate coherent and
accurate graphs.

Continual pre-training allows the model to be-
come more expert in its domain, enhancing seman-
tic understanding, training on structured data, flexi-
bility, generalization, bias reduction, and leverag-
ing existing resources (Wu et al., 2024).

In the fine-tuning phase, diverse educational
materials will be gathered, and their correspond-
ing KGs will be created manually or semi-
automatically. This process will necessitate defin-
ing a KG schema or leveraging an existing one
from the literature that aligns with the proposed use
case. Specifically, the of the IEEE Computer Soci-
ety (2020) provides a comprehensive schema and
vocabulary for metadata that could be particularly
useful. Alongside this standard, methodologies
and schemes described in the studies by (Wölfel
et al., 2024) and (Chen et al., 2018) will also be
considered.

Although KGs are not used in Wölfel et al.
(2024), it becomes clear that a small amount of
domain-specific data, such as slides and lecture
transcripts, can be extremely valuable for build-
ing knowledge-based and generative educational
chatbots. Slides are enriched with semantic an-
notations, identifying entities such as definitions,
quotes, and examples. This enables knowledge-
based to provide accurate and relevant responses
by mining directly from this structured data.

Chen et al. (2018) describes a system developed
to build educational KGs using pedagogical and
learning assessment data automatically. The meth-
ods used in this study for extracting instructional
concepts and identifying meaningful educational
relationships will provide a solid foundation for the
proposed KG scheme. Integrating these method-
ologies is expected to improve the system’s effec-
tiveness in automatically generating KGs from ed-
ucational materials.

6 Conclusion

In conclusion, this article argues that structuring
digital educational content as KGs rather than tradi-
tional repositories provides significant advantages.
KGs offer a flexible, navigable representation of
concept relationships, enhancing learning personal-
ization and integration with LLMs. A methodology
to automatically generate KGs from educational
texts is proposed, promising to transform access
to and organization of educational information for
more profound, personalized learning.
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Hesslow, Roman Castagné, Alexandra Sasha Luc-
cioni, François Yvon, Matthias Gallé, Jonathan
Tow, Alexander M. Rush, Stella Biderman, Albert
Webson, Pawan Sasanka Ammanamanchi, Thomas
Wang, Benoît Sagot, Niklas Muennighoff, Albert
Villanova del Moral, and et al. 2022. BLOOM:
A 176B-Parameter Open-Access Multilingual Lan-
guage Model. arXiv e-prints, arXiv:2211.05100.

Tongtong Wu, Linhao Luo, Yuan-Fang Li, Shirui Pan,
Thuy-Trang Vu, and Gholamreza Haffari. 2024. Con-
tinual Learning for Large Language Models: A Sur-
vey. arXiv e-prints, arXiv:2402.01364.

Matthias Wölfel, Mehrnoush Barani Shirzad, Andreas
Reich, and Katharina Anderer. 2024. Knowledge-
based and generative-ai-driven pedagogical conversa-
tional agents: A comparative study of grice’s coop-
erative principles and trust. Big Data and Cognitive
Computing, 8(1).

Xu Yuan, Jiaxi Chen, Yingbo Wang, Anni Chen,
Yiou Huang, Wenhong Zhao, and Shuo Yu. 2024.
Semantic-enhanced knowledge graph completion.
Mathematics, 12(3).

Yuqi Zhu, Xiaohan Wang, Jing Chen, Shuofei Qiao,
Yixin Ou, Yunzhi Yao, Shumin Deng, Huajun Chen,
and Ningyu Zhang. 2023. LLMs for Knowledge
Graph Construction and Reasoning: Recent Capa-
bilities and Future Opportunities. arXiv e-prints,
arXiv:2305.13168.

91

https://doi.org/10.1145/2629489
https://doi.org/10.1145/2629489
https://doi.org/10.18653/v1/2020.emnlp-main.129
https://doi.org/10.18653/v1/2020.emnlp-main.129
https://doi.org/10.48550/arXiv.2211.05100
https://doi.org/10.48550/arXiv.2211.05100
https://doi.org/10.48550/arXiv.2211.05100
https://doi.org/10.48550/arXiv.2402.01364
https://doi.org/10.48550/arXiv.2402.01364
https://doi.org/10.48550/arXiv.2402.01364
https://doi.org/10.3390/bdcc8010002
https://doi.org/10.3390/bdcc8010002
https://doi.org/10.3390/bdcc8010002
https://doi.org/10.3390/bdcc8010002
https://doi.org/10.3390/math12030450
https://doi.org/10.48550/arXiv.2305.13168
https://doi.org/10.48550/arXiv.2305.13168
https://doi.org/10.48550/arXiv.2305.13168


Proceedings of the 1st Workshop on Knowledge Graphs and Large Language Models (KaLLM 2024), pages 92–104
August 15, 2024 ©2024 Association for Computational Linguistics

STAGE: Simplified Text-Attributed Graph Embeddings Using Pre-trained
LLMs

Aaron Zolnai-Lucas1*, Jack Boylan1*, Chris Hokamp1, Parsa Ghaffari1

1Quantexa,
Correspondence: {firstname}{lastname}@quantexa.com

Abstract

We present Simplified Text-Attributed Graph
Embeddings (STAGE), a straightforward yet
effective method for enhancing node features
in Graph Neural Network (GNN) models that
encode Text-Attributed Graphs (TAGs). Our
approach leverages Large-Language Models
(LLMs) to generate embeddings for textual
attributes. STAGE achieves competitive re-
sults on various node classification benchmarks
while also maintaining a simplicity in imple-
mentation relative to current state-of-the-art
(SoTA) techniques. We show that utilizing pre-
trained LLMs as embedding generators pro-
vides robust features for ensemble GNN train-
ing, enabling pipelines that are simpler than cur-
rent SoTA approaches which require multiple
expensive training and prompting stages. We
also implement diffusion-pattern GNNs in an
effort to make this pipeline scalable to graphs
beyond academic benchmarks.

1 Introduction

A Knowledge Graph (KG) typically includes enti-
ties (represented as nodes), relationships between
entities (represented as edges), and attributes of
both entities and relationships (Ehrlinger and Wöß,
2016). These attributes, referred to as metadata,
are often governed by a domain-specific ontology,
which provides a formal framework for defining the
types of entities and relationships as well as their
properties. KGs can be used to represent structured
information about the world in diverse settings, in-
cluding medical domain models (Koné et al., 2023),
words and lexical semantics (Miller, 1995), and
commercial products (Chiang et al., 2019).

Text-Attributed Graphs (TAGs) can be viewed
as a subset of KGs, where some node and edge
metadata is represented by unstructured or semi-
structured natural language text (Yang et al., 2023).
Examples of unstructured data values in TAGs

*Authors contributed equally.

could include the research article text represent-
ing the nodes of a citation graph, or the content of
social media posts that are the nodes of an interac-
tion graph extracted from a social media platform.
Many real-world datasets are naturally represented
as TAGs, and studying how to best represent and
learn using these datasets has received attention
from the fields of graph learning, natural language
processing (NLP), and information retrieval.

Graph Learning and LLMs With the emer-
gence of LLMs as powerful general purpose rea-
soning agents, there has been increasing interest in
integrating KGs with LLMs (Pan et al., 2024). Cur-
rent SoTA approaches combining graph learning
with (L)LMs follow either an iterative or a cascad-
ing method. Iterative methods involve jointly train-
ing an LM and a GNN for the given task. While
this approach can produce a task-specific feature
space, it may be complex and resource-intensive,
particularly for large graphs. In contrast, cascading
methods first apply an LM to extract node features
which are then used by a downstream GNN model.
Cascading models demonstrate excellent perfor-
mance on TAG tasks (He et al., 2024; Duan et al.,
2023a), although they often require multiple stages
of training targeted at each pipeline component.
More recent cascading techniques implement an
additional step, known as text-level enhancement
(Chen et al., 2024), whereby textual features are
augmented using an LLM.

Simplifying Node Representation Generation
To the best of our knowledge, all existing cascading
approaches require multiple rounds of data gener-
ation or finetuning to achieve satisfactory results
on TAG tasks (He et al., 2024; Duan et al., 2023a;
Chen et al., 2024). This bottleneck increases the
difficulty of applying such methods to real-world
graphs. Our proposed method, STAGE, aims to
simplify existing approaches by foregoing LM
finetuning, and only making use of a single pre-
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Figure 1: Our proposed approach to node classification. Firstly, the textual attributes of the input graph nodes
are encoded using an off-the-shelf LLM. The text embeddings will be used alongside the graph adjacency matrix
as input to train a downstream ensemble of GNNs. GNN predictions are then mean-pooled to obtain the final
prediction.

trained LLM as the node embedding model, with-
out data augmentation via prompting. We study
possible configurations of this simplified pipeline
and demonstrate that this method achieves compet-
itive performance while significantly reducing the
complexity of training and data preparation.

Scalable GNN Architectures The exponentially
growing receptive field required during training of
most message-passing GNNs is another bottleneck
in both cascading and iterative approaches, becom-
ing computationally intractable for large graphs
(Duan et al., 2023b; Liu et al., 2024). Because we
wish to study approaches that can be applied in
real-world settings, we also explore the implemen-
tation of diffusion-pattern GNNs, such as Simple-
GCN (Wu et al., 2019) and SIGN (Frasca et al.,
2020), which may enable STAGE to be applied
to much larger graphs beyond the relatively small
academic benchmarks. Our code is available at
https://github.com/aaronzo/STAGE.

Concretely, this work studies several ways to
make learning on TAGs more efficient and scalable:

• Single Training Stage: We perform ensem-
ble GNN training with a fixed LLM as the
node feature generator, which significantly re-
duces training time by eliminating the need
for multiple large model training runs.

• No LLM Prompting: We do not prompt an
LLM for text-level augmentations such as pre-

dictions or explanations. Instead, we use only
the text attributes provided in the dataset.

• Direct Use of LLM as Text Embedding
Model: Using an off-the-shelf LLM as the
embedding model makes this method adapt-
able to new models and datasets. We study
several alternative base models for embedding
generation.

• Diffusion-pattern GNN implementation:
We contribute an investigation into diffusion-
pattern GNNs which enable this method to
scale to larger graphs.

The rest of the paper is organized as follows: sec-
tion 2 gives an overview of related work, section 3
discusses our approach in detail, section 4 studies
the performance of STAGE in various settings, and
section 5 is a discussion of the experimental results.

2 Background

Text-Attributed Graphs Yan et al. (2023) sug-
gest that integrating topological data with textual
information can significantly improve the learning
outcomes on various graph-related tasks. Chien
et al. (2022) incorporate graph structural informa-
tion into the pre-training stage of pre-trained lan-
guage models (PLMs), achieving improved per-
formance albeit with additional training overhead,
while Liu et al. (2023) further adopt sentence em-
bedding models to unify the text-attribute and
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Figure 2: The performance trade-off between node classification accuracy and total training time on ogbn-arxiv for
SoTA LM-GNN methods. The STAGE model uses text embeddings generated from Salesforce-Embedding-Mistral
and an ensemble of GNNs (GCN, SAGE and RevGAT) and MLP. The size of each marker indicates the total number
of trainable parameters. Figure adapted from (He et al., 2024).

graph structure feature space, proposing a unified
model for diverse tasks across multiple datasets.

LLMs as Text Encoders General purpose text
embedding models, used in both finetuned and
zero-shot paradigms, are a standard component
of modern NLP pipelines (Mikolov et al., 2013;
Pennington et al., 2014; Reimers and Gurevych,
2019). As LLMs have emerged as powerful zero-
shot agents, many studies have considered generat-
ing text embeddings as an auxiliary output (Muen-
nighoff, 2022; Mialon et al., 2023). BehnamGhader
et al. (2024) introduce LLM2Vec, an unsupervised
method to convert LLMs into powerful text en-
coders by using bidirectional attention, masked
next token prediction and contrastive learning,
achieving state-of-the-art performance on various
text embedding benchmarks.

Language Models and GNNs Graph Neural Net-
works have been successfully applied to node clas-
sification and link prediction tasks, demonstrating
improved performance when combined with tex-
tual features from nodes (Kipf and Welling, 2017;
Li et al., 2022b). Several studies show that finetun-
ing pre-trained Language Models (PLMs), such as
BERT (Devlin et al., 2019) and DeBERTa (He et al.,
2021), enhances GNN performance by leveraging
textual node features (Chen et al., 2024; Duan et al.,
2023a; He et al., 2024).

Recent research has explored the integration of

LLMs with GNNs, particularly for TAGs. LLMs
contribute deep semantic understanding and com-
monsense knowledge, potentially boosting GNNs’
effectiveness on downstream tasks. However, com-
bining LLMs with GNNs poses computational chal-
lenges. Techniques like GLEM (Zhao et al., 2023)
use the Expectation Maximization framework to
alternate updates between LM and GNN modules.

Other approaches include the TAPE method,
which uses GPT (OpenAI, 2023; OpenAI et al.,
2024) models for data augmentation, enhancing
GNN performance through enriched textual em-
beddings (He et al., 2024). SimTeG demonstrates
that parameter-efficient finetuning (PEFT) PLMs
can yield competitive results (Duan et al., 2023a).
(Ye et al., 2024) suggest that finetuned LLMs can
match or exceed state-of-the-art GNN performance
on various benchmarks.

Building on these insights, the STAGE method
focuses on efficient and scalable learning for TAGs
by utilizing zero-shot capabilities of LLMs to
generate representations without extensive task-
specific tuning or auxiliary data generation.

3 Approach

Our cascading approach consists of two steps:

• A zero-shot LLM-based embedding generator
is used to encode the title and abstract (or
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equivalent textual attribute) of each node. We
denote the generated node embeddings as X .

• An ensemble of GNN architectures are trained
on X , and their predictions are mean-pooled
to obtain the final node predictions.

Ensembling the predictions from multiple GNN
architectures was motivated by our observation of
strong performance by different models across dif-
ferent datasets.

3.1 Text Embedding Retrieval
For the text embedding model, we select a
general-purpose embedding LLM that ranks
highly on the Massive Text Embedding Bench-
mark (MTEB) Leaderboard1. Specifically,
we evaluate gte-Qwen1.5-7B-instruct,
LLM2Vec-Meta-Llama-3-8B-Instruct, and
SFR-Embedding-Mistral. MTEB ranks em-
bedding models based on their performance
across a wide variety of information retrieval,
classification and clustering tasks. This model is
used out-of-the-box without any finetuning. An
appealing aspect of LLM-based embeddings is
the possibility to add instructions alongside input
text to bias the embeddings for a given task. We
empirically evaluate the effect of instruction biased
embeddings is in Table 2 of section 4.

Node representations X are generated using only
the title and abstract, or equivalent textual node
attributes, omitting the LLM predictions and ex-
planations provided by (He et al., 2024). X will
then be used as enriched node feature vectors for
training a downstream GNN ensemble.

3.2 GNN Training
Using the previously generated embeddings X as
node features, we train an ensemble of GNN mod-
els on the node classification task:

Losscls = Lθ (ϕ(GNN(X ,A)),Y) , (1)

where ϕ(·) is the classifier, A is the adjacency ma-
trix of the graph and Y is the label. For the GNN
architectures we choose GCN (Kipf and Welling,
2017), SAGE (Hamilton et al., 2018) and RevGAT
(Li et al., 2022a). We also evaluate a multi-layer
perceptron (MLP) (Haykin, 1994) among our GNN
models. To combine the predictions from each of
the K models in the ensemble, we compute the
mean prediction as follows:

1https://huggingface.co/spaces/mteb/
leaderboard

p̄ =
1

K

K∑

k=1

pk, (2)

Cross-entropy loss is used to compute the loss
value.

Diffusion-based GNNs For a graph G with node
features X , a diffusion operator is a matrix AOP
with the same dimensions as the adjacency matrix
of G. Diffused features H are then calculated via
H = AOPX .

We explored Simple-GCN (Wu et al., 2019) and
SIGN (Frasca et al., 2020), both of which em-
ploy adjacency-based diffusion operators to pre-
aggregate features across the graph before training.
SIGN is a generalization of Simple-GCN, to extend
to Personalized-PageRank (Page et al., 1998) and
triangle-based operators. This allows expensive
computation to be carried out by distributed com-
puting clusters or efficient sparse graph routines
such as GraphBLAS (Davis, 2019), which do not
need to back-propagate through graph convolution.
The prediction head can then be a shallow MLP
or logistic regression. We provide implementation
specifics in appendix section C to ensure repeata-
bility.

3.3 Parameter-efficient Finetuning LLM

Motivated by the node classification performance
gains seen by (Duan et al., 2023a) using PEFT,
we finetune an LLM on the node classification task.
Concretely, we use an LLM embedding model with
a low-rank adapter (LoRA) (Hu et al., 2021a) and a
densely connected classifier head. The pre-trained
LLM weights remain frozen as the model trains on
input text T to reduce loss according to:

Losscls = L(ϕ(LLM(T )), Y ) (3)

where ϕ(·) is the classifier head and Y is the label.
Again, we use cross-entropy loss to compute the
loss value.

4 Experiments

We investigate the performance of STAGE over five
TAG benchmarks: ogbn-arxiv (Hu et al., 2021b), a
dataset of arXiv papers linked by citations; ogbn-
products (Hu et al., 2021b), representing an Ama-
zon product co-purchasing network; PubMed (Sen
et al., 2008), a citation network of diabetes-related
scientific publications; Cora (McCallum et al.,

95

https://huggingface.co/spaces/mteb/leaderboard
https://huggingface.co/spaces/mteb/leaderboard


Dataset Method hshallow hGIANT GPT3.5 LMfinetune hTAPE hSTAGE(OURS)

Cora MLP 0.6388 ± 0.0213 0.7196 ± 0.0000 0.6769 0.7606 ± 0.0378 0.8778 ± 0.0485 0.7680 ± 0.0228
GCN 0.8911 ± 0.0015 0.8423 ± 0.0053 0.6769 0.7606 ± 0.0378 0.9119 ± 0.0158 0.8704 ± 0.0105
SAGE 0.8824 ± 0.0009 0.8455 ± 0.0028 0.6769 0.7606 ± 0.0378 0.9290 ± 0.0307 0.8722 ± 0.0063

RevGAT 0.8911 ± 0.0000 0.8353 ± 0.0038 0.6769 0.7606 ± 0.0378 0.9280 ± 0.0275 0.8639 ± 0.0129
Ensemble - - - - - 0.8824 ± 0.0155

PubMed MLP 0.8635 ± 0.0032 0.8175 ± 0.0059 0.9342 0.9494 ± 0.0046 0.9565 ± 0.0060 0.9142 ± 0.0122
GCN 0.8031 ± 0.0425 0.8419 ± 0.0050 0.9342 0.9494 ± 0.0046 0.9431 ± 0.0043 0.8960 ± 0.0042
SAGE 0.8881 ± 0.0002 0.8372 ± 0.0082 0.9342 0.9494 ± 0.0046 0.9618 ± 0.0053 0.9087 ± 0.0064

RevGAT 0.8850 ± 0.0005 0.8502 ± 0.0048 0.9342 0.9494 ± 0.0046 0.9604 ± 0.0047 0.8654 ± 0.0952
Ensemble - - - - - 0.9265 ± 0.0068

ogbn-arxiv MLP 0.5336 ± 0.0038 0.7308 ± 0.0006 0.7350 0.7361 ± 0.0004 0.7587 ± 0.0015 0.7517 ± 0.0011
GCN 0.7182 ± 0.0027 0.7329 ± 0.0010 0.7350 0.7361 ± 0.0004 0.7520 ± 0.0005 0.7377 ± 0.0010
SAGE 0.7171 ± 0.0017 0.7435 ± 0.0014 0.7350 0.7361 ± 0.0004 0.7672 ± 0.0007 0.7596 ± 0.0040

RevGAT 0.7083 ± 0.0017 0.7590 ± 0.0019 0.7350 0.7361 ± 0.0004 0.7750 ± 0.0012 0.7638 ± 0.0054
Ensemble - - - - - 0.7777 ± 0.0019

ogbn-products MLP 0.5385 ± 0.0017 0.6125 ± 0.0078 0.7440 0.7297 ± 0.0023 0.7878 ± 0.0082 0.7277 ± 0.0054
GCN 0.7052 ± 0.0051 0.6977 ± 0.0042 0.7440 0.7297 ± 0.0023 0.7996 ± 0.0041 0.7679 ± 0.0109
SAGE 0.6913 ± 0.0026 0.6869 ± 0.0011 0.7440 0.7297 ± 0.0023 0.8137 ± 0.0043 0.7795 ± 0.0012

RevGAT 0.6964 ± 0.0017 0.7189 ± 0.0030 0.7440 0.7297 ± 0.0023 0.8234 ± 0.0036 0.8083 ± 0.0051
Ensemble - - - - - 0.8140 ± 0.0033

tape-arxiv23 MLP 0.6202 ± 0.0064 0.5574 ± 0.0032 0.7356 0.7358 ± 0.0006 0.8385 ± 0.0246 0.7940 ± 0.0022
GCN 0.6341 ± 0.0062 0.5672 ± 0.0061 0.7356 0.7358 ± 0.0006 0.8080 ± 0.0215 0.7678 ± 0.0024
SAGE 0.6430 ± 0.0037 0.5665 ± 0.0032 0.7356 0.7358 ± 0.0006 0.8388 ± 0.0264 0.7894 ± 0.0024

RevGAT 0.6563 ± 0.0062 0.5834 ± 0.0038 0.7356 0.7358 ± 0.0006 0.8423 ± 0.0256 0.7880 ± 0.0023
Ensemble - - - - - 0.8029 ± 0.0020

Table 1: Node classification accuracy for the Cora, PubMed, ogbn-arxiv, ogbn-products, and tape-arxiv23 datasets.
The experiment is run over four seeds, with mean accuracy and standard deviation shown. The best results are
coloured green (first), yellow (second), and orange (third). For hSTAGE, we use SFR-Embedding-Mistral as the
embedding model on TA features only, and the simple task instruction to bias the embeddings. We adapt the table
from (He et al., 2024) and include our results.

2000), a dataset of scientific publications catego-
rized into one of seven classes; and tape-arxiv23
(He et al., 2024), focusing on arXiv papers pub-
lished after the 2023 knowledge cut-off for GPT3.5.
We use the subset of ogbn-products provided by
(He et al., 2024). Further details can be found in
appendix Table 7.

For each experiment using Cora, PubMed or
tape-arxiv23, 60% of the data was allocated for
training, 20% for validation, and 20% for testing.
For the ogbn-arxiv and ogbn-products datasets,
we adopted the standard train/validation/test split
provided by the Open Graph Benchmark (OGB)2

(Hu et al., 2021b).
Our main results can be seen in Table 1. Mul-

tiple GNN models are trained using embeddings
from a pre-trained LLM as node features. We en-
semble the predictions across model architectures
by taking the mean prediction.

Node classification accuracy is provided for var-
ious datasets, measured across multiple methods
and feature types. Each column represents a spe-

2https://ogb.stanford.edu/

cific metric or method:

• hshallow: Performance using shallow features,
indicating basic attributes provided as part of
each dataset

• hGIANT: Results obtained by using GIANT
features as proposed by (Chien et al., 2022),
designed to incorporate graph structural infor-
mation into LM training

• GPT3.5: Accuracy when using zero-shot pre-
dictions from GPT-3.5-turbo, demonstrating
the utility of state-of-the-art language models
in a zero-shot setting

• LMfinetune: Performance metrics reported by
(He et al., 2024) after finetuning the DeBERTa
(He et al., 2021) model on labeled nodes from
the graph, showing the benefits of supervised
finetuning

• hTAPE: Shows results for the TAPE features
(He et al., 2024), which includes the original
textual attributes of the node, GPT-generated
predictions for each node, and GPT-generated
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Dataset Method hno instruction htask instruction hgraph-aware-instruction

Cora MLP 0.7772 ± 0.0205 0.7680 ± 0.0228 0.7763 ± 0.0193
GCN 0.8612 ± 0.0121 0.8704 ± 0.0105 0.8718 ± 0.0085
SAGE 0.8833 ± 0.0125 0.8722 ± 0.0063 0.8704 ± 0.0109

RevGAT 0.8630 ± 0.0119 0.8639 ± 0.0129 0.8676 ± 0.0125
Ensemble 0.8930 ± 0.0086 0.8824 ± 0.0155 0.8875 ± 0.0118

PubMed MLP 0.9305 ± 0.0052 0.9142 ± 0.0122 0.9185 ± 0.0145
GCN 0.9021 ± 0.0034 0.8960 ± 0.0042 0.8978 ± 0.0046
SAGE 0.9268 ± 0.0052 0.9087 ± 0.0064 0.9126 ± 0.0024

RevGAT 0.8637 ± 0.0942 0.8654 ± 0.0952 0.9211 ± 0.0022
Ensemble 0.9358 ± 0.0035 0.9265 ± 0.0068 0.9313 ± 0.0025

ogbn-arxiv MLP 0.7417 ± 0.0015 0.7517 ± 0.0011 0.7519 ± 0.0028
GCN 0.7336 ± 0.0029 0.7377 ± 0.0010 0.7367 ± 0.0045
SAGE 0.7515 ± 0.0027 0.7596 ± 0.0040 0.7559 ± 0.0039

RevGAT 0.7629 ± 0.0035 0.7638 ± 0.0054 0.7607 ± 0.0011
Ensemble 0.7745 ± 0.0013 0.7777 ± 0.0019 0.7740 ± 0.0019

ogbn-products MLP 0.6841 ± 0.0054 0.7277 ± 0.0054 0.7163 ± 0.0172
GCN 0.7367 ± 0.0068 0.7679 ± 0.0109 0.7729 ± 0.0033
SAGE 0.7543 ± 0.0065 0.7795 ± 0.0012 0.7811 ± 0.0049

RevGAT 0.8016 ± 0.0078 0.8083 ± 0.0051 0.8000 ± 0.0078
Ensemble 0.7991 ± 0.0034 0.8140 ± 0.0033 0.8090 ± 0.0037

tape-arxiv23 MLP 0.7803 ± 0.0014 0.7940 ± 0.0022 0.7948 ± 0.0025
GCN 0.7518 ± 0.0044 0.7678 ± 0.0024 0.7703 ± 0.0025
SAGE 0.7702 ± 0.0022 0.7894 ± 0.0024 0.7917 ± 0.0021

RevGAT 0.7880 ± 0.0047 0.7880 ± 0.0023 0.7906 ± 0.0034
Ensemble 0.8013 ± 0.0017 0.8029 ± 0.0020 0.8054 ± 0.0025

Table 2: Node classification accuracy for the Cora, PubMed, ogbn-arxiv, ogbn-products, and tape-arxiv23 datasets,
demonstrating the effect of varying an instruction to bias the embeddings from the pre-trained LLM. The experiment
is run over four seeds, with mean accuracy and standard deviation shown. The best results are coloured green (first),
yellow (second), and orange (third). For all experiments, we use SFR-Embedding-Mistral as the embedding model
on TA features only, and the simple task instruction to bias the embeddings.

explanations of ranked predictions to enrich
node features.

• hSTAGE: Reflects the model’s performance
training with node features generated by a
pre-trained LLM.

Instruction-biased Embeddings Textual at-
tributes for each node are passed to the embedding
LLM together with a task description which re-
mains constant for every text, prefixing each input
with a task-specific system prompt. We evaluated
3 simple task descriptions:

1. A short prompt describing the classification
task for the text, as used during the pre-
training stage of the LLM.

2. A description of the types of relationships
between texts to form a graph, along with
the classification task description. Specific
graph structure for each node is not included
in the prompt, unlike the proposed method
from (Fatemi et al., 2024).

3. No task description.

Our findings are summarized in Table 2. Further
details of the instructions can be found in appendix
Table 8.

Parameter-efficient Finetuning In Table 3 we
investigate the effect of using parameter-efficient
finetuning (PEFT) on the pre-trained LLM, as de-
scribed in (Duan et al., 2023a). We also compare
this against finetuning both the LLM (using PEFT)
and the GNN in unison.

Embedding Model Type In Table 4, we compare
the results when using different pre-trained LLMs
as the text encoder.

Diffusion GNNs Included in Table 4, we study
the performance of using SimpleGCN and SIGN
models individually. Model selection and imple-
mentation details can be found in the appendix
sections C and D.

Ablation Study To study the impact of each com-
ponent in the GNN ensemble, we perform a de-
tailed ablation study. The results can be found in
6.
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Dataset LLM + GNN Ensemble LLMfinetuned LLMfinetuned + GNN Ensemble

Cora 0.8824 ± 0.0155 0.8063 0.8856
PubMed 0.9265 ± 0.0068 0.9513 0.9559
ogbn-arxiv 0.7777 ± 0.0019 0.7666 0.7813
ogbn-products 0.8140 ± 0.0033 0.8020 0.8257
tape-arxiv23 0.8029 ± 0.0020 0.8021 0.8095

Table 3: Effect of using parameter-efficient finetuning (PEFT) on the pre-trained LLM, as described in (Duan et al.,
2023a). Comparison of GNN-only trained, LLM finetuned without GNNs, and LLM and GNN trained separately.
The best results are highlighted in bold.

Dataset Method SFR-Embedding-Mistral LLM2Vec gte-Qwen1.5-7B-instruct

Cora MLP 0.7680 ± 0.0228 0.8026 ± 0.0141 0.7389 ± 0.0136
GCN 0.8704 ± 0.0105 0.8778 ± 0.0046 0.8621 ± 0.0105
SAGE 0.8722 ± 0.0063 0.8773 ± 0.0062 0.8658 ± 0.0049

RevGAT 0.8639 ± 0.0129 0.8810 ± 0.0033 0.8408 ± 0.0076
Ensemble 0.8824 ± 0.0155 0.8898 ± 0.0066 0.8686 ± 0.0024

Simple-GCN 0.7389 ± 0.0120 0.6983 ± 0.0120 0.7491± 0.0166
SIGN 0.8819 ± 0.0074 0.8856 ± 0.0083 0.8575 ± 0.0157

PubMed MLP 0.9142 ± 0.0122 0.9321 ± 0.0013 0.8808 ± 0.0107
GCN 0.8960 ± 0.0042 0.8996 ± 0.0011 0.8591 ± 0.0041
SAGE 0.9087 ± 0.0064 0.9231 ± 0.0056 0.8733 ± 0.0051

RevGAT 0.8654 ± 0.0952 0.9312 ± 0.0026 0.8754 ± 0.0010
Ensemble 0.9265 ± 0.0068 0.9357 ± 0.0031 0.8941 ± 0.0041

Simple-GCN 0.7505 ± 0.0048 0.7400 ± 0.0037 0.7472 ± 0.0076
SIGN 0.8868 ± 0.0062 0.9004 ± 0.0038 0.8611 ± 0.0084

ogbn-arxiv MLP 0.7517 ± 0.0011 0.7331 ± 0.0033 0.7603 ± 0.0011
GCN 0.7377 ± 0.0010 0.7324 ± 0.0014 0.7369 ± 0.0022
SAGE 0.7596 ± 0.0040 0.7428 ± 0.0039 0.7664 ± 0.0029

RevGAT 0.7638 ± 0.0054 0.7529 ± 0.0044 0.7738 ± 0.0009
Ensemble 0.7777 ± 0.0019 0.7701 ± 0.0018 0.7817 ± 0.0011

Simple-GCN 0.3337 ± 0.0107 0.3614 ± 0.0039 0.3463 ± 0.0181
SIGN 0.6150 ± 0.0182 0.6035 ± 0.0084 0.6285 ± 0.0114

ogbn-products MLP 0.7277 ± 0.0054 0.6913 ± 0.0052 0.7231 ± 0.0050
GCN 0.7679 ± 0.0109 0.7479 ± 0.0128 0.7701 ± 0.0117
SAGE 0.7795 ± 0.0012 0.7496 ± 0.0163 0.7921 ± 0.0069

RevGAT 0.8083 ± 0.0051 0.7883 ± 0.0014 0.7955 ± 0.0096
Ensemble 0.8140 ± 0.0033 0.7908 ± 0.0045 0.8104 ± 0.0041

Simple-GCN 0.6216 ± 0.0052 0.6040 ± 0.0039 0.6219 ± 0.0039
SIGN 0.6668 ± 0.0078 0.6621 ± 0.0009 0.6698 ± 0.0010

tape-arxiv23 MLP 0.7940 ± 0.0022 0.7772 ± 0.0033 0.8008 ± 0.0018
GCN 0.7678 ± 0.0024 0.7541 ± 0.0042 0.7746 ± 0.0025
SAGE 0.7894 ± 0.0024 0.7677 ± 0.0018 0.7975 ± 0.0016

RevGAT 0.7880 ± 0.0023 0.7840 ± 0.0058 0.7954 ± 0.0028
Ensemble 0.8029 ± 0.0020 0.7967 ± 0.0037 0.8065 ± 0.0022

Simple-GCN 0.2516 ± 0.0027 0.2451 ± 0.0004 0.258 ± 0.0011
SIGN 0.7186 ± 0.0041 0.6804 ± 0.0041 0.733 ± 0.0009

Table 4: Node classification accuracy for the Cora, PubMed, ogbn-arxiv, ogbn-products, and tape-arxiv23 datasets,
demonstrating the effect of changing the pre-trained LLM text encoder. The experiment is run over four seeds,
with mean accuracy and standard deviation shown. The best results are coloured green (first), yellow (second), and
orange (third). For all experiments, we use TA features only, and the simple task instruction to bias the embeddings.

5 Analysis

Main Results (Table 1) We find that ensembling
GNNs always leads to superior performance across
datasets when taking the STAGE approach.

Despite the reduced computational resources and

training data requirements, the STAGE method re-
mains highly competitive across all benchmarks.
The ensemble STAGE approach lags behind the
TAPE pipeline by roughly 5% on Cora, 3.5% on
Pubmed, 0.8% on ogbn-products, and 4% on tape-
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arxiv23. This is a strong result when we consider
that STAGE involves training only the GNN en-
semble, whereas TAPE also requires two finetuned
LMs to generate node features. We see marginally
superior results on the ogbn-arxiv dataset using the
ensemble STAGE approach.

Instruction-biased Embedding Results (Table
2) From our findings we conclude that varying
the instructions to bias embeddings has little effect
on downstream node classification performance for
the models we evaluated. We note that while the
authors of all embedding models recommend pro-
viding instructions along with input text in order to
avoid degrading performance, we did not measure
a performance improvement in our experiments.

This experiment further supports our claim that
an ensemble approach improves robustness across
datasets and methods of node feature generation.

PEFT Results (Table 3) Finetuning each LLM
gave marginal performance improvements across
all datasets to varying degrees; we see the largest
improvement on pubmed (3%). It is of note that
finetuning significantly increases the number of
trainable parameters (see Table 5) and total training
time. Specifically, PEFT for 7B embedding models
has over 20 million trainable parameters. On a
single A100 GPU, training runs lasted 6 hours on
ogbn-arxiv.

LLM Embedding Model Comparison (Table 4)
All three LLM embedding models demonstrated
comparable performance on the graph tasks, with
each model exhibiting marginally better results on
different datasets. Notably, there was no clear win-
ner among them. The LLM2Vec model exhibited
slightly weaker performance on the larger datasets
(ogbn-arxiv, ogbn-products, tape-arxiv23), while
it was marginally stronger on the smaller datasets
(Cora, PubMed).

Ensembling the GNN models consistently
ranked among the top three models across all three
LLM embedding models, delivering an average per-
formance increase of 1%. Among the individual
GNN architectures, RevGAT consistently demon-
strated superior performance.

Diffusion-pattern GNN Results (Table 4) The
diffusion-based GNNs yielded variable results
across datasets. Specifically, SIGN emerged as
the second-best performer on the Cora dataset. As
expected, SIGN consistently outperformed Simple-
GCN, given that it generalizes the latter. Due to

its low training time, SIGN is a viable candidate
for large datasets, although careful tuning of its
hyper-parameters is recommended for optimal per-
formance.

Ablation Study Results (Table 6) From our ab-
lation study we observe that no individual GNN
model outperforms any ensemble of models on any
dataset. Additionally, we find that the full ensem-
ble of MLP, GCN, SAGE and RevGAT achieve
the highest and most stable accuracy scores across
datasets.

Scalability An important advantage of STAGE is
the lack of finetuning necessary to achieve strong
results. This lies in contrast to approaches such as
TAPE (He et al., 2024) and SimTeG (Duan et al.,
2023a), both of which require finetuning at least
one LM. Training an ensemble of GNNs and MLP
head over the ogbn-arxiv dataset can be performed
on a single consumer-grade GPU in less than 5
minutes. This is illustrated in Figure 2 where we
compare the relationship between training time and
accuracy for a number of SoTA node classification
approaches. When using SIGN diffusion, train-
ing time was under 12 seconds for the ogbn-arxiv,
but this came at a performance cost. Moreover,
TAPE relies on text-level enhancement via LLM
API calls, which adds a new dimension of cost and
rate-limiting3 to consider when adapting to other
datasets.

6 Conclusions

This work introduces STAGE, a method to use pre-
trained LLMs as text encoders in TAG tasks with-
out the need for finetuning, significantly reducing
computational resources and training time. Ad-
ditional gains can be achieved through parameter-
efficient finetuning of the LLM. Data augmentation,
which is orthogonal to our approach, could improve
performance with general-purpose text embedding
models. However, it likely remains intractable for
many large-scale datasets due to the need to query
a large model for each node.

We also demonstrate the effect of diffusion oper-
ators (Frasca et al., 2020) on node classification per-
formance, decreasing TAG pipeline training time
substantially. We aim to examine the scalability of
diffusion-pattern GNNs on larger datasets in later
work.

3https://platform.openai.com/docs/guides/
rate-limits
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Future work may aim to refine the integration
of LLM encoders with GNN heads. Potential
strategies include an Expectation-Maximization ap-
proach or a joint model configuration (Zhao et al.,
2023). A significant challenge is the requirement
for large, variable batch sizes during LLM fine-
tuning due to current neighborhood sampling tech-
niques, which necessitates increased computational
power. We anticipate that overcoming these limi-
tations will make future research more accessible
and expedite iterations.
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A Appendix

B Negative Results

Co-training LLM and GNN: In a similar ap-
proach to iterative methods, we investigated co-
training the LLM and GNN on the ogbn-arxiv
node classification task to facilitate a shared rep-
resentation space. This proved unfeasible due to
the memory requirements exceeding the capacity
of one A100 GPU.

C Implementation of Diffusion Operators

We implement diffusion operators from two meth-
ods, Simple-GCN (Wu et al., 2019) and SIGN
(Frasca et al., 2020). In the case of SIGN, the au-
thors omit implementation details of the operators,
so we include them here.
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Let A denote the adjacency matrix of a possibly
directed graph G, X its node features, and D the
diagonal degree matrix of G.

We denote the random-walk normalized adja-
cency ARW& := AD−1 and the GCN-normalized
adjacency (Kipf and Welling, 2017)

AGCN := (D + I)−1/2 (A+ I) (D + I)−1/2 (4)

The Personalized PageRank matrix is then given
by (Gasteiger et al., 2022):

APPR := α (In − (1− α)ARW)−1 (5)

And we denote the triangle-based adjacency ma-
trix by A∆, where (A∆)ij counts the number of
directed triangles in G that contain the edge (i, j)

Diffusion is applied to node features X by ma-
trix multiplication. Simple-GCN takes a power k
of AGCN as its diffusion operator, whilst SIGN dif-
fusion generalizes this to concatenate powers of
AGCN, APPR and A∆.

Diffusion can be calculated efficiently if sparse-
matrix-sparse-matrix multiplication is avoided. For
both SIGN and Simple-GCN, the order of oper-
ations for applying a power of an operator Aop
should be

Aop(Aop(...(Aop(X))...)︸ ︷︷ ︸
k times

(6)

as opposed to (Ak
op)X , where the operator matrix

Aop is feasible to calculate, since the former avoids
sparse matrix multiplication. In SIGN, the recur-
sive nature of eq.6 can be exploited to reuse results
for calculating successive powers.

In the case of personalized pagerank diffusion,
we first use a trick from (Gasteiger et al., 2022) to
approximate the diffused features of personalized
pagerank matrix APPRX in linear time and avoid
calculative APPR directly, by viewing eq.5 as topic-
sensitive PageRank (Haveliwala, 2002). We use
the random-walk normalized adjacency matrix.

The following power iteration approximates
APPRX (notation from (Gasteiger et al., 2022)):

Z(0) := X

Z(k+1) := (1− α)AZ(k) + αX

To compute the nth diffused power, we repeat
the process n times:

Z
(0)
0 = X

Z
(0)
n+1 = lim

k→inf
Z(k)
n

Lastly, for triangle-based diffusion, we count tri-
angles using linear algebra. For unweighted A we
perform a single sparse matrix multiplication to ob-
tain A2, in which element (i, j) counts the directed
paths in G for node i to node j. We then calculate

A∆ = AT ⊙A2

where ⊙ denotes the Hadamard product, which can
be efficiently calculated for sparse matrices. We
then normalize and diffuse features over powers of
A∆ in the same fashion as for AGCN .

An implementation of these operators as Graph-
BLAS (Davis, 2019) code is published alongside
this paper.

C.1 Parallelism of diffusion operators
All operations above can be be parallelized across
columns of X , either keeping A in shared memory
on one machine or keeping a copy on each execu-
tor in a distributed computing infrastructure like
Apache Spark.

D Preprocessing & Model Selection for
Diffusion Operators

For Simple-GCN (Wu et al., 2019), we set the de-
gree k by selecting the highest validation accuracy
from k = 2, 3, 4, of which k = 2 had the highest
accuracy in each case. For SIGN (Frasca et al.,
2020), we choose s, p, t from the highest valida-
tion accuracy amongst (3, 0, 0) (3, 0, 1) (3, 3, 0),
(4, 2, 1) (5, 3, 0). For Cora and PubMed, (4, 2, 1)
was chosen, and for ogbn-arxiv, ogbn-products,
and tape-arxiv23 (3, 3, 0) was chosen. We chose
the number of layers for the Inception NLP to
match the number of layers in other GNNs tested,
4. We did not perform additional hyper-parameter
tuning. When preprocessing the embeddings, we
centered and scaled the data to unit variance for
Simple-GCN and SIGN only.

E Model Trainable Parameters
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Model Trainable Parameter Count

RevGAT 3,457,678
GCN 559,111
SAGE 1,117,063
MLP 117,767
Simple-GCN 24,111
SIGN-(3,3,0) 500,271
SIGN-(4,2,1) 582,575
PEFT 7B LLM >20M

Table 5: Trainable parameter counts for different models.
7B LLM refers to all finetuned LLM embedding models
used during experiments (see Section 3.1)

F Ablation Study

To study the effect each model has on the GNN
ensemble step of STAGE, we perform a detailed
ablation study. The results are shown in Table 6.

G Datasets

In this section, we describe the characteristics of
the node classification datasets we used during our
work. The statistics are shown in Table 7.

H Instruction-biased Embeddings

In Table 8 we list the specific instructions used to
655 investigate the effect of biasing embeddings.
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Method Cora PubMed ogbn-arxiv ogbn-products tape-arxiv23

Full Ensemble 0.8824 ± 0.0155 0.9265 ± 0.0068 0.7777 ± 0.0019 0.8140 ± 0.0033 0.8029 ± 0.0020
No MLP 0.8838 ± 0.0039 0.9239 ± 0.0036 0.7748 ± 0.0012 0.8093 ± 0.0021 0.8015 ± 0.0010
No GCN 0.8685 ± 0.0209 0.9240 ± 0.0076 0.7731 ± 0.0017 0.8100 ± 0.0038 0.8028 ± 0.0023
No SAGE 0.8759 ± 0.0207 0.9258 ± 0.0110 0.7739 ± 0.0020 0.8116 ± 0.0045 0.8021 ± 0.0035
No RevGAT 0.8764 ± 0.0180 0.9272 ± 0.0052 0.7717 ± 0.0007 0.8029 ± 0.0036 0.7985 ± 0.0018

Best Individual 0.8722 ± 0.0063 0.9142 ± 0.0122 0.7638 ± 0.0054 0.8083 ± 0.0051 0.7880 ± 0.0023

Best Individual Model SAGE MLP RevGAT RevGAT RevGAT

Table 6: Ablation study results for the ensemble model on various datasets. The table shows the accuracy when
each component is removed from the ensemble. The experiment is run over four seeds, with mean accuracy and
standard deviation shown. The best results are coloured green (first), yellow (second), and orange (third). For all
experiments, we use SFR-Embedding-Mistral as the embedding model on TA features only, and the simple task
instruction to bias the embeddings.

Dataset Node Count Edge Count Task Metric

Cora (McCallum et al., 2000) 2,708 5,429 7-class classif. Accuracy
Pubmed (Sen et al., 2008) 19,717 44,338 3-class classif. Accuracy
ogbn-arxiv (Hu et al., 2021b) 169,343 1,166,243 40-class classif. Accuracy
ogbn-products (Hu et al., 2021b) (subset) 54,025 74,420 47-class classif. Accuracy
tape-arxiv23 (He et al., 2024) 46,198 78,548 40-class classif. Accuracy

Table 7: Statistics of the TAG datasets

Dataset Prompt Type Prompt
ogbn-arxiv, arxiv_2023, cora, pubmed Simple Task Identify the main and secondary category of Arxiv

papers based on the titles and abstracts.
ogbn-arxiv, arxiv_2023, cora, pubmed Graph-Aware Identify the main and secondary category of Arxiv

papers based on the titles and abstracts. Your pre-
dictions will be used in a downstream graph-based
prediction that for each paper can learn from your
predictions of neighboring papers in a graph as well
as the predictions for the paper in question. Papers
in the graph are connected if one cites the other.

ogbn-products Simple Task Identify the main and secondary category of this prod-
uct based on the titles and description.

ogbn-products Graph-Aware Identify the main and secondary category of this prod-
uct based on the titles and description. Your pre-
dictions will be used in a downstream graph-based
prediction that for each product can learn from your
predictions of neighboring products in a graph as well
as the predictions for the paper in question. Products
in the graph are connected if they are purchased to-
gether.

Table 8: Task descriptions for embedding bias across various datasets.
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Abstract

Despite progress in automated fact-checking,
most systems require a significant amount
of labeled training data, which is expensive.
In this paper, we propose a novel zero-shot
method, which instead of operating directly
on the claim and evidence sentences, decom-
poses them into semantic triples augmented
using external knowledge graphs, and uses
large language models trained for natural lan-
guage inference. This allows it to generalize
to adversarial datasets and domains that super-
vised models require specific training data for.
Our empirical results show that our approach
outperforms previous zero-shot approaches on
FEVER, FEVER-Symmetric, FEVER 2.0, and
Climate-FEVER, while being comparable or
better than supervised models on the adversar-
ial and the out-of-domain datasets.

1 Introduction

Fact-checking is the task of assessing the truthful-
ness of a claim, and is well-studied across multi-
ple disciplines. Traditionally, journalists perform
such a task manually, which is time-consuming.
More recently, automated fact-checking systems
have become of interest due to the explosion of
(mis)information on social media (Adair et al.,
2017; Hassan et al., 2017). In the NLP community,
fact-checking is typically defined as a task consist-
ing of three stages: claim detection, evidence re-
trieval, and claim verification (Guo et al., 2022). In
particular, verdict prediction assumes the evidence
is retrieved from sources such as Wikipedia or the
web, and aims to predict the verdict of a claim given
the retrieved evidence, often as a three-way clas-
sification task (Thorne et al., 2018a): SUPPORTS,
REFUTES, and NEI (NOT ENOUGH INFO).

Recent work (DeHaven and Scott, 2023) has
achieved strong results on canonical datasets like
FEVER (Thorne et al., 2018a), mostly relying
on supervised approaches. However, concerns

have been expressed on whether these models
learn language’s and the task’s nuances or merely
leverage embedded biases and dataset idiosyn-
crasies. This argument (Gururangan et al., 2018;
Poliak et al., 2018) gains empirical weight when
such high-performing models are tested against ad-
versarial fact-checking datasets such as FEVER-
Symmetric (Schuster et al., 2019) and FEVER
2.0 (Thorne et al., 2019). Their underperfor-
mance (Thorne et al., 2018b) in these adversarial
benchmarks exposes a lack of model robustness.

The narrative of this vulnerability extends to out-
of-domain contexts as well. A pertinent example is
the Climate-FEVER dataset—a platform for veri-
fying real-world climate claims (Diggelmann et al.,
2020). Supervised models, despite their commend-
able performance on the original FEVER dataset,
suffer performance degradation when evaluated on
Climate-FEVER. Additionally, earlier zero-shot
fact-checking approaches (Pan et al., 2021; Wright
et al., 2022) hinge on synthetic data creation for
training purposes. While this data emanates from
factual evidence, it largely adheres to the domain
boundaries of the originating dataset. Such inherent
domain confinement curtails the model’s capacity
for broader generalization.

In this work we propose a zero-shot method uti-
lizing semantic triples and knowledge graphs in
conjunction with pretrained Natural Language In-
ference (NLI) models, and does not require training
data for parameter learning.

In particular, we propose to extract triples from
the claim and the evidence texts to form knowledge
graphs and fill potential gaps in the evidence using
a universal schema model (Riedel et al., 2013) on
Wikidata and Wikipedia. Crucially, our method
refrains from utilizing any annotated or synthetic
training data, sidestepping the pitfalls of biases and
dataset artifacts that can inadvertently be encoded
into models. Additionally, by decomposing the
original claim into triples, our method can harness
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Figure 1: An overview of our zero-shot learning system. By harnessing Wikidata for training the universal schema
model, incorporating on-demand training with evidence triples, and leveraging OpenIE for triple-level inference,
our system achieves enhanced improvements. Label S stands for SUPPORTS and R stands for REFUTES.

the pre-trained NLI model’s strengths more effec-
tively. Both design choices position our approach
to exhibit greater robustness when subjected to ad-
versarial and out-of-domain evaluations.

As shown in Figure 1, we follow a two-stage ver-
ification process: triple-level and claim-level. For
triple-level, we employ NLI models pre-trained
without further fine-tuning on any fact-checking
training dataset, hence a zero-shot setting. For
claim-level verification, we design a simple rule-
based system relying on the triple verification. In
Figure 1, the process involves extracting claim
and evidence sentences to generate triples. Sub-
sequently, the universal schema is applied to ob-
tain additional triples. The NLI model is then em-
ployed to assign triple-level labels, resulting in 2
SUPPORTS, 1 REFUTES, and 1 NEI1. Finally, a
rule-based system is utilized to derive claim-level
verification. In this example, since one claim triple
is refuted, the entire claim is considered refuted.
Note that we are able to use the “gap” triples filled
by the universal schema model to retrieve better
evidence. For example, <Manning, member_of,
Stanford> is needed to verify the claim. However,
such a triple is missing from the evidence triple ex-
traction because the word member is not mentioned
in the evidence. Instead, <Manning, professor_of,
Stanford> is extracted from evidence. Therefore,
with the universal schema model, <Manning, mem-
ber_of, Stanford> will be assigned a high proba-
bility given <Manning, prof_of, Stanford> is ob-
served as evidence, and the gap is filled.

1In the context of our study, the NLI labels have been
appropriately reconfigured to align with the FEVER labels.

We evaluate our approach on the
FEVER (Thorne et al., 2018a), FEVER-
Symmetric (Schuster et al., 2019), FEVER
2.0 (Thorne et al., 2019), and Climate-
FEVER (Diggelmann et al., 2020) datasets.
Our findings show that our system consistently
outperforms zero-shot NLI model baselines by a
margin of approximately 2.5 percentage points
and beats the previous zero-shot approach by
around 3 percentage points on FEVER-Symmetric.
Notably, in contrast to state-of-the-art supervised
methods (DeHaven and Scott, 2023), our ap-
proach exhibits robustness on both adversarial
datasets. When evaluated on the out-of-domain
Climate-FEVER dataset, our method outperforms
the supervised method by a margin exceeding 10
percentage points.

2 Related Work

Recent advances in natural language processing
have highlighted significant challenges associated
with supervised learning models. A prominent
concern is the models’ tendency to learn dataset-
specific biases, often at the expense of genuine
linguistic understanding. For instance, Schuster
et al. (2019) demonstrated the effectiveness of a
claim-only model that classifies each claim in isola-
tion, without the need for associated evidence. The
high performance achieved by their system over
the baseline can be attributed to the idiosyncrasies
inherent in the dataset’s construction. Similarly,
Thorne et al. (2019) highlighted the vulnerability
of several FEVER systems, observing significant
performance declines under adversarial conditions
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with simple rule-based perturbations. In other tasks
such as NLI, previous works (Poliak et al., 2018;
Gururangan et al., 2018) examined the susceptibil-
ity of neural models to such spurious correlations,
revealing a troubling propensity for models to ex-
ploit unintended, data-specific heuristics. Taken
together, these findings suggest that annotation ar-
tifacts within datasets contain discernible patterns.
Such vulnerabilities underscore the necessity for
more rigorous evaluation mechanisms, thus moti-
vating the introduction of several adversarial fact-
checking evaluation datasets (Guo et al., 2022).

Pan et al. (2021) presented the first work to in-
vestigate zero-shot fact verification, where they
proposed a framework named Question Answering
for Claim Generation (QACG). From any given
evidence, QACG generates SUPPORTS, REFUTES,
and NEI claims. A classifier is then trained using
the generated claims instead of annotated claims,
hence a zero-shot setting. To generate claims,
QACG first produces QA pairs using a Question
Generator fine-tuned on the processed SQuAD
dataset (Zhou et al., 2018). Next, a QA-to-Claim
Model is fine-tuned on the QA2D dataset (Dem-
szky et al., 2018), which converts each QA pair
into a declarative sentence. However, their exper-
iments are limited, using only the gold evidence
to evaluate various zero-shot methods, which is
not practical in a real-world setting. Also, unlike
their work, where training is still performed using
the generated training data, our approach does not
require any training for claim verification.

Knowledge graphs have long been investigated
in NLP, where the first discussions of a graphi-
cal knowledge representation can date back to the
50s (Newell et al., 1959). Since then, many NLP re-
searchers have tried to integrate knowledge graphs
into various NLP tasks, notably language models
with knowledge graphs (Nakashole and Mitchell,
2014; Logan IV et al., 2019; Liu et al., 2020; Wang
et al., 2021a) and many downstream tasks such
as question answering (Liu et al., 2020) and text
classification (Hu et al., 2021). For fact-checking
specifically, Ciampaglia et al. (2015) proposed to
use knowledge graphs to verify simple natural lan-
guage claims, considering fact-checking as a spe-
cial case of link prediction. Their method uses
the subject and object of the claim and then finds
the shortest path between the two entities. If the
claim is true, there should be such a shortest path
(or an edge); otherwise, there should be no short-
est path (nor edge). While the fact that a simple

notation description
C claim
E evidence
Y claim-level label of C
C set of triples extracted from C
E set of triples extracted from E
c c ∈ C
e e ∈ E
ye triple-level label of c predicted by e
y aggregated triple-level label of c

Table 1: Notations used in our fact-checking system

shortest-path computation can assess the truth of
new claims is exciting, this work is limited because
all the factual claims are automatically generated
using triples. Therefore, it does not directly apply
to recent human-generated fact-checking datasets
such as FEVER, as claims in FEVER are much
more complicated.

3 Methodology

As introduced, the verdict prediction step of
claim verification is to predict a label Y ∈
{SUPPORTS, REFUTES, NEI} given a claim C and
its corresponding evidence E , indicating if C is sup-
ported, refuted, or cannot be verified by E . While
we do not use any training data (manually or auto-
matically labeled), we assume a human-annotated
development set is available for fine-tuning hyper-
parameters of our system. In keeping with prior
research, we use the same set of notations and ex-
tend it to include triples. Table 1 contains all the
notations used in the methodology.

Figure 1 illustrates the structure of our system,
which comprises three main steps: Triple Extrac-
tion, Triple-level Verification, and Claim-level Ver-
ification. Additionally, we have integrated an exter-
nal component, the Universal Schema. This section
provides comprehensive insights into each compo-
nent, outlining their functionalities and operations.

3.1 Triple Extraction

A semantic triple consists of three entities: the sub-
ject, the object, and the relation between them. We
denote such a triple as <subj, rel, obj> where all
three entities are natural language words, phrases,
or clauses, and no schema needs to be specified
in advance. Extracting a set of triples from plain
text is called open information extraction (Open
IE) (Yates et al., 2007).
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As illustrated in Figure 1, our system first em-
ploys an OpenIE tool to extract triples from claim C
and evidence E , resulting in a set C of claim triples
and a set E of evidence triples. Note that this step
is back-traceable. For example, for any evidence
triple, we can trace back which evidence sentence it
comes from and which part of that sentence forms
such evidence triple.

3.2 Triple-level Verification
Given a claim triple c and a set of evidence triples
E, triple-level verification predicts a label y ∈
{SUPPORTS, REFUTES, NEI} for this triple. Intu-
itively, any evidence triple may provide signals to
predicting y. Therefore, given c, for each evidence
triple e in E, we utilise an NLI model to predict
a label yp with a softmax score as its probability.
We linearise c and e and concatenate them with
a special separation token: e [SEP] c. For exam-
ple, let c = <Barack Obama, was born in, USA>
and e = <Barack Obama, was born in, Hawaii>,
the input of the NLI model therefore is, ‘Barack
Obama was born in Hawaii [SEP] Barack Obama
was born in USA’. Following previous work, we
map NLP labels to fact-checking labels, namely
ENTAILMENT to SUPPORTS, CONTRADICTION to
REFUTES, and NEUTRAL to NEI.

To filter out less reliable triple-level labels yp, we
set up two thresholds for SUPPORTS and REFUTES

as hyperparameters to cut off labels with low prob-
abilities. The remaining labels are aggregated to
reach a triple-level label y for the claim triple c
using one of the following voting mechanisms:

Max voting takes the label with the overall high-
est probability as the triple-level label.

Majority voting ensures that the label with the
most supporters (i.e., most frequent appearances)
is the triple-level label.

Weighted sampling samples a label according
to the highest probabilities of each label.

Note that if all labels are filtered out, the triple-
level label is NEI because none of the evidence
triple is reliable enough for this claim triple.

3.3 Claim-level Verification
For each claim triple c in C, a triple-level label y is
predicted by the previous step. The final step is to
reach a claim-level label Y from this set of triple-
level labels using the following rule-based system
also used by previous research (Stacey et al., 2022):

• If there exists a y that is REFUTES, then Y is
REFUTES.

• If no y is REFUTES and there exists a y that is
NEI, then Y is NEI.

• Otherwise, Y is SUPPORTS.

3.4 Universal Schema
The challenge of integrating a knowledge graph
with our system stems from the incompatibility
between a pre-determined schema and the unre-
stricted textual information extracted from open
sources. In response, we put forward a solution
that involves the implementation of the universal
schema (Riedel et al., 2013), which acts as an inter-
face between pre-defined symbolic relations such
as those found in knowledge graphs, and uncon-
strained textual relations such as those extracted by
Open IE. Universal schema can be viewed as a ma-
trix that represents the knowledge base, comprising
pairs of entities and relations.

Notably, the original knowledge graph dataset
employed in previous research on Universal
Schema, namely Freebase (Bollacker et al., 2008),
is no longer maintained. Therefore, we under-
took the task of training a novel universal schema
model, utilizing a more contemporary language
model architecture and incorporating data from
Wikidata (Vrandečić and Krötzsch, 2014) and some
corresponding texts from Wikipedia.

Task Definition. Consistent with Riedel et al.
(2013), a fact, or relation instance, is denoted by
the pair rel and <subj, obj>. The goal of a universal
schema model is, by definition, to estimate, for a
given relation rel and a given tuple <subj, obj>,
the probability p(yrel,<subj,obj> = 1) where the
random variable yrel,<subj,obj> represents if <subj,
obj> is in relation rel. In the context of our fact-
checking scenario, we leverage these <subj, rel,
obj> triples to complete missing information.

Objective. To train our model, we adopt Bayesian
Personalized Ranking (BPR) (Rendle et al., 2009).
In this approach, observed true facts are assigned
higher scores compared to both true and false un-
observed facts. This scoring scheme serves as our
optimization objective. Let σ denote the sigmoid
function, θf+ denote the dot product of the latent
representations of a positive (θf− for negative) fact
pair rel and <subj, obj>, then the objective function
is Objf+,f− = −log(σ(θf+ − θf−)).

Integration. Upon successful training of the uni-
versal schema model, it becomes feasible to predict
the probability of a tuple being associated with a
given relation. The integration of this component
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into our fact-checking system involves utilizing the
universal schema model to assign scores to poten-
tial triple candidates for a given set of claim triples
C and supporting evidence triple set E. All possi-
ble combinations of relations in the C and tuples
in the E are considered as triple candidates. The
universal schema model is then used to compute
the probability of each triple candidate being true.
Similar to Section 3.2, a threshold is set to remove
less reliable triple candidates. The triple candidates
with a probability above the threshold are only uti-
lized for triple-level verification if the available
evidence triples are insufficient, i.e. when the label
for the triple-level label y is NEI. In a manner akin
to in-context learning, we also modify the Univer-
sal Schema model during the inference stage, upon
encountering newly observed facts derived from
evidence triples E.

4 Implementation

Evidence Retrieval. To perform document
level retrieval, we adopt the approach proposed
by Hanselowski et al. (2018) For sentence level
retrieval, we aim to demonstrate the effectiveness
of our verification system without relying on any
fact-checking training data. Therefore, we utilize
traditional information retrieval techniques such
as tf-idf weighting. In addition, we incorporate a
semantic score as a weight factor, which is com-
puted using the cosine similarity of embeddings
generated by a neural model called stsb-roberta-
base (Reimers and Gurevych, 2019).2

OpenIE Model. We utilized an AllenNLP reim-
plementation of a BiLSTM sequence prediction
model initially proposed by Stanovsky et al. (2018)
as our Open Information Extraction (OpenIE) tool.
The model can recognize verbs as relations and
add their corresponding subjects and objects as
arguments when given a sentence as input. For in-
stances with more than two arguments, the model
produces a triple for each combination of subjects
or objects. If a relation only has one argument,
known as a unary relation, a placeholder is added
to ensure consistency across all generated triples.

NLI Model. In our experiments, we evaluate the
effectiveness of our system using both base size
and large size pre-trained NLI models. The aim is
to demonstrate that our system consistently outper-

2https://huggingface.co/sentence-transformers/stsb-
roberta-base

forms the NLI baselines. In particular, we lever-
age the RoBERTa base and large models, which
have been pretrained on the MNLI dataset. Both
models follow the standard NLI format of taking
a premise and a hypothesis as input in the format
of "[premise] SEP [hypothesis]", where SEP de-
notes the special separation token. We adhere to
this format throughout our experiments.

Universal Schema Model. We leverage Sentence-
BERT (Reimers and Gurevych, 2019) to obtain
sentence embeddings that serve as latent represen-
tations for both relations and tuples. This approach
allows us to capture the semantic meaning of the
sentences, which is essential for accurately repre-
senting the relations and tuples in our model. The
pre-trained model "all-MiniLM-L6-v2"3 is utilized
in our study, which is based on MiniLM (Wang
et al., 2020). This model has been pre-trained with
a contrastive objective using diverse datasets con-
taining sentence pairs. The cosine similarity is
computed for each possible sentence pair within a
batch, and cross-entropy loss is employed to com-
pare these similarities with the true pairs.

5 Experimental Setup

Dataset. In our evaluation, we employ four
benchmark datasets, FEVER, FEVER-Symmetric,
FEVER 2.0, and Climate-FEVER. FEVER
dataset (Thorne et al., 2018a) comprises 185,445
claims that are created by modifying sentences
from Wikipedia, which are subsequently verified
on Wikipedia without knowing the original sen-
tence they were derived from. On the other
hand, the FEVER-Symmetric dataset is introduced
by Schuster et al. (2019) to address the biases
identified in the original FEVER dataset. This
dataset is constructed with a regularization pro-
cedure to downweigh the giveaway phrases that
cause potential biases. Similarly, the FEVER 2.0
dataset (Thorne et al., 2019) comprises adversarial
examples intentionally created by participants of
the FEVER 2.0 shared task. The task required
teams to generate claims specifically designed
to challenge FEVER-trained models. From this
dataset, we extracted all SUPPORTS and REFUTES

claims, along with their corresponding gold evi-
dence sentences, for our evaluation. The Climate-
FEVER dataset (Diggelmann et al., 2020) is for

3https://huggingface.co/sentence-transformers/all-
MiniLM-L6-v2
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verification of real-world climate change-related
claims, excluding disputed claims.

To train our universal schema model, we uti-
lize the Wikidata5m dataset (Wang et al., 2021b),
which is a knowledge graph dataset comprising one
million entities. This dataset is particularly suitable
for our purposes, as it includes an aligned corpus,
which we leverage in conjunction with the Ope-
nIE tool to extract open-domain triples. In our ap-
proach, all triples from the Wikidata5m dataset and
the extracted triples the aligned corpus are treated
as positive samples. To generate negative samples
based on a given positive sample, we utilize a ran-
domized approach where we preserve the relation
and generate arbitrary tuples that exist within the
dataset. This approach allows us to create negative
samples that differ from the positive samples while
still being relevant to the original relation.

Hyperparameters. In our experiments, claim veri-
fication does not require model-level hyperparame-
ter tuning since no training is involved. However,
as outlined before, we have a small set of three
thresholds to be adjusted: a threshold for the SUP-
PORTS label at the triple level, a threshold for the
REFUTES label at the triple level, and a thresh-
old for filtering out Universal Schema triple can-
didates.4 We adjusted their values on the FEVER
dataset and did not perform any further adjustments
on FEVER-Symmetric, FEVER 2.0, or Climate-
FEVER. This deliberate choice was made to test
the robustness of our system in handling different
datasets without relying on dataset-specific opti-
mization, an advantage of zero-shot approaches.

Figures 2 illustrates the impact of thresholds on
our system, and that optimizing them is relatively
straightforward as the best settings are clustered
in the region. It is worth noting that the optimal
threshold for REFUTES is considerably higher com-
pared to SUPPORTS, indicating that our system is
more stringent in assigning a triple-level REFUTES

label than SUPPORTS. This difference is justified
by the fact that, as explained in Section 3.3, a sin-
gle refuted claim triple is sufficient to refute the
entire claim, therefore it helps being cautious when
assigning a REFUTES label to claim triples.

4The specifics concerning the hyperparameters of the Uni-
versal Schema model can be found in Appendix A. Note that
the aforementioned thresholds were identified by conducting
a search with a fixed Universal Schema model.

Figure 2: The influence of thresholds on accuracy for
the SUPPORTS (x-axis) and REFUTES (y-axis) with fixed
threshold for Universal Schema triple candidates.

6 Results and Discussion

Our main results are presented in Table 2, where
we compare our system’s performance against the
current state-of-the-art system on FEVER, BEV-
ERS (DeHaven and Scott, 2023), the FEVER-
trained entailment-predictor (Diggelmann et al.,
2020), and QACG (Pan et al., 2021)5. Also, we
conduct additional ablation experiments to demon-
strate the robustness of our system by varying the
weighting factor and voting mechanism.

Finding 1 Our zero-shot approach exhibited en-
hanced robustness against adversarial perturba-
tions and manifested notable out-of-domain effec-
tiveness in contrast to supervised approaches.

As shown in Table 2, our zero-shot method demon-
strates greater resilience against adversarial attacks
compared to supervised methods, providing a sig-
nificant advantage in real-world scenarios where
the presence of misinformation and deceptive tac-
tics can impede the performance of fact-checking
systems.

By abstaining from using training data, our ap-
proach intuitively circumvents these issues and
offers a more robust approach to fact-checking.
Specifically, despite exhibiting lower performance
than supervised systems on the original FEVER
dataset, our models achieved highly competitive
scores on the FEVER-Symmetric dataset, trailing

5We made efforts to establish contact with the authors of
QACG; however, our attempts to elicit a response were unsuc-
cessful. Therefore, a direct comparison with their approach is
not feasible, except for the FEVER-Symmetric dataset, where
they reported performance under the same setting as ours.
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Model FEVER FEVER-Symmetric FEVER 2.0 Climate-FEVER

Accuracy FEVER Score Accuracy Accuracy Accuracy F1

Supervised

BEVERS 80.24 77.70 75.9 63.4 - -
Diggelmann et al. (2020) 77.69 - - - 38.78 32.85

Zero-shot
Random Guess 33.33 - 50.00 50.00 33.33 33.33
QACG - - 77.1 - - -
NLI Model (base) 36.07 31.65 51.74 49.68 - -
NLI Model (large) 58.12 54.38 78.94 70.38 44.37 44.24
Our system (base) 38.56 33.73 56.62 53.28 - -
Our system (large) 60.40 56.79 79.78 72.92 46.71 45.71
Our system (large) + USchema 61.30 57.84 79.78 73.34 46.71 45.71

Table 2: Main results on FEVER (S/R/NEI), FEVER-Symmetric (S/R), FEVER 2.0 (S/R) and Climate-FEVER
(S/R/NEI). BEVERS is the current state-of-the-art system on FEVER and Diggelmann et al. (2020) is the entailment-
predictor based on ALBERT (large-v2). The accuracy on FEVER-Symmetric, FEVER 2.0 and Climate-FEVER
datasets was achieved without fine-tuning, demonstrating the models’ robustness.

Variant ∆ Accuracy

tf-idf +2.28
Cosine similarity +2.11

Max voting +2.05
Majority voting +2.13
Weighted sampling +1.93

Table 3: Improvements of our system over baseline
using different retrieval weighting factor and voting
technique are steady.

the state-of-the-art by only approximately 2 per-
centage points. We attribute this positive outcome
to our system’s utilization of NLI models, which
already demonstrate outstanding performance on
this adversarial dataset. The results obtained on the
FEVER 2.0 dataset align with FEVER-Symmetric
and further strengthen our conclusions.

On Climate-FEVER, the supervised approach
delineated by Diggelmann et al. (2020) achieved
an accuracy of 38.78% and an F1 score of 32.85%.
In comparison, our introduced zero-shot method-
ology showcased enhanced results, achieving an
accuracy rate of 46.71% and an F1 score of 45.71%,
which demonstrated a notable generalization ability.
These findings suggest that our zero-shot method
offers a promising avenue for improved perfor-
mance in out-of-domain tasks.

Finding 2 Our system, utilizing triple-level infer-
ence, consistently improves over the baseline re-
sults irrespective of the NLI model used.

In our experiments, our approach was able to im-

Evidence ∆ Accuracy

Gold + Random +7.93
Gold + Retrieved (tf-idf) +3.74
Retrieved (tf-idf) +2.28

Table 4: Improvements of our system over baseline
using gold evidence vs. retrieved evidence.

prove the performance of both the base size and
large size NLI models by approximately 2.5%.
These consistent improvements suggest that our
approach can continue to benefit from the ongo-
ing progress: as more advanced models are being
developed, our system is expected to demonstrate
even greater accuracy and reliability.

In addition, we performed ablation experiments
to investigate the impact of various weighting fac-
tors and different voting mechanisms, as outlined
in Section 3. The results, presented in Table 3,
demonstrate that our system’s improvements over
the baseline NLI models in Table 2 are consistently
observed across all variants, indicating the reliabil-
ity and robustness of our approach.

Furthermore, we conducted experiments to eval-
uate the effect of evidence quality on claim verifica-
tion, as presented in Table 4. The Gold + Random
method involves using gold-standard evidence for
SUPPORTS and REFUTES claims, while random
evidence is used for NEI claims. The Gold + Re-
trieved method is similar, but uses retrieved evi-
dence instead of random evidence for NEI claims
while still utilizing gold-standard evidence for SUP-
PORTS and REFUTES claims. The results indicate
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Claim The Adventures of Pluto Nash was reviewed by Ron Underwood .

Evidence Sentences

1: The Adventures of Pluto Nash is a 2002 Australian-American
science fiction action comedy film starring Eddie Murphy

-LRB- in a dual role -RRB- and directed by Ron Underwood .
2: Ron “ Thunderwood ” Underwood is a musician and director from Phoenix , Arizona .

...

Evidence Triples <a 2002 Australian - American science fiction action comedy film, starring, Eddie Murphy>
...

USchema Triples <The Adventures of Pluto Nash, directed, by Ron Underwood>
...

Table 5: An example with Universal Schema triples. Due to space limitations, not all sentences and triples for this
example are shown. The table focuses on the most critical ones that effectively demonstrate our points.

that the performance improvements of our system
increases as the quality of evidence improves, sug-
gesting that our zero-shot approach benefits more
from less noisy evidence. This likely due to the
fact that our system relies on a strict set of rules to
classify claims, which may be more sensitive to the
presence of noise in the evidence. Thus, our system
is likely to benefit from the continued development
of better evidence retrieval systems.

Finding 3 Employing the Universal Schema model
provides marginal gains by bridging the gaps be-
tween extracted claim and evidence triples.

The Universal Schema model, despite its modest
gains, contributes to enhancing the overall perfor-
mance of our fact-checking system. In manual
analysis of the results we found that integrating
the Universal Schema model helps our approach
in handling claims involving mutual exclusivity,
resulting in increased accuracy. Mutual exclusivity
denotes a situation in which two or more events
cannot coexist simultaneously. To illustrate this, let
us consider the claim in Table 5 The Adventures
of Pluto Nash was reviewed by Ron Underwood,
initially classified as NOT ENOUGH INFORMA-
TION (NEI) in the absence of the Universal Schema
model. This misclassification originated from the
complexity of the retrieved evidence, which pre-
sented a complex sentence implying that Ron Un-
derwood directed the movie, thereby refuting the
claim. However, extracting the relation needed as
evidence <The Adventures of Pluto Nash, directed
by, Ron Underwood> posed challenges so it was
not extracted. Consequently, due to the absence of
this critical triple, the model erroneously labeled
the claim as NEI. By incorporating the Universal
Schema model, our system successfully recovered
the missing evidence triple, while also recognizing
the inherent mutual exclusivity between assuming

both the director and reviewer roles for the same
movie. As a result, using the Universal Schema
model accurately predicted the REFUTES label.

We also observed that the Universal Schema
model offers limited assistance when applied to
the two adversarial datasets considered. This is
due to the fact that, in both the FEVER-Symmetric
and FEVER 2.0 setting, all the necessary evidence
is provided, unlike real-world scenarios. Con-
sequently, the value provided by the Universal
Schema model, which primarily focuses on fill-
ing gaps, becomes minimal since no gaps exist in
the presence of sufficient evidence.

7 Conclusion

We introduced a novel zero-shot fact-checking
method, translating claims and evidence into se-
mantic triples with external knowledge graphs.
This method surpasses other zero-shot baselines,
impressively without direct FEVER dataset train-
ing. Its resilience is evident, avoiding the typical
performance dips seen in supervised models on
adversarial datasets like FEVER-Symmetric and
FEVER 2.0. Also on the Climate-FEVER dataset,
our approach outshines even supervised counter-
parts, highlighting its generalization prowess. Aug-
mented by pretrained NLI models, our system’s
robustness is further emphasized. As future steps,
we aim to hone model interpretability, examine
diverse knowledge graphs, and test our method’s
versatility on other fact-checking datasets.

Limitations

While our novel zero-shot learning method for
fact-checking with semantic triples and knowledge
graphs has shown promising results, there are sev-
eral limitations that must be noted.

Firstly, our method’s language capabilities have
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been exclusively tested on the English language,
which poses an inherent limitation. Though the
method was not specifically designed and imple-
mented for English, the experiments were solely
conducted using English datasets. Consequently,
the potential effectiveness of our approach with
other languages remains unverified. Differences
in linguistic features and semantic triple structures
across languages might present unique challenges
that we have yet to encounter or address.

Secondly, our approach relies heavily on
Wikipedia as both the source for datasets used in
evaluation and the basis for our knowledge graphs.
While Wikipedia is a vast and continually updated
source of knowledge, its use as the sole source of
data introduces biases and limitations. Wikipedia’s
content is predominantly generated by its user com-
munity, which can lead to the inclusion of inaccura-
cies, cultural biases, or omissions. This limitation
might affect the fact-checking capabilities of our
model, as the reliability of its responses are directly
proportional to the quality and accuracy of the in-
formation within Wikipedia.

Additionally, the reliance on a single source
for data and knowledge graphs constrains the
method’s applicability in fact-checking scenarios
where knowledge outside of Wikipedia’s domain
is required. It may also lead to an overfitting issue,
as the model might be overly tuned to Wikipedia’s
style and structure, limiting its performance when
applied to different or broader sources.

In future work, addressing these limitations
by incorporating support for multiple languages
and expanding the data sources beyond Wikipedia
would be essential steps towards enhancing the ef-
fectiveness and generalizability of our approach.

Ethics Statement

The use of fact-checking datasets and systems has
become increasingly important in combatting mis-
information, and as such, it is necessary to consider
the ethical implications of their use. One of the key
concerns in this regard is the potential for biases in
these datasets. Such biases can arise from various
sources, including the selection and interpretation
of sources, the types of claims being fact-checked,
and the demographic characteristics of the individ-
uals involved. These biases have the potential to
perpetuate stereotypes and reinforce existing power
dynamics, and thus it is the responsibility of re-
searchers to ensure that they use representative and

unbiased datasets to train and evaluate their mod-
els. Transparency regarding any potential biases in
models is also essential, and steps must be taken
to mitigate any negative impact. By addressing
these ethical concerns, researchers can promote the
integrity of fact-checking and contribute to a more
informed and equitable public discourse.
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Abstract
Advanced language models with impressive ca-
pabilities to process textual information can
more effectively extract high-quality triples,
which are the building blocks of knowledge
graphs. Our work examines language models’
abilities to extract entities and the relationships
between them. We use a diverse data augmenta-
tion process to fine-tune large language models
to extract triples from the text. Fine-tuning is
performed using a mix of trainers from Hug-
gingFace and five public datasets, such as differ-
ent variations of the WebNLG, SKE, DocRed,
FewRel, and KELM. Evaluation involves com-
paring model output with test set triples based
on several criteria, such as type, partial, exact,
and strict accuracy. The obtained results out-
perform ChatGPT and even match or exceed
the performance of GPT-4.

1 Introduction

Knowledge graphs (KGs) represent knowledge in a
semantically rich and intuitive way, enabling one to
better understand and utilize gathered information.
A KG is a data structure representing real-world
entities and the relationships between them in the
format of a triple, e.g., ⟨head entity, relation, tail
entity ⟩ or ⟨ subject, predicate, object ⟩ (Ji et al.,
2021).

The majority of available knowledge is com-
posed of unstructured textual data. The need to
‘convert it’ into a structured format via extracting
entities and relationships between them drives the
construction of KGs. Large language models, like
ChatGPT or GPT-4, have a remarkable capacity
for understanding and generating text. It makes
them useful tools for automating the process of
knowledge extraction from textual sources. They
can capture nuances and complexities of language,
allowing for a deeper comprehension of the text’s
meaning. Therefore, they can be employed to cre-
ate KGs that accurately and fully capture compli-
cated semantic relations and the meaning of texts.

Extracting triples from texts poses several chal-
lenges (Hofer et al., 2023). Finding accurate and
comprehensive entities and representative relation-
ships from the text can be difficult, especially
with various language usage, implicit references,
and context-dependent interpretations. Addition-
ally, processing and analyzing enormous quanti-
ties of text can be computationally demanding and
resource-intensive. Therefore, methods for captur-
ing reliable contextual information are paramount
for KG’s growth and development. Advanced
context-aware techniques must be developed to
identify and separate contextual references, capture
relationships, and identify implicit connections.

This work aims to tune large language models
(LLMs) to perform triple extraction from text. We
have conducted several experiments using various
models and datasets of different quality and sizes.
The construction of triples adhering to the DBpedia
ontology format has been particularly interesting.
The WebNLG dataset (Castro Ferreira et al., 2020),
predominantly using the DBpedia vocabulary for
its entities and properties or emulating its ontologi-
cal style, serves as the basis for our training data.

We have introduced a set of procedures to gen-
erate various prompts, instructing models about
different processes related to triple extraction and
understanding. This has led to the augmentation
of the original WebNLG data and the creation of
various versions of training datasets.

Eleven models, each with seven billion param-
eters, have been trained. Their efficacy has been
evaluated in comparison with GPT-3.5 and GPT-4
on WebNLG. Additionally, we have preliminary
assessed larger models with thirteen, thirty, and
thirty-three billion parameters and trained them
similarly.

The ultimate objective is to propose and illus-
trate a training methodology capable of elevating
domain-specific models to or beyond the profi-
ciency of leading-edge models.
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The findings of the work that constitute our con-
tributions are:

• the reasonably sized large language models,
such as ones with seven billion parameters,
can be successfully tuned to extract triples
from text;

• the proposed procedures to build a variety of
prompts lead to the generation of enlarged
and enhanced (enriched with information that
improves training) datasets;

• small, fine-tuned models can outperform the
baselines set up by GPT family models: Chat-
GPT and GPT-4.

• high-quality data is essential for the triple gen-
eration task; many datasets in the triple extrac-
tion space focus on extracting only specific
relationships from text rather than all possi-
ble relationships or do not follow particular
vocabulary, like DBpedia ontology.

2 Related Work

In the field of triple extraction, LSTM is a con-
ventional technique to explore. Seq2Rdf (Liu
et al., 2018) employs an LSTM-based sequence-
to-sequence model to map natural language text
to RDF triples in one step, using pre-trained word
and knowledge graph embeddings for initialization.
However, it is limited to extracting single triples
and cannot handle multi-triple extraction. The
ChatIE framework (Wei et al., 2023) achieves zero-
shot information extraction by promoting Chat-
GPT, without requiring any labeled data for train-
ing. It allows interactively querying the model to
extract structured information piece by piece in a
multi-turn conversational format. The ChatIE relies
on LLM like ChatGPT which is not open source.
The performance depends heavily on how well the
prompts are engineered and provides many details.

The Head to Tail benchmark (Sun et al., 2023)
provides a systematic way to evaluate how knowl-
edgeable LLM are about facts in diverse do-
mains(movies, books, academics). The benchmark
is still limited in size and diversity compared to
the vast world knowledge, 18k QA pairs may not
comprehensively cover all entity types, relation-
ships, and knowledge domains. Few-shot learning
with GPT-3 (Wadhwa et al., 2023) achieves state-of-
the-art performance on standard relation extraction

Figure 1: Example of triple extraction prompt workflow

datasets, surpassing existing fully supervised mod-
els. Fine-tuning Flan-T5 on explanations generated
by GPT-3 further enhances performance. Treating
relation extraction as a text-generation task pro-
vides flexibility in expressing entities and relations.
However, GPT-3 is opaque, not open source, and
significantly costly.

3 Problem and Experimental Setup

The paper focuses on extracting information from
plain text. It is the task of building triples of the
form ⟨subject, predicate, object⟩ based on the con-
tent of a sentence. Triple extraction is a domain-
independent task. Two entities of a triple, i.e., sub-
ject and object, appear in the text, while a relation
between these two entities is often deduced by ‘un-
derstanding the meaning’ of the sentence. All the
components of a triple are extracted at the same
time.

Here is a more formal description of the task.
Given a set of sentences D := {w1, w2, ..., wn},
we want to obtain a set of facts built from and
based on these sentences. Let this set be Facts :=
{fact1, fact2, ..., factn}, and each fact is denoted
as ⟨s, p, o⟩, s ∈ S, p ∈ P, o ∈ O, where S, P,O
are sets of subjects, predicates, and objects respec-
tively.

These triples are the basic units of knowledge
graphs, resulting from the development of the Se-
mantic Web concept. The classes (types of entities)
and properties (relationships and attributes) used
to describe triples’ components are defined using
ontologies. One of the most well-known ontologies
is the one used by DBpedia (Lehmann et al., 2015).

Within the DBpedia dataset, triples are generated
and represented using the DBpedia ontology as the
schema. This ontology consists of 320 classes or-
ganized into a subsumption hierarchy and 1650 dis-
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Llama2

You are an AI assistant who is an expert in knowledge graphs.
You will be given an instruction and text.
Generate a response to appropriately complete the instruction’s request.
{instruction}{input}{output}

LLongOrca

Below is an instruction that describes a task,
paired with an input that provides further context.
Write a output that appropriately completes the request.
{instruction}{input}{output}

other models
### Instruction:{instruction}
### Input: {input}
{output}

Table 1: Generic prompt template for different models.

tinct properties describing relations between them.
The subsumption hierarchy is purposefully main-
tained relatively shallow, with a maximum depth of
five to accommodate use cases where the ontology
is traversed or visualized. Online browsing of the
entire DBpedia ontology is available at 1.

3.1 Datasets

WebNLG The WebNLG corpus (Castro Ferreira
et al., 2020) is made up of sets of triplets describ-
ing facts (entities and their relationships) and the
matching facts expressed in natural language, in
other words, text from which the triples are ex-
tracted. It includes 13,211 training data and 2,155
test data.

FewREL Few-Shot Relation Classification
Dataset (FewRel)(Han et al., 2018) composes
70,000 instances from Wikipedia and 100 relations.
The dataset is divided into three subsets: training
set (64 relations), validation set (16 relations), and
test set (20 relations).

DocRED Document-Level Relation Extraction
Dataset (DocRED) (Yao et al., 2019) is created
from Wikipedia and Wikidata in relation extrac-
tion data. Annotated on 5,053 Wikipedia articles,
DocRED comprises 132,375 entities and 56,354
relational facts. The collection offers large-scale
distantly supervised data over 101,873 documents
in addition to the human-annotated data.

KELM The English Wikidata KG and the corre-
sponding natural text sentences make up the large-
scale synthetic corpus known as KELM(Agarwal
et al., 2020). It has roughly 15 million artifi-
cially generated sentences produced by a refined
T5 model. A list of triples of the format [subject,
relation, object] is contained in each linearized
KG graph in KELM. A subset of KELM, named
KELM-sub, is used which contains 400,000/5,000
samples as train/test set.

SKE Baidu has released a Chinese dataset called
1http://mappings.dbpedia.org/server/ontology/

classes/

SKE2019. The train set contains 194,747 sen-
tences, whereas the validated set contains 21,639
sentences. SKE21 (Xie et al., 2021) has been re-
leased by manually labeling 1150 sentences from
the test set with 2765 annotated triples. It contains
194,747 training data, 21,639 validation data, and
1,150 testing data. 2

3.2 Large Language Models

LLMs like ChatGPT and GPT-4, pre-trained on a
large-scale corpus, are composed of decoder mod-
ules based on the Transformer design, which in-
corporates a self-attention mechanism. However,
it is difficult to conduct further research due to the
close-source nature of models. Then, open-source
decoder-only LLMs like Alpaca and Vicuna are
released, which are fine-tuned based on LLaMA
(Touvron et al., 2023a) and achieve competitive
performance with ChatGPT and GPT-4.

ChatGPT-3.5 and GPT-4 Human-like conver-
sations are the main purpose of ChatGPT, an ad-
vanced LLM created by OpenAI. To improve Chat-
GPT’s alignment with human tastes and values,
it uses RLHF (Christiano et al., 2017) during the
fine-tuning process. GPT-4, an advanced big lan-
guage model created by OpenAI, is expanding on
the achievements of its forerunners, such as GPT-3
and ChatGPT.

Vicuna-13B (Chiang et al., 2023),Wizard (Xu
et al., 2023), Orca (Mukherjee et al., 2023),
LLaMA (Touvron et al., 2023a)(Touvron et al.,
2023b), LlongOrca (Lian et al., 2023), SOLAR
10.7B (Kim et al., 2023)Mixtral Mixtral3, Mistral
mode4, Platypus Platypus-30B (Lee et al., 2023)
is the open-source model we choose from Hugging-
Face.

2http://ai.baidu.com/broad/download?dataset=
sked

3https://mistral.ai/news/mixtral-of-experts/
4https://huggingface.co/ignos/

Mistral-T5-7B-v1
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Data Format
Data

Augmentation
(name)

Parts of prompt Response

instruction input output

Text2triples

Think of yourself as efficient in deconstructing a
text and precisely identifying all the entities and
their interrelations. I’ll furnish you with a text and
your job is to gather all potential triples, adhering
to the pattern: (subject|relationship|object).

Sentence Triples

Explanation

"Assume you’re highly competent in scrutinizing a
piece of text and successfully distilling all its entities
along with their connections. I’ll provide a text,
and you are to extract every possible triplet,
following the convention: (subject|relationship|
object). Detail the entire process systematically."

Sentence

To extract triplets from the given text, we need to
identify the subject, predicate, and object.
Subject: "Aarhus Airport"
Predicate: "cityServed"
Object: "Aarhus, Denmark"
The property "cityServed" is derived from the
context of the sentence, where it implies that the
airport serves the city of Aarhus.
Therefore, here is the answer in the correct format:
Aarhus_Airport | cityServed| "Aarhus, Denmark")

Triples2text

Picture yourself as an expert in scrutinizing a text,
effectively extracting all entities and their
relationships and then constructing text based on
the given triples. Once I supply you with triples in
the (subject|relationship|object) format, your
duty is to reexamine these triples and create text
that imparts their semantic interpretation.

Triples Sentence

Reflection

Picture yourself as being highly skilled in text
dissection, with the ability to efficiently identify all
entities and their ties. When provided a text along
with triples in the (subject|relationship|object)
format, you are to check these triples in light of
the text and correct any inaccuracies.

Sentence
Triples Corrected triples

Table 2: The overall Data Augmentation Tricks

3.3 Prompt Engineering & Data Preparation

Prompt engineering is an in-context method for
learning language models. In a nutshell, a prompt is
a sequence of natural language inputs for a model,
consisting of an instruction, context, and input text.
The instruction guides the model to perform a spe-
cific task, while the context provides additional in-
formation; the input text is the text to be processed
by the model. An example of the triple extraction
prompt is shown in Figure 1.

In this work, we used different prompt formats
for various models, ensuring that both fine-tuning
and inference employed the same prompt format.
The three types of prompts are detailed in Table 1.
The components {instruction}, {input}, and {out-
put} are replaced with information/data specific to
the proposed Data Formats, Table 2.

The experiments have been conducted with the
training datasets built with different versions of
Data Formats. Such an approach allowed us to
increase the size of training datasets by 3- and 4-
fold. The process of building different datasets
is illustrated at the top of Figure 2. Examples of
data formats are included in Table 2. Each format
has its style of the instruction, input, as well as
output. The tasks associated with each Data Format
differed from explaining the extraction process via
reconstructing a sentence from triples to evaluating

triples. The data formats were used to construct
various Training Datasets, Table 3.

The first Training Dataset is called WebNLG-
combined dataset. It contains 39,633 entries in
three categories/subsets, each of 13,211 entries.
The first subset includes Test2triples, i.e., sets of
sentences together with the triples extracted from
them. The second subset is the extension of the
first one. We have added Explanation of the triple
extraction process. The explanations were gener-
ated by prompting GPT-3.5 with the input text and
the ground truth triples to elucidate the extraction
process. The explanations comprise entity identifi-
cation, property analysis, source derivation, entity
relationships, and the resultant triples. The third is
Triple2text subset. It sets the ground truth triples as
the model input and the original text as the target
output. The aim is to enhance reasoning capabili-
ties and improve triple generation performance.

The second generated Training Data is named
WebNLG-combined-with-reflections with 52,844
entries. We have extended the WebNLG-combined
dataset with so-called Reflection data. These
data were generated by a Vicuna model previ-
ously trained for the triple extraction task using
Test2triples and Explanation. The model was fed
with the text and triples generated from it, and the
task was either amending the triples or confirming
their correctness. The anticipated output was either
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Training Dataset Name Used Data Format(s) Size
WebNLG (original) Text2triples N
WebNLG-combined Text2triples + Explanations + Triples2text 3*N
WebNLG-combined-with-reflections Text2triples + Explanations + Triples2text + Reflection 4*N

WebNLG-reflections-updated-instructions Text2triples + Explanations + Triples2text + Reflection
+ new_instructions 4*N

Table 3: Variants of WebNLG training data

model-dependent 
prompts

original data: 
text-2-triple

 text-2-triple +
explanations

triple-2-text

set of 
instructions

set of instructions 
(new)

reflections: 
validation of 

triples

combined 
dataset

combined 
with reflections 

dataset

reflections
and new 

instructions 
dataset

Data Preparation

Fine-tuning with auto train/SFT or alpaca-lora
utilizing PEFT and LoRA

Applying LoRA to model

Benchmarking with Test Dataset

Triple Evaluation
 

Figure 2: Experimental Workflow

a confirmation that a given input triple was accurate
or its correct version.

For both datasets mentioned above, the instruc-
tion was randomly selected from the previously
generated set of twenty distinct instructions. These
instructions were a mix of human-authored instruc-
tions and variations generated by GPT-4 to enhance
diversity. All instructions underwent thorough eval-
uation before they were used.

The WebNLG-reflections-updated-instruc-
tions dataset was the WebNLG-combined-with-
reflections dataset when a new set of instructions
was used. This time, there are eleven instructions:
ten newly constructed and one from the original
set. Again, this new set of instructions is a mixture
of human-written and rephrased by GPT-4.

3.4 Overall Experiments Setup
The workflow of experimental steps and some de-
tails about the components forming different Train-
ing Datasets are shown in Figure 2. Once the
datasets were prepared, the models have been tuned
and benchmarked using the testing dataset. The fi-

nal step was an evaluation of the results (for details,
see next section).

To prepare models for the process of triple extrac-
tion, we utilized HuggingFace libraries to perform
supervised finetuning utilizing Parameter-Efficient
Finetuning (PEFT) (Liu et al., 2022) and Low-
Rank Adaptation (LoRA) (Hu et al., 2021) on the
WebNLG dataset. We used two prewritten trainers,
finetune script from alpaca-Lora and autotrain-
advanced from HuggingFace. The finetune script
was slightly modified to change evaluation steps
and to ensure the graphics processing unit (GPU)
cache was cleared after all evaluations and check-
points were saved. All models were trained using
two Nvidia 3090 24GB GPUs and a cutoff length
1024, with varying configurations of packages and
datasets based on the trainer used.

For the finetune script, we set an approximately
85:15 split between training and validation data.
The validation set size is 6,000 for WebNLG-
combined and 8,000 for WebNLG-combined-with-
reflections.

For autotrain-advanced, Supervised Fine-tuning
(SFT) Trainer is used from the Transformer Rein-
forcement Learning (TRL) package that is included
as an option for training in autotrain-advanced
(von Werra et al., 2020). The WebNLG-reflections-
updated-instructions dataset is used. It contained
different instructions for each training task, includ-
ing additional details about formatting triples and
better explaining the model’s role.

We trained a collection of eleven models chosen
based on relative performance on the HuggingFace
LLM leaderboard, and compare their performance
between each other and GPT-4. After training, the
LoRA weights are combined with the base model to
obtain our fine-tuned model output. These exported
weights are used to run inference on the model.

4 Evaluation Procedure and Results

4.1 Evaluation Procedure

The evaluation framework comprises two phases:
Inference, generating the model’s output on the test
set, and evaluation, comparing this output against
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Type Partial Exact Strict
Model Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

GPT-4 50 samples 0.706 0.729 0.714 0.684 0.707 0.692 0.651 0.668 0.657 0.640 0.652 0.645
GPT-4-0314 0.693 0.711 0.700 0.668 0.688 0.675 0.634 0.649 0.640 0.626 0.634 0.629

ChatGPT-3.5-2023 0.592 0.610 0.599 0.570 0.588 0.577 0.533 0.548 0.539 0.521 0.532 0.525
GPT-4 Full 0.567 0.624 0.587 0.536 0.580 0.552 0.478 0.506 0.488 0.455 0.482 0.465

Vicuna-7b 0.715 0.729 0.721 0.702 0.714 0.706 0.683 0.693 0.687 0.680 0.689 0.683
WizardLM-7b 0.700 0.715 0.706 0.688 0.701 0.693 0.671 0.682 0.675 0.667 0.677 0.671
Orca-mini-7b 0.683 0.700 0.690 0.670 0.686 0.677 0.652 0.664 0.657 0.647 0.658 0.652

Orca-mini-2-7b 0.711 0.726 0.717 0.698 0.710 0.703 0.681 0.690 0.684 0.677 0.687 0.681
Orca-mini-3-7b 0.746 0.762 0.753 0.732 0.746 0.738 0.715 0.726 0.719 0.712 0.723 0.717

Llama-2-7b 0.705 0.714 0.708 0.689 0.698 0.693 0.669 0.677 0.673 0.666 0.673 0.669
Llama-2-chat-7b 0.685 0.700 0.691 0.670 0.684 0.675 0.650 0.660 0.654 0.645 0.654 0.649

LlongOrca-7b 0.710 0.722 0.715 0.697 0.707 0.701 0.680 0.689 0.684 0.677 0.685 0.680
SOLAR-Instruct-10b 0.729 0.741 0.734 0.716 0.727 0.720 0.699 0.708 0.703 0.697 0.705 0.700

Mistral-t5-7b 0.731 0.746 0.738 0.716 0.729 0.721 0.697 0.708 0.702 0.695 0.704 0.698
Mixtral-8x7b 0.730 0.739 0.734 0.716 0.725 0.720 0.699 0.706 0.702 0.696 0.702 0.698

Vicuna-33b 0.750 0.762 0.755 0.738 0.749 0.742 0.723 0.732 0.727 0.720 0.729 0.724
Platypus-30b 0.747 0.762 0.753 0.732 0.746 0.738 0.715 0.726 0.720 0.713 0.724 0.718

Table 4: WebNLG-reflections-updated-instructions performance results

ground truth triples. All models were benchmarked
with a maximum token limit of 1,024, and the out-
put was generated without streaming. For evalua-
tion, the numerical results such as precision, recall,
and F1, and saved as the output file. The test set
includes the same instructions in our training data
and includes 2,155 instances of directly extracting
triples from text.

The scores are calculated using the evaluate
package (Segura-Bedmar et al., 2013). It calculates
metrics based on four different criteria. First is type
evaluation (TE) where only the tags must match to
be considered correct. These tags are SUB, PRED,
and OBJ for the subject, predicate, and object. Par-
tial evaluation (PE) requires the triples to match
partially or completely, irrespective of tag, to be
considered partially or completely correct. Exact
evaluation (EE) requires the triples to match ex-
actly, irrespective of tag, to be considered correct.
Strict evaluation (SE) requires both the triples and
tag to match to be considered correct. Each evalua-
tion type assigns a label of correct (COR), incorrect
(InCOR), missed (MIS), or spurious (SPU), based
on the triples and tags. Partial (PAR) is assigned
only for the partial evaluation type. MIS and SPU
are across all evaluation types, with MIS being
assigned for each part of a reference triple when
there is no matching candidate, and SPU assigned
for each part of a candidate triple when there is
no matching reference. The following formulas
are calculations of precision (P), recall (R), and F1.
The type and partial scores are calculated with the
“partial” formulas and exact and strict scores are
calculated with the “exact” formulas:

Possible = COR+ InCOR+ PAR+MIS

= TP + FN

Actual = COR+ InCOR+ PAR+ SPU

= TP + FP

PTE|PE =
COR+ 0.5 ∗ PAR

Actual

RTE|PE =
COR+ 0.5 ∗ PAR

Possible

PEE|SE =
COR

Actual
=

COR

COR+ InCOR+ SPU

REE|SE =
COR

Possible
=

COR

COR+ InCOR+MIS

4.2 Results
WebNLG Dataset. The obtained results for the
fine-tuned models are included in Table 4. It can
be observed that small 7b models Orca-mini3-7b
and Mistral-t5-7b have the best performances even
when compared with GPT-4. The Orca-mini3-7b
model achieved the highest F1 scores for all evalu-
ations, outperforming all 7b models in our compar-
ative analysis.

Small variations have been observed be-
tween training methods and datasets. In gen-
eral, models show slight improvement from
WebNLG-combined to WebNLG-combined-with-
reflections and then to WebNLG-reflections-
updated-instructions. Additionally, modifying the
instructions shows a decrease in training loss.
GPT models had a bigger drop in performance go-
ing to the exact and strict metrics compared to our
models, which resulted in our models performing
relatively better on the exact and strict metrics.

Ablation Study. We performed ablation stud-
ies to evaluate the impact of different data aug-
mentation strategies on the performance of these
models. Figure 3 shows the effects of vari-
ous data augmentation techniques on the mod-
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els’ performance. We show the performance re-
sults obtained for two models – Orca and Vi-
cuna – and four Training Datasets: the original
WebNLG dataset, the WebNLG-combined dataset,
the WebNLG-combined-with-reflections dataset,
and the WebNLG-reflections-updated-instructions
dataset, Table 3. We report the precision, recall,
and F1 values for the most demanding task of gen-
erating triples identical to those provided as the
target. It is easily seen that the results obtained for
the last Training Dataset are the best.

Other Datasets. Two models Orca-mini-3 and
Llama-2-13b have been finetuned on different
datasets, Table 5. The best scores have been ob-
tained for the KELM dataset. The Llama-2-13b
finetuned on another dataset DocRED performed
very poorly and was completely unable to learn
proper formatting of triples.

The main issue with inference on other data is
related to the type of triple properties and how
many triples are extracted from a single sentence.
For example, the analysis of the DocRED dataset
revealed that it is focused mainly on such relations
as country and location while ignoring any other
relations. In DocRed, a few triples are extracted
from paragraph sentences. There is much looping
in the models’ output; models do not efficiently
learn triple formats. Some outputs were of the
form (subject | predicate | object). Further, there
are only about 3,000 entries in annotated training
data. For yet another dataset – FewRel – the issue
seems to be related to the model not knowing when
to generate triples following the DBpedia and when
using Wikidata formats.

5 Discussion and Limitations

The obtained results and their analysis have led to a
few observations that confirmed known facts about
tuning large models and allowed to draw some new
ones. We can categorize them into three parts: data
size, model selection, and interaction with a model
(prompt and data preparation).

Size and Quality of Datasets. It is a well-known
fact that larger datasets lead to better results. Such
an obvious statement is also true for the triple ex-
traction process. It is seen in Table 5. The results
obtained for KELM data – 400,000 samples in the
training set – confirm that. The model was tuned
with a simple prompt containing text-2-triple and
instructions. Comparing that with our primary fo-
cused data, WebNLG, which includes only 13,211

training datasets, shows a significant advantage of
large datasets.

Once we collected results for the other two
datasets – DocRED and FewRel - we investigated
the content of the training datasets. It has become
apparent that the reference triples that were sup-
posed to be constructed from sentences were of
poor quality: limited to a few relations, incoherent
structure, a limited number of triples (quite often
just one) form small paragraphs.

Model Selection/Multilingual Triples. In our
experiments, one of the datasets – SKE – is a set of
Chinese sentences and extracted from them triples.
The difference in results obtained from orca-mini-
3-7b and llama-2-13b is very large. A quick inves-
tigation revealed that the dataset used to train the
orca-mini-3-7 model contained a large amount of
Chinese text. Again, it confirms a commonsense
fact that if a language model is not exposed to a
text in a given language, its performance, related
to this language, is not satisfactory.

Prompt and Data Preparation. The most inter-
esting and important observation coming from our
experiments is a high significance of the creative
approach to constructing prompts and ‘augmenta-
tion’ of the training datasets.

As indicated earlier, the task of extracting triples
from WebNLG data involves the usage of DBpedia
vocabulary. In particular, properties/relations of
the extracted triples have/should be in the DBpedia
format. The WebNLG dataset has been analyzed
to ensure the training data is of high quality. DB-
pedia ontology has been used to determine if the
triples/relations were consistent.

The consistent structure of triples is essential so
the model can effectively learn how to form triples
properly. Exposure to different properties is also
of high importance. The properties seen in the
training and testing sets overlapped, with thirty-six
properties unique to the test set. All properties were
checked to ensure they were present in DBpedia.

A small amount of training data, just 13,211, has
forced us to generate larger datasets from the origi-
nal set via setting different tasks related to process-
ing and extraction of triples. Section 3 details how
various versions of Training Datasets were created.
We enhanced the data with explanations of triple
generation processes generated by GPT-3.5 and
previously tuned model, generation of sentences
based on sets of triples, and simple evaluation of
extracted triples. These activities have improved
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Figure 3: Results of ablation studies on two modes: Orca and Wizard

Type Partial Exact Strict
Data Model Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

SKE orca-mini-3 0.828 0.828 0.828 0.829 0.829 0.829 0.829 0.829 0.829 0.827 0.827 0.827
llama-2-13b 0.129 0.127 0.127 0.130 0.128 0.129 0.127 0.127 0.127 0.124 0.124 0.124

DocRED orca-mini-3 0.057 0.054 0.052 0.050 0.050 0.048 0.031 0.031 0.030 0.024 0.025 0.024
llama-2-13b 0.096 0.037 0.051 0.051 0.022 0.028 0.002 0.002 0.002 0.002 0.002 0.002

FewRel orca-mini-3 0.314 0.402 0.342 0.354 0.425 0.376 0.312 0.362 0.327 0.240 0.286 0.254
llama-2-13b 0.304 0.378 0.325 0.344 0.405 0.361 0.297 0.340 0.310 0.224 0.263 0.236

KELM orca-mini-3-7b 0.867 0.899 0.879 0.848 0.873 0.857 0.823 0.841 0.830 0.820 0.837 0.826
Llama-2-13b 0.861 0.865 0.852 0.825 0.836 0.825 0.779 0.796 0.785 0.769 0.786 0.776

raw_Webnlg orca-mini-3-7b 0.618 0.638 0.626 0.598 0.615 0.605 0.574 0.588 0.579 0.593 0.583 0.575
Llama-2-13b 0.62 0.637 0.626 0.602 0.618 0.608 0.581 0.593 0.586 0.577 0.588 0.581

Table 5: Performance on other datasets

our best model’s performance, i.e., orca-mini-3-7b.
Limitations There are some limitations of fine-

tuned models. They hallucinated on occasion, es-
pecially when they generated responses for more
well-known topics, such as when we asked them
to generate a response to the Jeff Bezos Wikipedia
article. The models frequently hallucinated the
birthplace of Bezos, providing false information
about the location. Also, models had looping is-
sues, where they would continually generate output
until they reached the token limit.

6 Conclusion

The paper aims to investigate different scenarios
of a triple extraction task. Various models and a
few datasets have been used in the experiments.
A prime contribution is the development of a pro-
cedure/methodology for augmenting the original
dataset. The additions included several tasks indi-
rectly related to the triple extraction process: ex-
plaining the extraction steps, reconstructing sen-
tences from triples, and determining the correct-
ness of extracted triples. It resulted in enlarged
training datasets (3- or 4-fold). As an outcome, the
performance of 7b tuned models is comparable to
or even better than that of well-known models from
the GPT family.

The applied procedures concentrated on generat-
ing triples containing elements compatible with a

specific vocabulary, in our case, DBpedia. While
our models suffer from occasional looping and hal-
lucinations, they effectively extract triples follow-
ing DBpedia ontology from sentences. The results
demonstrate that achieving and exceeding GPT per-
formance with fine-tuned models is possible with-
out large datasets.
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Abstract

Large language models (LLMs) have shown
remarkable capabilities in generating natural
language texts for various tasks. However, us-
ing LLMs for question answering on knowl-
edge graphs still remains a challenge, espe-
cially for questions requiring multi-hop reason-
ing. In this paper, we present a novel planned
query guidance approach that improves large
language model (LLM) performance in multi-
hop question answering on knowledge graphs
(KGQA). We do this by designing few-shot ex-
amples that implicitly demonstrate a systematic
reasoning methodology to answer multi-hop
questions. We evaluate our approach for two
graph query languages, Cypher and SPARQL,
and show that the queries generated using our
strategy outperform the queries generated us-
ing a baseline LLM and typical few-shot exam-
ples by up to 24.66% and 7.7% in execution
match accuracy for the MetaQA and the Spider
benchmarks respectively. We also conduct an
ablation study to analyze the incremental ef-
fects of the different techniques of designing
few-shot examples. Our results suggest that our
approach enables the LLM to effectively lever-
age the few-shot examples to generate queries
for multi-hop KGQA.

1 Introduction

Question answering on knowledge graphs (KGQA)
is a challenging task that requires understanding
the natural language query, mapping it to the KG
schema, and generating a graph query that can
retrieve the correct answer from the KG. We fo-
cus on two graph query languages in this work,
namely Cypher1, a well-known graph query lan-
guage developed by Neo4j2, and SPARQL, a popu-
lar language for querying RDF3 databases. In this

1https://neo4j.com/docs/cypher-manual/current/
introduction/

2https://neo4j.com/
3Resource Description Framework

study, we focus on the task of answering a question
from a knowledge graph by generating Cypher and
SPARQL queries to query the knowledge graph.

Large language models (LLMs), such as GPT-4
(OpenAI et al., 2024), have shown remarkable ca-
pabilities in generating natural language texts for
various tasks. Recent studies have explored the ca-
pability of LLMs in Cypher generation (Guo et al.,
2023; Jiang et al., 2023b; An et al., 2023) as well as
SPARQL generation (Jiang et al., 2023a; Li et al.,
2023; Gu and Su, 2022; Ye et al., 2021). However,
using LLMs for multi-hop KGQA still remains a
challenge, as they need to generate queries that
can capture the multi-hop reasoning logic. Fur-
thermore, models are limited by the availability of
labeled data for KGQA, which is costly and time-
consuming to obtain.

Therefore, it is desirable to leverage the few-
shot learning ability of LLMs, which allows them
to adapt to new tasks with only a few examples,
and design effective few-shot examples that can
guide the LLM to generate more accurate queries
for multi-hop KGQA. The utilization of few-shot
learning in LLMs has shown promise in various
domains to address the limitations of data scarcity
and improve model generalization. Several stud-
ies demonstrated the value of few-shot learning in
various domains for improving the performance of
LLMs (Shirafuji et al., 2023; Huang et al., 2024;
Ahmed and Devanbu, 2023). However, to the best
of our knowledge, the influence of few-shot exam-
ples design in KGQA, particularly for generating
Cypher and SPARQL queries, has not been exten-
sively studied.

Existing KGQA models like TransferNet(Shi
et al., 2021), which excels in multi-hop reason-
ing over relation graphs, UniKGQA(Jiang et al.,
2022), known for its unified retrieval and reasoning
framework, and NuTrea(Choi et al., 2023), which
leverages neural tree search for context-rich em-
beddings, outperform our proposed LLM-based
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Figure 1: An example of a 3-hop question-answer pair in MetaQA.

approach, achieving up to 100% in the Hits@1
metric. However, these methods incur higher com-
plexity and cost, as they require extensive training
on specific knowledge graphs. In contrast, simple
LLM-based methods can achieve competitive per-
formance with a well-designed few-shot example
set, bypassing the need for exhaustive training or
customization. This efficiency makes the study of
few-shot example design for LLM-based KGQA a
crucial research area, promising swift adaptability
and innovation in question-answering systems.

In this paper, we propose a novel approach to im-
prove the performance of LLM-based Cypher and
SPARQL generation for multi-hop KGQA. We do
this by designing few-shot examples that implicitly
demonstrate a systematic reasoning methodology
to answer multi-hop questions. This guides the
LLM to follow a similar reasoning process for new
questions, without explicitly specifying the steps.
We hypothesize that such few-shot examples can
enhance the LLM’s understanding of the question,
the KG schema, and the syntax of the graph query
language, enabling it to generate more accurate
queries for multi-hop KGQA.

We evaluate our approach on two popular bench-
mark datasets, MetaQA (Zhang et al., 2018) and
Spider (Kosten et al., 2023), both of which feature
natural language questions across various levels of
difficulty for multi-hop querying. We start by con-
ducting an ablation study to analyze the effects of
different components of our few-shot examples de-
sign on Cypher. We then show how our methodol-
ogy transfers to SPARQL. Our results demonstrate
that this strategy can enhance execution match ac-
curacy over that of conventional methods used in
few-shot examples.

2 Methodology

This work focuses on the methodology of crafting
few-shot examples for improved performance of
LLMs for the task of Cypher and SPARQL genera-
tion for KGQA. For this task, a few-shot example
is composed of a natural language question, ac-
companied by an expected response of a Cypher

or SPARQL query that can be run on an associated
KG to answer the natural language question.

We propose a method for designing Cypher and
SPARQL queries for few-shot examples that clearly
demonstrates to the LLM the reasoning required
to answer multi-hop questions. Techniques like
chain-of-thought prompting (Wei et al., 2022) use
textual explanations to teach step-by-step reasoning
to LLMs. Our methodology employs a code style
that implicitly shows how to take each hop step-
by-step. Figure 2 is an example of a Cypher query
written in such a style to be used as a few-shot
example.

Contrast the query in Figure 2 with a typical or
conventional style4 used by developers to write
Cypher queries in Figure 3. Certain prevalent
practices characterize this conventional style of
crafting such graph queries. These include the uti-
lization of succinct and non-descriptive variable
names, the consolidation of all traversal hops into
a single chain in a single MATCH clause, and the
immediate specification of string literals for en-
tity matching within the variable declaration itself
in the MATCH clause (e.g., {name: “Dil Chahta
Hai”}).

Our proposed approach outlines practical meth-
ods for crafting few-shot examples to generate
graph queries, like Cypher and SPARQL:

1. Structured Traversal Clarity: Each hop
should be articulated on a separate line to mir-
ror the logical sequence of traversals, strictly
adhering to the correct order of entities and
relationships encountered. This makes the
traversal reasoning clear and easy to follow.
This approach enhances the clarity of traver-
sal reasoning, ensuring that each step is both
transparent and sequentially accurate.

2. Logical Continuity in Chaining: Maintain
an unbroken logical chain where the endpoint

4https://neo4j.com/docs/cypher-manual/
current/styleguide/, https://neo4j.com/
docs/cypher-manual/current/queries/basic/
#find-connected-nodes, https://gist.github.
com/wjgilmore/8ba5f31ef1435dc04c52, https:
//gist.github.com/wjgilmore/8ba5f31ef1435dc04c52
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Figure 2: A sample of a Cypher query used in a few-shot example designed using our approach. Implicit reasoning
is demonstrated by writing each hop line-by-line, with an easy-to-understand code style following the correct chain
of hops, and separating reasoning of hops from the constraints into the WHERE clause. The natural language
question corresponding to this Cypher query from the MetaQA dataset is "the films that share actors with the film
Dil Chahta Hai were released in which years".

Figure 3: A sample of a Cypher query written in a commonly used style. The natural language question correspond-
ing to this Cypher query from the MetaQA dataset is "the films that share actors with the film Dil Chahta Hai were
released in which years".

of one hop is the starting point for the next,
ensuring a coherent flow of entities throughout
the query. Ensuring a coherent progression of
entities throughout the query facilitates the
LLM’s ability to mirror the thought process
when identifying subsequent steps.

3. Distinct Separation of Logic: In the case of
Cypher, employ MATCH clauses exclusively
for hops, while isolating all constraints, such
as string literals for entity matching, within
WHERE clauses to promote clarity; and in
the case of SPARQL, utilize WHERE clauses
for hops and separate constraints within the
FILTER clause. This approach delineates the
decision-making process for selecting hops
from other constraints, thus sharpening the
focus on the hop selection mechanism.

4. Descriptive Variable Naming: Adopt vari-
able names that are both illustrative and con-
sistent, reflecting the entity type and any ap-
plicable constraints, such as “dilMovie” to
denote a ‘movie’ entity constrained by the ti-
tle “Dil Chahta Hai”. This approach enhances
the traversal’s logical coherence as well as
aids the LLM in retaining the constraints for
inclusion in the WHERE clause.

5. Examples with increasing complexity:
Present multiple examples that escalate in
complexity, such as starting with a simple

1-hop query and advancing through to more
complex 2-hop and 3-hop queries, to reinforce
the learning of the reasoning pattern.

6. Consistency: Ensure that the structure and
presentation of all few-shot examples remain
uniform, facilitating easier pattern recognition
and learning.

3 Experimental setup

3.1 Cypher

3.1.1 Dataset
We evaluate our approach on a widely used bench-
mark for multi-hop KGQA, MetaQA (Zhang et al.,
2018). MetaQA comprises of a movie knowledge
graph with 43k entities and 9 relationship types,
along with question-answer pairs. The dataset con-
tains 161 1-hop question templates (31% of to-
tal question templates), 210 2-hop question tem-
plates (40% of total question templates), and 150
3-hop question templates (29% of total question
templates). The corresponding answers are a list of
entities from the KG. Figure 1 shows an example
of a 3-hop question-answer pair.

3.1.2 Baselines
We compare our proposed approach with an LLM-
based Cypher generation module5 developed by

5https://python.langchain.com/docs/use_cases/
graph/integrations/graph_cypher_qa
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Our proposed LangChain’s Cypher Examples with
Question Type approach generation module conventional style
3-hop (150 questions) 97.33% 67.33% 72.67%
2-hop (210 questions) 100% 89.52% 93.33%
1-hop (161 questions) 92.54% 88.81% 91.30%

Table 1: KGQA results for the MetaQA dataset comparing our approach (with systematic few-shot examples
implicitly demonstrating reasoning), with two baselines, the first being the Cypher generation module available in
LangChain, and the second being an approach where Cypher queries in few-shot examples are written in a typical
fashion. The metric shown is execution match accuracy.

Variation of few-shot example design Execution match accuracy
Conventionally written examples (baseline) 72.67%
Only one example written conventionally 83.33%
Non-descriptive variable names 87.33%
All hops in one line 94.67%
Only one example written with our design 95.33%
Chain direction not maintained 95.33%
Examples written with our design 97.33%

Table 2: Ablation experiments on 3-hop questions of the MetaQA dataset. Appendix D provides the few-shot
examples used for each of these experiments.

Neo4j and made available in LangChain. This is a
commonly used module for the task of KGQA.

We also compare against a second baseline of
few-shot examples with Cypher queries written in
a typical or conventional fashion. An example of
a Cypher query written in such a style is shown
in Figure 3. Section 2 details some features that
characterize this conventional style. This baseline
enables us to determine the influence of the design
of few-shot examples.

3.1.3 Query Generation and Post-Processing
pipeline

Our experiments employ GPT-4 (OpenAI et al.,
2024) as the LLM across all methods under exam-
ination to generate Cypher queries given natural
language questions.

We run these generated Cypher queries on
MetaQA KG hosted in Neo4j.

A Cypher query corrector module6 is incorpo-
rated as a post-processing step to rectify common
errors in the directionality of relationships within
the Cypher queries. For instance, it corrects
MATCH (dilMovie:‘movie‘)<−[:starred_actors
]−(actor:‘actor‘) to MATCH (dilMovie:‘movie
‘)−[:starred_actors]−>(actor:‘actor‘). To ensure

6https://api.python.langchain.com/en/latest/
chains/langchain.chains.graph_qa.cypher_utils.
CypherQueryCorrector.html

consistency and fairness in our comparative analy-
sis, the Cypher query corrector module is applied
across all experimental conditions, encompassing
the proposed approach, the baselines, and all the
ablation studies.

3.1.4 Prompt
For both the proposed approach and the baseline
with typically written Cypher queries, we specify
three few-shot examples. The ablation studies em-
ploy variations of few-shot examples. All other
prompt components, namely the instructions and
the graph schema, remain consistent across these
two methods as well as ablation studies. The com-
plete prompt utilized for our proposed approach,
including all the few-shot examples, is detailed in
Appendix A. The few-shot examples employed for
the baseline featuring typically written examples
are enumerated in Appendix C.

For the baseline that relies on LangChain’s
Cypher generation module, we use the default
prompt generated by the module. Notably, it does
not involve any few-shot examples. The complete
prompt is attached in Appendix B.

3.2 SPARQL

3.2.1 Dataset
In order to evaluate how well this style of few-shot
expression generalizes and transfers to other graph
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Figure 4: Execution match accuracy of our methodology
for generating SPARQL queries on the Spider bench-
mark.

query languages, we tested its applicability on the
SPARQL version of the Spider benchmark (Kosten
et al., 2023). This version of Spider is useful as
it already includes few-shot examples for training,
precluding the need for us to handcraft examples
as done for our Cypher module. We leverage a
static prompt as attached in Appendix E to convert
these few-shot examples into the style as outlined
in Section 2.

3.2.2 Baselines
We compare the performance of the few-shots re-
expressed in the format discussed against the per-
formance without these few-shot examples. The
prompt follows that as utilized for Cypher gen-
eration, except the graph schema is provided in
RDF format. Similar to the Cypher pipelines
above, we also include a corrector module as a
post-processing step across these strategies to en-
sure that the SPARQL generated is syntactically
valid.

3.3 Evaluation metric
The success of the generated queries is determined
by the accuracy of the output, specifically, whether
the entities in the generated answers precisely align
with those anticipated in the expected answers. Ex-
ecution match is reported in terms of the number
of samples meeting this criterion.

4 Results

4.1 On Cypher generation

We observe in Table 1 that our approach out-
performs both the LLM-based KGQA system in
LangChain and the baseline of few-shot examples
in terms of exact match accuracy across all hop
levels. The increase in performance is especially
pronounced in 3-hop questions, supporting our hy-
pothesis that our methodology is able to effectively
demonstrate to the LLM the reasoning required to
answer complex multi-hop questions.

Notably, our proposed approach shows better
performance in 3-hop and 2-hop questions over 1-
hop questions. Manual examination revealed that
most of the failures in 1-hop questions can be at-
tributed to confusion between selecting the correct
entity-type to traverse between "imdbvotes" and
"imdbrating" for questions like "how famous of a
film was [Pumping Iron]" or "what do people think
of [Beau Travail] ".

The results in Table 2 show that including three
examples instead of one in a typically written style
leads to regression in performance, and thus demon-
strates the importance of well-designed examples.
Other ablation experiments show that other features
of example design in our approach like using de-
scriptive variable names, writing the hops in order
of traversal, etc. contribute positively to perfor-
mance. Few-shot examples used for each ablation
experiment are listed in Appendix D.

4.2 On SPARQL generation

Figure 4 highlights the performance of our few-
shot design against the baseline across 16 differ-
ent knowledge graphs from the SPARQL version
of the Spider benchmark (Kosten et al., 2023).
There is a modest increase in execution match
accuracy for SPARQL, with the most significant
improvement—-a 7.7% lift-—observed in the sub-
set of questions related to the pets_1 graph. There
are six graphs where our methodology shows no
improvement in execution match accuracy, and two
graphs, tvshow and poker_player, where it leads
to regressions. This outcome primarily stems from
the use of few-shot examples that do not quite
match the query complexity for the question set
associated with those graphs, as classified by the
original benchmark’s measure of query hardness,
which includes queries with 10+ hops. Conducting
a paired difference t-test on these results yields a
test statistic of 2.33 with a corresponding p-value
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of 0.03, indicating that the minor lift provided by
our methodology is statistically significant.

5 Discussion

Our findings demonstrate the effectiveness of our
proposed approach in improving the performance
of LLM-based KGQA systems, particularly in ad-
dressing the challenge of multi-hop reasoning. By
designing few-shot examples that implicitly demon-
strate systematic reasoning to guide LLMs in gener-
ating Cypher and SPARQL queries, we have shown
enhancements in accuracy, thereby highlighting
the potential of this methodology for advancing
the field of KGQA. Future research directions in-
clude testing our proposed approach on knowledge
graphs with increasingly complex schemas, ad-
dressing challenges such as accurate attribute se-
lection, aggregations and function usage in these
graph query languages, and assessing the efficacy
of using this few-shot example design in more
graph languages and code generation tasks. Ad-
ditionally, there is potential to develop techniques
that automatically generate few-shot examples for
a broad range of LLMs, streamlining the creation
process and enhancing adaptability across various
domains.
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our design
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{

"role": "system",
"content": "You are a Cypher query
generation engine for a Neo4j graph with the
schema described below. You will create
Cypher queries that helps users navigate the
graph.

−−−
Node types:
− writer
− movie
− actor
− director
− tag
− year
− language
− genre
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− imdbrating
− imdbvotes

Relations schema:
movie −> directed_by −> actor
movie −> directed_by −> director
movie −> directed_by −> writer
movie −> has_genre −> genre
movie −> has_imdb_rating −> imdbrating
movie −> has_imdb_votes −> imdbvotes
movie −> has_tags −> tag
movie −> in_language −> language
movie −> release_year −> year
movie −> starred_actors −> actor
movie −> starred_actors −> director
movie −> starred_actors −> writer
movie −> written_by −> actor
movie −> written_by −> director
movie −> written_by −> writer
−−−"

},
{

"role": "user",
"content": "Write a Cypher query for: \"what
films can be described by occupation\""

},
{

"role": "assistant",
"content": "‘‘‘

MATCH (movie:‘movie‘)−[:has_tags]−>(
occupationTag:‘tag‘)

WHERE toLower(occupationTag.name)=’
occupation’

RETURN movie LIMIT 200
‘‘‘"

},
{

"role": "user",
"content": "Write a Cypher query for: \"
which person wrote the films directed by
Yuriy Norshteyn\""

},
{

"role": "assistant",
"content": "‘‘‘

MATCH (yuriyDirector:‘director‘)<−[:
directed_by]−(movie:‘movie‘)

MATCH (movie:‘movie‘)−[:written_by]−>(writer
:‘writer‘)

WHERE toLower(yuriyDirector.name)=’yuriy
norshteyn’

RETURN writer LIMIT 200

‘‘‘"
},
{

"role": "user",
"content": "Write a Cypher query for: \"the
films that share actors with the film Dil
Chahta Hai were released in which years\""

},
{

"role": "assistant",
"content": "‘‘‘

MATCH (dilMovie:‘movie‘)−[:starred_actors
]−>(actor:‘actor‘)

MATCH (actor:‘actor‘)<−[:starred_actors]−(
otherMovie:‘movie‘)

MATCH (otherMovie:‘movie‘)−[:release_year
]−>(year:‘year‘)

WHERE toLower(dilMovie.name)=’dil chahta
hai’

AND dilMovie <> otherMovie
RETURN year LIMIT 200
‘‘‘"

},
{

"role": "user",
"content": "Write a Cypher query for: \"what
types are the films starred by actors in The
Gypsy Moths\""

}
]

B An example of a full prompt used in the
baseline using LangChain’s Cypher
generation module

Task:Generate Cypher statement to query a graph
database.

Instructions:
Use only the provided relationship types and

properties in the schema.
Do not use any other relationship types or

properties that are not provided.
Schema:
Node properties are the following:
writer {name: STRING, node_id: STRING},

movie {name: STRING, node_id: STRING},
actor {name: STRING, node_id: STRING},
director {name: STRING, node_id: STRING
},tag {name: STRING, node_id: STRING},
year {name: STRING, node_id: STRING},
language {name: STRING, node_id:
STRING},genre {name: STRING, node_id:

132



STRING},imdbrating {name: STRING,
node_id: STRING},imdbvotes {name:
STRING, node_id: STRING}

Relationship properties are the following:
directed_by {source: STRING},written_by {

source: STRING},starred_actors {source:
STRING},release_year {source: STRING},
in_language {source: STRING},has_tags {
source: STRING},has_genre {source:
STRING},has_imdb_votes {source:
STRING},has_imdb_rating {source:
STRING}

The relationships are the following:
(:movie)−[:has_tags]−>(:tag),(:movie)−[:

directed_by]−>(:writer),(:movie)−[:
directed_by]−>(:actor),(:movie)−[:
directed_by]−>(:director),(:movie)−[:
written_by]−>(:writer),(:movie)−[:
written_by]−>(:actor),(:movie)−[:written_by
]−>(:director),(:movie)−[:in_language]−>(:
language),(:movie)−[:release_year]−>(:year)
,(:movie)−[:has_genre]−>(:genre),(:movie)
−[:starred_actors]−>(:actor),(:movie)−[:
starred_actors]−>(:director),(:movie)−[:
starred_actors]−>(:writer),(:movie)−[:
has_imdb_rating]−>(:imdbrating),(:movie)
−[:has_imdb_votes]−>(:imdbvotes)

Note: Do not include any explanations or
apologies in your responses.

Do not respond to any questions that might ask
anything else than for you to construct a
Cypher statement.

Do not include any text except the generated
Cypher statement.

The question is:
the movies that share actors with the movie [

Indiana Jones and the Last Crusade] were in
which languages

C Few-shot examples provided to LLM
for the baseline of typically written
examples

Question: what films can be described by
occupation

Cypher query: ‘‘‘
MATCH (s:‘movie‘)−[r:has_tags]−>(o:‘tag‘)
WHERE toLower(o.name)=’occupation’

RETURN s LIMIT 200
‘‘‘

Question: which person wrote the films directed
by Yuriy Norshteyn

Cypher query: ‘‘‘
MATCH (d:‘director‘ {name:’Yuriy Norshteyn’})

<−[:directed_by]−(m:‘movie‘)−[:written_by
]−>(w:‘writer‘) RETURN w LIMIT 200

‘‘‘

Question: the films that share actors with the film
Dil Chahta Hai were released in which years

Cypher query: ‘‘‘
MATCH (yr:‘year‘)<−[:release_year]−(m:‘movie

‘)−[:starred_actors]−>(:‘actor‘)<−[:
starred_actors]−(m2:‘movie‘ {name: ’Dil
Chahta Hai’})

WHERE m <> m2
RETURN yr LIMIT 200
‘‘‘

D Few-shot examples provided to LLM
for ablation experiments

D.1 Ablation experiment "One typical
example only"

Question: the films that share actors with the film
Dil Chahta Hai were released in which years

Cypher query: ‘‘‘
MATCH (yr:‘year‘)<−[:release_year]−(m:‘movie

‘)−[:starred_actors]−>(:‘actor‘)<−[:
starred_actors]−(m2:‘movie‘ {name: ’Dil
Chahta Hai’})

WHERE m <> m2
RETURN yr LIMIT 200
‘‘‘

D.2 Ablation experiment "Non-descriptive
variable names"

Question: what films can be described by
occupation

Cypher query: ‘‘‘
MATCH (m:‘movie‘)−[:has_tags]−>(t:‘tag‘)
WHERE toLower(t.name)=’occupation’
RETURN m LIMIT 200
‘‘‘

Question: which person wrote the films directed
by Yuriy Norshteyn

Cypher query: ‘‘‘
MATCH (d:‘director‘)<−[:directed_by]−(m:‘

movie‘)
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MATCH (m:‘movie‘)−[:written_by]−>(w:‘writer
‘)

WHERE toLower(d.name)=’yuriy norshteyn’
RETURN w LIMIT 200
‘‘‘

Question: the films that share actors with the film
Dil Chahta Hai were released in which years

Cypher query: ‘‘‘
MATCH (m:‘movie‘)−[:starred_actors]−>(a:‘

actor‘)
MATCH (a:‘actor‘)<−[:starred_actors]−(m2:‘

movie‘)
MATCH (m2:‘movie‘)−[:release_year]−>(y:‘year

‘)
WHERE toLower(m.name)=’dil chahta hai’
AND m <> m2
RETURN y LIMIT 200
‘‘‘

D.3 Ablation experiment "All hops in one
line"

Question: what films can be described by
occupation

Cypher query: ‘‘‘
MATCH (movie:‘movie‘)−[:has_tags]−>(

occupationTag:‘tag‘)
WHERE toLower(occupationTag.name)=’

occupation’
RETURN movie LIMIT 200
‘‘‘

Question: which person wrote the films directed
by Yuriy Norshteyn

Cypher query: ‘‘‘
MATCH (yuriyDirector:‘director‘)<−[:

directed_by]−(movie:‘movie‘)−[:written_by
]−>(writer:‘writer‘)

WHERE toLower(yuriyDirector.name)=’yuriy
norshteyn’

RETURN writer LIMIT 200
‘‘‘

Question: the films that share actors with the film
Dil Chahta Hai were released in which years

Cypher query: ‘‘‘
MATCH (dilMovie:‘movie‘)−[:starred_actors

]−>(actor:‘actor‘)<−[:starred_actors]−(
otherMovie:‘movie‘)−[:release_year]−>(year
:‘year‘)

WHERE toLower(dilMovie.name)=’dil chahta

hai’
AND dilMovie <> otherMovie
RETURN year LIMIT 200
‘‘‘

D.4 Ablation experiment "One example only
employing our design"

Question: the films that share actors with the film
Dil Chahta Hai were released in which years

Cypher query: ‘‘‘
MATCH (dilMovie:‘movie‘)−[:starred_actors

]−>(actor:‘actor‘)
MATCH (actor:‘actor‘)<−[:starred_actors]−(

otherMovie:‘movie‘)
MATCH (otherMovie:‘movie‘)−[:release_year

]−>(year:‘year‘)
WHERE toLower(dilMovie.name)=’dil chahta

hai’
AND dilMovie <> otherMovie
RETURN year LIMIT 200
‘‘‘

D.5 Ablation experiment "Chain direction not
maintained"

Question: what films can be described by
occupation

Cypher query: ‘‘‘
MATCH (movie:‘movie‘)−[:has_tags]−>(

occupationTag:‘tag‘)
WHERE toLower(occupationTag.name)=’

occupation’
RETURN movie LIMIT 200
‘‘‘

Question: which person wrote the films directed
by Yuriy Norshteyn

Cypher query: ‘‘‘
MATCH (movie:‘movie‘)−[:directed_by]−>(

yuriyDirector:‘director‘)
MATCH (movie:‘movie‘)−[:written_by]−>(writer

:‘writer‘)
WHERE toLower(yuriyDirector.name)=’yuriy

norshteyn’
RETURN writer LIMIT 200
‘‘‘

Question: the films that share actors with the film
Dil Chahta Hai were released in which years

Cypher query: ‘‘‘
MATCH (dilMovie:‘movie‘)−[:starred_actors

]−>(actor:‘actor‘)
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MATCH (otherMovie:‘movie‘)−[:starred_actors
]−>(actor:‘actor‘)

MATCH (otherMovie:‘movie‘)−[:release_year
]−>(year:‘year‘)

WHERE toLower(dilMovie.name)=’dil chahta
hai’

AND dilMovie <> otherMovie
RETURN year LIMIT 200
‘‘‘

E Transferring methodology to SPARQL

E.1 Full prompt to transfer few-shot style

You are an expert at graph languages like
CYPHER and SPARQL. You want rewrite
graph queries so that each query is more
readable and understandable. An example is
given below:

## OLD QUERY
MATCH (yr:‘year‘)<−[:release_year]−(m:‘movie

‘)−[:starred_actors]−>(a:‘actor‘)<−[:
starred_actors]−(m2:‘movie‘ {{name: ’Dil
Chahta Hai’}})

WHERE m <> m2
RETURN yr LIMIT 200

## NEW QUERY
MATCH (dilMovie:‘movie‘)−[:starred_actors

]−>(actor:‘actor‘)
MATCH (actor:‘actor‘)<−[:starred_actors]−(

otherMovie:‘movie‘)
MATCH (otherMovie:‘movie‘)−[:release_year

]−>(year:‘year‘)
WHERE toLower(dilMovie.name)=’dil chahta

hai’
AND dilMovie <> otherMovie
RETURN year LIMIT 200

Help me rewrite the following query to make it
more readable and understandable. Make
sure that:

1. Each hop is articulated on a separate line to
mirror the logical sequence of traversals,
strictly adhering to the correct order of
entities and relationships encountered

2. Maintain an unbroken logical chain where the
endpoint of one hop is the starting point for
the next, ensuring a coherent flow of entities
throughout the query

3. Adopt variable names that are both illustrative
and consistent, reflecting the entity type and
any applicable constraints, like ’dilMovie’ to
denote a ’movie entity constrained by the
title ’Dil Chahta Hai’

Please help me rewrite the following query in the
style discussed above.
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