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Abstract

This article argues that digital educational con-
tent should be structured as knowledge graphs
(KGs). Unlike traditional repositories such as
Moodle, a KG offers a more flexible represen-
tation of the relationships between concepts,
facilitating intuitive navigation and discovery
of connections. In addition, it integrates effec-
tively with Large Language Models, enhancing
personalized explanations, answers, and rec-
ommendations. This article studies different
proposals based on semantics and knowledge
modelling to determine the most appropriate
ways to strengthen intelligent educational tech-
nologies.

1 Introduction

Knowledge graphs (KGs) structure complex infor-
mation into nodes and relationships, allowing an
intuitive and manipulable representation of knowl-
edge. This structure facilitates the integration of
information from diverse sources, improves the
ability to perform precise semantic searches, and
enhances the inference of new knowledge from
existing data (Kejriwal, 2022; Zhu et al., 2023).
Given these capabilities, KGs have shown signif-
icant potential across various domains, including
education (Ain et al., 2023).

In the educational environment, KGs can trans-
form how educational information is organized
and accessed. They integrate data from multiple
sources, such as textbooks, research articles and
online resources, to link key concepts, theories and
relevant authors (Dang et al., 2021). In addition,
integration with Large Language Models (LLMs)
can enhance this approach, enabling detailed ex-
planations and accurate answers (Zhu et al., 2023).
This approach facilitates the search for specific
information for students and educators and helps
identify hidden relationships between different top-
ics, promoting deeper, interdisciplinary learning
(Abu-Salih and Alotaibi, 2024).

Although many KGs have been proposed in the
literature, due to their complexity, they are often
limited to small environments (Yuan et al., 2024).
The construction of KGs has traditionally required
laborious data extraction and linking processes
based on natural language processing (NLP) and
data mining techniques (Zhu et al., 2023). How-
ever, in recent years, LLMs have revolutionized the
field of NLP, demonstrating a remarkable ability to
understand and generate natural language and pro-
gramming. The potential of LLMs for automatic
KG generation is an emerging area of research (Pan
et al., 2023; Melnyk et al., 2022).

To address the problem of converting educa-
tional materials into KGs for improved content
structuring, navigation, and personalization with
large language models, this paper explores several
key areas:

• Identifying the advantages of using KGs in
the educational environment.

• Highlighting the most relevant KGs in educa-
tion and their significant contributions.

• Examining the latest models based on LLMs
that facilitate the conversion from text to KG.

• Proposing an innovative approach to enhance
the educational material to KG task.

2 Advantages of using knowledge graphs
in the educational environment

2.1 Representation and efficient access to
knowledge

As indicated in Dang et al. (2021), representation
and efficient access to knowledge is fundamental
in KGs applied in education. These graphs allow
large amounts of information to be organized and
visualized in a structured manner, facilitating under-
standing and retrieval of relevant data. Abu-Salih
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and Alotaibi (2024) note that KGs significantly im-
prove semantic searchability, allowing students and
educators to access the specific information they
need quickly.

2.2 Enhancement of learning and discovery of
connections

According to Ain et al. (2023), KGs facilitate a
more flexible and dynamic representation of con-
cepts and their interrelationships, allowing students
to explore and better understand how different top-
ics are connected. This approach improves infor-
mation retention and fosters deeper and more con-
textualized learning.

Furthermore, KGs can significantly improve the
ability of educational systems to provide personal-
ized and relevant recommendations. Chicaiza and
Valdiviezo-Diaz (2021) demonstrate that systems
can suggest materials integrated into the student’s
learning process by mapping the relationships be-
tween concepts and educational resources. This
optimizes the learning process by aligning with
each student’s progress and specific interests and
facilitates discovering new connections and areas
of interest that might not be evident in a more tra-
ditional, linear learning environment.

2.3 Personalization and integration with
LLMs

Research by Li et al. (2019) analyses the use of
KGs in online learning platforms. The authors find
that these graphs improve the organization of edu-
cational content and facilitate learning personaliza-
tion. Educational systems using KGs can provide
content recommendations based on each learner’s
progress and interests.

In addition, KGs can play a crucial role in creat-
ing intelligent tutoring systems. According to Li
and Wang (2023), these graphs enable virtual tutors
to provide more detailed explanations tailored to
the individual needs of learners.

3 Review of knowledge graphs in
education

This section discusses three recent studies that re-
view using KGs and ontologies in education. Each
study addresses different aspects and applications
of these technologies, assessing their impact and
challenges. The conclusions of each of these stud-
ies are then presented, providing a comprehensive
view of the current and future state of KGs in ed-
ucation. Additionally, we add the article (Chen

et al., 2018) that proposes a methodology to build
KGs in the educational environment. The proposed
scheme will be relevant to the proposed method in
Section 5.

Abu-Salih and Alotaibi (2024) conclude that
KGs are transforming education by providing per-
sonalized learning experiences and enriched data
for curriculum planning. However, they face chal-
lenges such as a lack of standardized formats, lim-
ited interoperability, incomplete data, and scalabil-
ity issues. Future research is suggested to address
these limitations and explore integrating advanced
language models and creating multidomain KGs.

Stancin et al. (2020) highlights the crucial role
of ontologies in educational systems, facilitating
structured knowledge representation and curricu-
lum management. Although there is no single
methodology for their construction, researchers
combine several methodologies. Recent literature
review shows an increase in the use of ontologies in
education, highlighting their importance and future
potential.

Khoiruddin et al. (2023) reviews the devel-
opment of ontologies in e-learning, highlighting
methodologies such as NeON and METHONTOL-
OGY, and the roles of domain experts, developers,
and end users. It uses metrics such as Relationship
Richness to assess the quality of ontologies. He
concludes that a proper understanding and applica-
tion of these methods and metrics can improve the
efficiency and effectiveness of e-learning systems.

Finally, Chen et al. (2018) describes a system
called KnowEDu developed to automatically con-
struct KGs in education using pedagogical and
learning assessment data. KnowEdu uses NLP al-
gorithms to extract meaningful instructional con-
cepts and educational relationships from hetero-
geneous data. The methods and results of this
study provide a solid foundation for the practical
implementation of educational KGs. However, this
methodology does not allow for an automatic tran-
sition from text to KG.

4 Text-to-Knowledge graph conversion
models

Many integrations exist between LLMs and KGss,
but these only cover one of the text-to-knowledge
graph process’s tasks, as seen in the review (Pan
et al., 2023). An analysis of models that perform
the complete task of moving from text to KG is
shown below. Several common features and differ-
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ences are observed in these models. The models are
commonly evaluated in Zero-Shot, One-Shot, and
Few-Shot scenarios, measuring various datasets’
accuracy and semantic relatedness capability. The
differences lie in the base LLMs chosen, the fine-
tuning techniques applied, and the specific archi-
tectures used. The results show that, although there
are improvements in certain configurations, there
is still ample room to optimize the accuracy and
efficiency of KG generation.

For instance, in the study by Giglou et al.
(2023) several models are evaluated on the text
to OWL conversion task in Zero-Shot, includ-
ing BERT-Large (Devlin et al., 2019), PubMed-
BERT (Gu et al., 2021), BART-Large (Lewis
et al., 2020), Flan-T5-Large (Chung et al., 2022),
Flan-T5-XL (Chung et al., 2022), BLOOM-1b7
(Workshop et al., 2022), BLOOM-3b (Workshop
et al., 2022), GPT-3 (Brown et al., 2020), GPT-3.5
(OpenAI, 2023), LLaMA (Touvron et al., 2023)
and GPT-4 (OpenAI et al., 2023). These mod-
els were tested on the term typing task using dif-
ferent datasets: WordNet (Miller, 1995), GeoN-
ames (Rebele et al., 2016), NCI (National Can-
cer Institute, National Institutes of Health, 2022),
SNOMEDCT_US (SNOMED International, 2023)
and MEDCIN (Medicomp Systems, 2023). The
best results were 91.7 for WordNet (Miller, 1995),
but significantly lower for the other datasets, with
scores of 43.3, 16.1, 37.7 and 29.8, respectively,
evidencing considerable room for improvement in
the models’ ability for this task. They were also
evaluated in the entity classification task with the
GeoNames (Rebele et al., 2016), UMLS (Boden-
reider, 2004), and schema.org datasets, showing
scores of 67.8, 78.1 and 74.4, again suggesting
considerable room for improvement. Finally, in
the relationship recognition task with the UMLS
(Bodenreider, 2004) dataset, a result of 49.5 was
obtained, reflecting once again the need for im-
provement.

Moreover, the same article presents two tuned
models: Flan-T5-Large (Chung et al., 2022) and
Flan-T5-XL (Chung et al., 2022), which show re-
markable improvements in several datasets of the
evaluated tasks. For example, for the datasets of the
first task, the results were improved to 32.8, 43.4
and 51.8. The results improved to 79.3 and 91.7 in
the entity classification task, and in the relationship
recognition task, 53.1 was achieved.

Similarly, in the study by Mihindukulasooriya
et al. (2023) Vicuna-13B (Chiang et al., 2023)

and Alpaca-LoRA-13B (Taori et al., 2023; Hu
et al., 2022) are evaluated in Zero-Shot on the Fact
Extraction task using the F1 metric for different
subsets of the Wikidata-TekGen (Vrandečić and
Krötzsch, 2014) and DBpedia-WebNLG (Gardent
et al., 2017) datasets. The best result for the Wiki-
data dataset (Vrandečić and Krötzsch, 2014) is 0.38
for Vicuna (Chiang et al., 2023) and 0.28 for Al-
paca (Taori et al., 2023; Hu et al., 2022) and for the
DBpedia dataset (Gardent et al., 2017) it is 0.3 for
Vicuna (Chiang et al., 2023) and 0.25 for Alpaca
(Taori et al., 2023; Hu et al., 2022). As in the pre-
vious case, it is evident that there is much room for
improvement.

Furthermore, in the study by Zhu et al. (2023), a
comprehensive evaluation of Extended Language
Models (LLMs) such as GPT-4 (OpenAI et al.,
2023) and ChatGPT(OpenAI, 2023) in KG con-
struction and reasoning tasks is performed by ex-
periments on eight datasets and four representative
tasks: entity and relationship extraction, event ex-
traction, link prediction, and question and answer.
The results show that, although GPT-4 achieves an
F1 score of 31.03 in relation extraction on DuIE2.0
(Li et al., 2019) on zero-shot and 41.91 on one-shot,
as well as an F1 score of 34.2 on MAVEN (Wang
et al., 2020) for event extraction on zero-shot, and
a hits@1 of 32.0 on FB15K-237 (Toutanova et al.,
2015) for link prediction on zero-shot, these results
are improbable.

The paper by Melnyk et al. (2022) presents an in-
novative approach for generating KGs from text in
multiple stages. This approach is divided into two
main phases: first, the generation of nodes using the
pre-trained language model T5-large (Chung et al.,
2022) and then the construction of edges using the
information from the generated nodes. This method
seeks to overcome the limitations of traditional
graph linearization approaches by breaking the pro-
cess into manageable and separately optimizable
steps. The model was evaluated on three datasets:
WebNLG 2020 (Castro Ferreira et al., 2020), TEK-
GEN (Agarwal et al., 2021) and New York Times
(Riedel et al., 2010), obtaining F1 scores of 0.722,
0.707 and 0.918 respectively, demonstrating its ef-
fectiveness. However, it highlights the need for
further improvement, especially in edge generation,
to optimize the system’s performance in various
applications.

Finally, in the study by Ain et al. (2023),
embeddings-based methods, such as SIFRank (Sun
et al., 2020) and SIFRankplus, which is an exten-
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sion made by the authors, enhanced with Squeeze-
BERT (Iandola et al., 2020), achieved an F1-
score of 40.38% in keyphrase extraction. In con-
cept weighting, the SBERT-based (Reimers and
Gurevych, 2019) strategy achieved an accuracy of
13.9% and an F1-score of 20.6% for the top ten
ranked concepts, superior results to the benchmark
models with which they were purchased. Despite
these advances, the results highlight the need to
improve the accuracy and performance of the tech-
niques to ensure the effective construction of KGs.

5 Proposed methodology

This section presents an innovative methodology
for automatically using an LLM to generate KGs
from educational materials. Existing models like
BERT-Large, GPT-4, Vicuna-13B, PubMedBERT,
BART-Large, Flan-T5, BLOOM, GPT-3, GPT-
3.5, LLaMA, and Alpaca-LoRA-13B have shown
progress in converting text to KGs but still have
significant limitations, as seen in the previous sec-
tion. For example, in term typing tasks, scores
were 43.3 for GeoNames, 16.1 for NCI, 37.7 for
SNOMEDCT_US, and 29.8 for MEDCIN, com-
pared to 91.7 for WordNet. In entity classification,
the highest scores were 78.1 for UMLS and 74.4 for
schema.org. Fact extraction tasks showed Vicuna-
13B scoring 0.38 and Alpaca-LoRA-13B scoring
0.28 on Wikidata-TekGen. These results highlight
the need for new strategies to improve model per-
formance in text-to-knowledge graph conversion in
general and particularly in education.

To address these limitations, we propose a
methodology that involves creating an expert model
in natural language and KG language. This model
is subsequently refined to convert learning materi-
als into KGs, following a learning object structure
that offers a guided and comprehensive teaching
experience with multimedia educational content.
The methodology comprises two phases: continu-
ous pre-training using a large dataset of KGs and
specific fine-tuning with didactic materials.

During pre-training, a diverse dataset of KGs
from sources like Wikidata (Vrandečić and
Krötzsch, 2014), DBpedia (Lehmann et al., 2015),
and YAGO (Rebele et al., 2016) will be used to
train the model with masking and self-supervised
learning. This will enhance the model’s understand-
ing of semantic relationships and hierarchical struc-
tures, improving its ability to generate coherent and
accurate graphs.

Continual pre-training allows the model to be-
come more expert in its domain, enhancing seman-
tic understanding, training on structured data, flexi-
bility, generalization, bias reduction, and leverag-
ing existing resources (Wu et al., 2024).

In the fine-tuning phase, diverse educational
materials will be gathered, and their correspond-
ing KGs will be created manually or semi-
automatically. This process will necessitate defin-
ing a KG schema or leveraging an existing one
from the literature that aligns with the proposed use
case. Specifically, the of the IEEE Computer Soci-
ety (2020) provides a comprehensive schema and
vocabulary for metadata that could be particularly
useful. Alongside this standard, methodologies
and schemes described in the studies by (Wölfel
et al., 2024) and (Chen et al., 2018) will also be
considered.

Although KGs are not used in Wölfel et al.
(2024), it becomes clear that a small amount of
domain-specific data, such as slides and lecture
transcripts, can be extremely valuable for build-
ing knowledge-based and generative educational
chatbots. Slides are enriched with semantic an-
notations, identifying entities such as definitions,
quotes, and examples. This enables knowledge-
based to provide accurate and relevant responses
by mining directly from this structured data.

Chen et al. (2018) describes a system developed
to build educational KGs using pedagogical and
learning assessment data automatically. The meth-
ods used in this study for extracting instructional
concepts and identifying meaningful educational
relationships will provide a solid foundation for the
proposed KG scheme. Integrating these method-
ologies is expected to improve the system’s effec-
tiveness in automatically generating KGs from ed-
ucational materials.

6 Conclusion

In conclusion, this article argues that structuring
digital educational content as KGs rather than tradi-
tional repositories provides significant advantages.
KGs offer a flexible, navigable representation of
concept relationships, enhancing learning personal-
ization and integration with LLMs. A methodology
to automatically generate KGs from educational
texts is proposed, promising to transform access
to and organization of educational information for
more profound, personalized learning.
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