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Abstract

Large-scale knowledge graph construction re-
mains infeasible since it requires significant
human-expert involvement. Further complica-
tions arise when building graphs from domain-
specific data due to their unique vocabular-
ies and associated contexts. In this work, we
demonstrate the ability of open-source large
language models (LLMs), such as Llama-2 and
Llama-3, to extract facts from domain-specific
Maintenance Short Texts (MSTs). We em-
ploy an approach which combines ontology-
guided triplet extraction and in-context learn-
ing. By using only 20 semantically similar ex-
amples with the Llama-3-70B-Instruct model,
we achieve performance comparable to previ-
ous methods that relied on fine-tuning tech-
niques like SpERT and REBEL. This indi-
cates that domain-specific fact extraction can
be accomplished through inference alone, re-
quiring minimal labeled data. This opens up
possibilities for effective and efficient semi-
automated knowledge graph construction for
domain-specific data.

1 Introduction

Knowledge Graphs (KGs) have emerged as a pow-
erful tool for representing complex relationships be-
tween entities across various domains and in aiding
in various tasks (e.g., in search, recommendation
systems, and others) (Hogan et al., 2021).

Constructing a KG presents several challenges.
The process requires extracting structured infor-
mation from unstructured data, such as text, us-
ing Information Extraction (IE) techniques. Much
research has focused on large, publicly available
general-purpose KGs like DBPedia, YAGO, or
Wikidata, as well as on domain-specific KGs in
areas like medicine (Li et al., 2020) or railway
safety (Liu et al., 2021). More recent studies have
explored the use of KGs to support industrial main-
tenance activities (Hossayni et al., 2020; Stewart
et al., 2022). However, building a maintenance

KG involves overcoming several additional obsta-
cles: off-the-shelf Natural Language Processing
solutions often fail to handle domain-specific data
adequately, existing benchmarks do not align with
industrial realities, the costs of annotating domain-
specific data can be prohibitive, and the typically
low volume of domain-specific data makes it chal-
lenging to train robust models that generalize well
to new instances (Brundage et al., 2021; Dima
et al., 2021). Additional difficulties arise when data
evolves (e.g., triggering changes in the label space)
necessitating computationally-expensive retraining
or fine-tuning of models in traditional approaches.

In-context-learning (Dong et al., 2022)
and ontology-guided KG construction from
Text2KGBench (Mihindukulasooriya et al., 2023)
offer the ability to overcome some of these
challenges. Both these methods are dynamic and
adaptable to changes in the ontology or label
space without the need for re-training. In-context
learning does not require large collection of
annotated labeled data upfront but only at time
of inference. Ontology-guided KG construction
allows for seamless changes to the ontology if
desired. This makes these methods particularly
useful in domains where ontologies evolve over
time.

Recently, Large Language Models (LLMs) have
demonstrated remarkable capabilities in the ability
to perform information extraction (Xu et al., 2023).
However, most of this work focuses on general do-
main datasets, e.g. ACE datasets 12, CoNLL2003
(Tjong Kim Sang and De Meulder, 2003) or Ta-
cRED (Zhang et al., 2017) and little work exists
on specialized domain-specific datasets. An anno-
tated dataset of fine-grained schema and corpora
for information extraction of Maintenance Short
Texts (MST) recently became publicly available:

1https://catalog.ldc.upenn.edu/LDC2005T09
2https://catalog.ldc.upenn.edu/LDC2006T06
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MaintIE (Bikaun et al., 2024a).
In this work, we show how LLMs can assist

with the knowledge graph construction on domain-
specific texts. Our contributions are as follows:

1. We evaluate the LLama-2 (Touvron et al.,
2023a) and LLama-33 family models on
ontology-guided KG construction using in-
context-learning on a dataset of Maintenance
Short Texts (Bikaun et al., 2024a).

2. We show that, using only a few in-context
examples, Llama-3-70B-Instruct can extract
fact extracts comparable to previous state-of-
the-art with a near-zero hallucination rate. We
find that for other models of the Llama-family,
hallucinations come into play where generated
triples contain objects/subjects from (mostly)
in-context examples.

3. We study the effects of choosing certain token
prediction penalties and the effects on halluci-
nations. We show that by carefully selecting
these parameters can minimize the number of
hallucinations, but that the wrong settings can
stimulate this behaviour.

4. Finally, we show that the pruning of such hal-
lucinations is relatively easy and increases
performance (in both precision and F1) by a
large margin. Performing this pruning makes
smaller models such as Llama-3-8B a suitable
alternative.

Our work implies that LLMs are well-suited for
building domain-specific knowledge graphs, even
with limited supervised data. In addition, if large-
scale data annotation is required, LLMs can be
combined with a human-in-the-loop process that
pre-annotates data at an incremental rate. Our code,
prompts and data are publicly available4.

2 Task description

In this work, we consider the task of LLM-assisted
KG construction as automatically extracting graph
structured information (subject, object and (direc-
tional) relation) from unstructured text data. In line
with Text2KGBench, we also regard this task as
"Given an ontology and text corpora, the goal is to
construct prompts to instruct the model to extract
facts relevant to the ontology". An example of how
this is setup in the prompt is given in Figure 1.

3https://ai.meta.com/blog/meta-llama-3/
4https://github.com/zeno17/MaintIE2KGBench

3 Methodology

3.1 Data

MaintIE (Bikaun et al., 2024a) provides a collec-
tion of Maintenance Short Texts (MST’s) which
encapsulates information from Maintenance Work
Orders (MWOs) in a lexically-normalised concise
format (Bikaun et al., 2024b). It comes in 2 an-
notation versions: 1) Fine-grained, spanning 224
entity classes or 2) Course-grained, spanning 6
entity classes. The fine-grained version is the re-
sult of pure intensive expert annotation, and the
course-grained version was created by performing
pre-annotation using fine-tuned SpERT (Eberts and
Ulges, 2019) which was followed by expert correc-
tion. An example text with corresponding triplets
is provided below.

Text:
cabin lights require replacing
Ground truth triples:
hasPart(cabin,lights)
hasAgent(require,lights)
hasPatient(require,replacing)

As both versions come with the same 6 rela-
tion types, we opt for the course-grained data as
it is more numerous (7.000 compared to 1.067).
From this, we filter out MST’s that don’t have
actual triples annotated to them. This follows
Text2KGBench which 1) also only uses triple-
containing texts and 2) whose evaluation frame-
work is not equipped to measure performance over
non-triple containing texts. This only filters out
272 examples or 3.9% of the data.

From the remaining 6.728 examples, we create
a 75/25 train-test split (or 5.046/1.682 examples re-
spectively). During the experiments, the examples
given to the model in the context are drawn from
the train split, and performance is measured over
the held-out test-split. More on this is covered in
Subsection 3.5.

3.2 Prompt

For the prompting, we include a basic instruction,
an ontology, k examples and the test sentence. The
prompt template is provided in Figure 1. This dif-
fers from Text2KGBench as follows: 1) we feed
multiple examples to model, and 2) we do not pro-
vide relation constraints to the model (which enti-
ties can have which relations). We do not provide
the relation constraints as this takes a considerable
amount of space in the context-window of the LLM.
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Figure 1: Used prompt template

While this space is limited for the course-grained
data (5 entity types, 6 relations), the amount of
space required can grow intractably for larger on-
tologies (e.g. the fine-grained dataset has 224 entity
types and 6 relations). We consider this an avenue
for future work.

3.3 Metrics

For evaluation Text2KGBench focuses on three di-
mensions: 1) fact extraction performance 2) ontol-
ogy conformance, and 3) hallucination rate. Below,
we provide brief explanations of the evaluation met-
rics, where we deviate from them and why.

1. Fact Extraction: From the generated text,
triplets of the form "relation(subject, object)"
are extracted using regular expressions. The
extracted triples are then compared to the
set of ground truth triples, and performance
is measured using Precision, Recall and F1-
score. Any triple that is not an exact match for
relation type, object or subject is considered
incorrect.

2. Ontology Conformance: Is the predicted
relation in the provided ontology (provided
in Figure 1). In this work, we limit our-
selves to the relations: [’contains’, ’has-
Part’, ’hasAgent’, ’hasPatient’, ’hasProperty’,
’isA’].

3. Hallucination rate: Whether the LLM pre-
dicts relations that are not in the ontology,
or objects/subjects that are not in the pro-
vided text. As Text2KGBench introduces two
benchmark datasets based on Wikidata and
DBpedia. This data carries more linguistically
variation for the entities, and therefore they
use a loose regime where objects/subjects are
matched through stemmed words (using the
Porter stemming algorithm (Van Rijsbergen
et al., 1980)). In our work, we only count ex-
act matches as correct because the MaintIE
data is of limited vocabulary variation. We
only consider exact matches and anything out-
side of that we consider a hallucination. For
example, if the word "filter" is in the target
sentence, a triple containing "filters" as an ob-
ject/subject is considered a hallucination. This
is important in a maintenance setting as, for
example, having a singular or multiple com-
ponent carries different semantics or may not
even possible (e.g. if a machine only has the
component once).

3.4 Models

LLMs are neural-inspired models that are trained
on immense amounts of data. While initially de-
signed for machine translation (Vaswani et al.,
2017), adaptations such as encoder-only BERT (De-
vlin et al., 2018) or decoder-only GPT (Radford
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and Narasimhan, 2018) found use for a plethora
of tasks. Recently, GPT-based models have been
found to be the most versatile and flexible through
its generative nature, including for generative infor-
mation extraction (Xu et al., 2023).

LLaMa (Touvron et al., 2023a,b)5, is an open-
source LLM, and comes in different sizes and both
only pre-trained and instruction-tuned versions.

In this work, we will assess several releases of
the Llama family and assess their capabilities of
performing fact extraction in the maintenance do-
main. We consider the following versions:

1. Llama-2-7B6

2. Llama-2-70B7

3. Llama-3-8B8

4. Llama-3-8B-Instruct9

5. Llama-3-70B10

6. Llama-3-70B-Instruct11

3.5 In-Context Learning
In-context-learning (ICL) is a technique of provid-
ing an LLM with a few examples to create a demon-
stration context. It then combines a query question
with this context to form a prompt, which is fed
into a language model for prediction. The model is
expected to discern the pattern in the demonstration
and make the appropriate prediction (Dong et al.,
2022).

The model’s context length is a hard limit on
how many examples can be used, and the num-
ber of examples that necessary or effective can
differ per model. In the context of maintenance
data, availability is an important bottleneck as hu-
man annotated data is time-consuming and expen-
sive. For this reason, we will experiment how
many examples the model needs to be provided
with in the context to do an effective fact extrac-
tion. For every example in the test set, semanti-
cally similar examples are retrieved using sentence-
transformers12 (Reimers and Gurevych, 2019) and
the all-mpnet-base-v2 model13. In Text2KGBench,
the models are only provided a single example

5https://ai.meta.com/blog/meta-llama-3/
6https://huggingface.co/meta-llama/Llama-2-7b
7https://huggingface.co/meta-llama/Llama-2-70b
8https://huggingface.co/meta-llama/Meta-Llama-3-8B
9https://huggingface.co/meta-llama/Meta-Llama-3-8B-

Instruct
10https://huggingface.co/meta-llama/Meta-Llama-3-70B
11https://huggingface.co/meta-llama/Meta-Llama-3-70B-

Instruct
12https://github.com/UKPLab/sentence-transformers
13https://huggingface.co/sentence-transformers/all-mpnet-

base-v2

(k=1). In our case, we will experiment with k ∈
{1, 2, 3, 5, 10, 20, 50, 100, 150} except for Llama-
2 where 100 and 150 examples are not possible
due to hitting the context length limit. Still, this
is a high number of examples which is possible
largely because the maintenance short text data is
of limited length.

3.6 Token prediction penalties

Text2KGBench demonstrated that ontology-guided
information extraction suffers from hallucinations.
This means triples are generated where the relation
does not conform to the ontology or where subjects
and objects that were not in the test sentence in the
first place. During early experimentation, we found
that the used LLM’s tend to do (among others) the
following: 1) repeat the same tokens until maxi-
mum sequence length was reached, and 2) provide
lengthy explanations despite only asking for triples,
including the generation of code.

For our LLM implementation, the parameters
"frequency penalty" and "presence penalty" can
be used. These change the logits if the LLM uses
same tokens repeatedly or encourages it to use dif-
ferent tokens than already seen. Using Llama-3-8B
(for computational reasons) we experiment with
different settings in the full available range ([-2, 2])
to see how restricting the output logits affects the
LLMs performance. As ontology conformance is
generally high (and thus relation hallucination rate
low), we look at the averaged hallucination rate of
the object and subject. From our preliminary find-
ings, we decided to run all other experiments with
a frequency penalty of 0 and a presence penalty of
-1.

3.7 Hallucination types

Next, we inspect some intricacies of the halluci-
nations that we found. We select the predictions
from Llama-3-8B on 10 examples with frequency
penalty 0, and presence penalty 2, which has the
highest combined subject-object hallucination rate
in our work (0.22 and 0.21 respectively). How-
ever, a solid inspection framework grows fast in
complexity considering hallucination intricacies,
let alone proving direct causality. We scope our
approach in order to provide some quantitative
inspection, and leave a hallucination inspection
framework for future work. In the end, we limit
ourselves to the following:

1. We only expand upon subject/object halluci-
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nations for simplicity.

2. We only consider subjects consisting of 1
word (e.g. "replace" but not "change out" or
"chain hoist) due to difficulties with proper
stemming.

3. We adopt an assumed hierarchy of errors
of most probable cause of the hallucination,
which is as follows (in order):

(a) The stemmed subject/object is in a
stemmed sentence (this matches e.g. re-
place and replacing).

(b) The subject/object is in one of the exam-
ples provided to the LLM.

(c) The stemmed subject/object is in one of
the stemmed examples.

3.8 Hallucination-filtered performance

Lastly, we look at what the fact extraction perfor-
mance can be without hallucinations. If a triple
contains a relation not in the provided ontology,
or a subject/object which is not in the original in-
put string, then it simply cannot be a factual triple.
These conditions can be verified automatically and
triples that violate them filtered from the fact ex-
traction process. This leads to less produced triples,
but the remaining extracted triples should match
better with the ground truth and thus increase pre-
cision.

4 Results

4.1 Fact Extraction

Figure 2 shows how effective each LLM is at ob-
taining correct facts and hallucination rate versus
the number of examples. It can be seen that there
are stark differences between model performance
with both highest and lowest performance com-
ing from the instruction-tuned and untuned Llama-
3-70B respectively. Conversely, for Llama-3-8B
instruction-tuning seems to decrease performance
across the board. In addition, Llama-3-8B-Instruct
has a visibly lower ontology conformance com-
pared to the other models which all adhere to
the provided ontology systematically. Eventually,
Llama-3-70B-Instruct obtains 0.77 F1-score when
given 150 examples. For both versions of Llama-3-
8B, further increasing the number of examples to
a 150 hurts performance compared to fewer exam-
ples. The scores of k=20 (which we consider a low
amount) are also displayed in Table 1.

4.2 Token prediction penalties

Figure 3 shows how Llama-3-8B’s performance
varies when tuning different parameters as de-
scribed in Subsection 3.6. It can be seen that shift-
ing frequency penalty and token penalty leads to
an optimal fact extraction performance on an off-
diagonal line. In addition, the lower right triangle
is the generally lower performing side in terms of
fact extraction. Conversely, this lower performance
is combined with an increasing hallucination rate.

4.3 Ontology conformance & Hallucination
rate

Text2KGBench reports that ontology conformance
is consistently high across a variety of ontologies,
which resonates with our results. In Figure 2 the
ontology conformance is near 1 for all models, with
the exception to this are Llama-2-7b and Llama-3-
8B-Instruct where we see a decline throughout the
number of examples. This means that the LLM’s
generally adhere to the provided Ontology, at a
much higher rate found for the Text2KGBench
benchmark.

Next, we look at how performance and hallu-
cination progresses as the number of in-context
examples increases in Figure 4. For Llama-3-8B-
Instruct, the hallucination rate first increases follow
by stabilization. Both Llama-3-8B and Llama-3-
8B-Instruct suffer from a the hallucination rate and
this is relatively stable as the number of examples
increases. On the contrary, Llama-3-70B-Instruct
does not suffer from this problem and sees a steady
performance increase while the hallucination rate
actually goes down. Thus, this seems to be a model-
dependent issue.

4.4 Hallucination types

From inspection, we found that most subject/object
hallucinations conform to the following scenarios:
1) objects/subjects contain tokens from the exam-
ples provided in the context, 2) objects/subjects
being changed from plural to singular or vice versa,
3) object/subject verbs having active instead or pas-
sive form or vice versa. In some cases, these obser-
vations are not mutually exclusive for a single sen-
tence. For example: if a test sentence contains "re-
placed", an extracted triple has a subject ’replace’,
and the word "replace" occurs in an example, then
both 1) and 3) are true simultaneously. For rela-
tion hallucinations, the LLM sometimes used the
provided ontology concepts as a relation (e.g. Phys-
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Figure 2: Left: Per-model performance on fact extraction. Right: Ontology conformance. Higher is better. Scale is
logarithmic

Model P (↑) R (↑) F1 (↑) OC (↑) SH (↓) RH (↓) OH (↓)

REBEL (MaintIE) - - 0.77 - - - -
Llama-2-7b-hf 0.31 0.26 0.27 1.00 0.03 0.00 0.01
Llama-3-8B 0.62 0.70 0.63 1.00 0.03 0.00 0.03
Llama-3-8B-Instruct 0.48 0.70 0.53 0.98 0.08 0.02 0.09
Llama-3-70B 0.04 0.04 0.04 1.00 0.00 0.00 0.00
Llama-3-70B-Instruct 0.67 0.74 0.69 1.00 0.00 0.00 0.01

Table 1: Per-Model Fact Extraction Performance, Ontology Conformance and Hallucination rate. Scores reported are
Precision, Recall, F1-score, Ontology Conformance, Subject Hallucination, Relation Hallucination and Objection
Hallucination. Number of examples (k) is 20. For P, R, F1 and OC higher is better (↑). For SH, RH and OH lower is
better (↓).

icalObject, Process, etc.), or it combined them into
new relations (e.g. the relation hasProcess from the
concept Process, hasState from State, etc.). It also
occured the generated answer contained Python
code (despite being asked not to) where certain
lines contained substrings matching a "r(a,b)" form
which were extracted unintentionally.

Figure 5 partially quantifies some of these as-
pects and it can be seen that for both subject and
both, a large part of hallucinations overlap with
being present in the context examples.

4.4.1 Hallucination-filtered performance
If triples that contain a hallucinated relation, object
or subject are pruned, we obtain the performance
as reported in Table 2. We observe that by applying
a simple filter for triples of which we know they are
non-factual, all models gain a significant amount of
performance. The exception being Llama-3-70B-
Instruct as it already obtained high performance
with near-zero hallucination rate. We observe that
for all models, the precision improves (as expected)
compared to the results in Table 1. This heuristic

pruning of extracted triples can thus be a useful way
of increasing fact extraction performance, specifi-
cally smaller models which require less compute
power.

5 Discussion

Firstly, we will draw a comparison to the results
of MaintIE (Bikaun et al., 2024a). Since we only
focus on triplet extraction without entity recogni-
tion, a comparison must be done between our work
and MaintIE’s evaluation of REBEL on loose re-
lation extraction (as it only requires agreement on
the relation type and entity spans) (Bikaun et al.,
2024a). In a supervised fine-tuning setting called
curriculum learning, MaintIE (Bikaun et al., 2024a)
obtained an F1-score of 0.77. For comparison,
Llama-3-70B-Instruct matches this score by us-
ing 150 examples and obtains 0.69 F1-score using
only 20 semantically similar in-context examples,
making the performance remarkably close. The
effectiveness of using only a few semantically simi-
lar examples can significantly improve the model’s

80



Figure 3: Fact extraction performance and hallucination rate for different settings of frequency and presence
penalties. Selected model was Llama-3-8B. Number of in-context examples was set to 10. Left: higher is better.
Right: lower is better.

Figure 4: Number of in-context examples versus hallucination rate. Llama-3-8B, Llama-3-8B-Instruct and Llama-3-
70B-Instruct selected for their overall performance.

ability to recognize patterns in the data.

However, this performance is only close when
comparing it to the largest state-of-the-art open and
instruction-tuned models. For Llama-3-70B, its
low performance is explained that a significant por-
tion of its “generations” are empty, which means
its low performance is caused by the model’s fail-
ure to even generate a sequence with triples at all.
The associated performance in terms of hallucina-
tion is therefore void, given that empty generations
by default don’t contain tokens that fall outside
the given sentence of the ontology. Llama-3-70B
without instruction-tuning is thus incapable of per-
forming fact extraction, while instruction-tuning
Llama-3-8B slightly decreases performance rather
than improve it.

Second, we would like to draw a comparison
methodologically between REBEL, SpERT and
LLMs and review differences and corresponding
consequences. Both REBEL and SpERT use a fine-

tuning approach that requires the labelled data to be
available upfront. For SpERT, a relation classifier is
used and as it constrains its output to a label space,
it doesn’t suffer from hallucinations. LLMs do
not require this labelled data for fine-tuning, and,
in this work, we have shown that even with few
examples they can already be effective. However,
this at-inference requirement of LLM comes with
the drawback of hallucinations and is a subject of
research (McKenna et al., 2023; Agrawal et al.,
2023).

Thirdly, we will discuss how these hallucina-
tions can be dealt with. We find that changing
token penalties can simultaneously maximize fact
extraction performance and minimize hallucina-
tion rate. By stimulating the model to diversify
through presence penalty, the generated halluci-
nated triples will contain objects/subjects that are
outside of the target sentence, likely sourced by
in-context-examples. The exact reason for why
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Figure 5: Types of hallucinations and subject sub-classifications. Based on predictions from Llama-3-8B with fre-
quency penalty 0 and presence penalty 2. These parameter values induce a relatively high number of hallucinations.

Before pruning After pruning
Model P R F1 P R F1
REBEL (MaintIE) - - 0.77 - - -
Llama-2-7b-hf 0.31 0.26 0.27 0.32 0.26 0.28
Llama-3-8B 0.62 0.70 0.63 0.64 0.70 0.65
Llama-3-8B-Instruct 0.48 0.70 0.53 0.58 0.69 0.61
Llama-3-70B 0.04 0.04 0.04 0.04 0.04 0.04
Llama-3-70B-Instruct 0.67 0.74 0.69 0.68 0.74 0.69

Table 2: Fact extraction performance where hallucinations are pruned. Scores reported are Precision, Recall,
F1-score where higher is better. Number of examples (k) is 20.

this occurs is unclear, and we consider an extended
evaluation framework an interesting area for further
research. Despite these hallucinations occurring, it
is relatively straight-forward to prune them. Hallu-
cinations are fairly easy to detect in this setting, as
the relation must conform to the provided ontology
and the subject/object must occur in the target text.
The filtering of these verifiable hallucinations gen-
erally leads to a higher precision and thus higher
F1-score, while ensuring ontology conformity in a
domain-specific setting.

Lastly, we would like to discuss the implica-
tions of our findings. Building domain-specific
Knowledge Graphs is a time-consuming effort, and
building NLP-pipelines to do this often requires
considerable resources. Our work implies that an
incremental human-in-the-loop process could sig-
nificantly assist with fact extraction. In (Bikaun
et al., 2024a), pre-annotation was done by fully
fine-tuning SpERT on an already annotated corpus
and annotating a second corpus. Our work im-

plies that by using LLMs and in-context learning,
pre-annotation could start both earlier (using few
examples) and continuously (building the number
of examples as you go) using inference-only. This
could considerably reduce workload for domain
experts that need to be involved.

6 Conclusion

This study explores the use of Large Language
Models for constructing knowledge graphs from
Maintenance Short Texts. We assess models from
the Llama family, focusing on fact extraction
through two main methods: 1) ontology-guided
triplet extraction and 2) in-context learning. Utiliz-
ing these techniques with the Llama-3-70B-Instruct
model, we achieve fact extraction performance
comparable to the current state-of-the-art methods
that require fine-tuning. During this process, the
issue of hallucinations (incorrect or fabricated infor-
mation) can arise, often exacerbated by suboptimal
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settings for token prediction penalties. However,
for the Llama-3-70B-Instruct model, hallucinations
are almost non-existent. For other models, it’s fea-
sible to prune hallucinated triples from the out-
put. This capability extends even to smaller models
like Llama-3-8B, making them viable alternatives.
This approach facilitates human-in-the-loop pre-
annotation for domain-specific datasets, potentially
reducing the time investment required from domain
experts. Our work shows that Large Language
Models are a fitting solution for Knowledge Graph
construction, specifically where labelled data is
scarce or the ontology dynamic.
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2024), pages 68–78, San Ġiljan, Malta. Association
for Computational Linguistics.

Michael P. Brundage, Thurston Sexton, Melinda Hod-
kiewicz, Alden Dima, and Sarah Lukens. 2021. Tech-
nical language processing: Unlocking maintenance
knowledge. Manufacturing Letters, 27:42–46.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Alden Dima, Sarah Lukens, Melinda Hodkiewicz,
Thurston Sexton, and Michael P. Brundage. 2021.
Adapting natural language processing for technical
text. Applied AI Letters, 2(3):e33.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiy-
ong Wu, Baobao Chang, Xu Sun, Jingjing Xu, and
Zhifang Sui. 2022. A survey on in-context learning.
arXiv preprint arXiv:2301.00234.

Markus Eberts and Adrian Ulges. 2019. Span-based
joint entity and relation extraction with transformer
pre-training. In European Conference on Artificial
Intelligence.

Aidan Hogan, Eva Blomqvist, Michael Cochez, Clau-
dia d’Amato, Gerard De Melo, Claudio Gutierrez,
Sabrina Kirrane, José Emilio Labra Gayo, Roberto
Navigli, Sebastian Neumaier, et al. 2021. Knowledge
graphs. ACM Computing Surveys (Csur), 54(4):1–
37.

Hicham Hossayni, Imran Khan, Mohammad Aazam,
Amin Taleghani-Isfahani, and Noel Crespi. 2020.
Semkore: Improving machine maintenance in indus-
trial iot with semantic knowledge graphs. Applied
Sciences, 10(18).

Linfeng Li, Peng Wang, Jun Yan, Yao Wang, Simin Li,
Jinpeng Jiang, Zhe Sun, Buzhou Tang, Tsung-Hui
Chang, Shenghui Wang, and Yuting Liu. 2020. Real-
world data medical knowledge graph: construction
and applications. Artificial Intelligence in Medicine,
103:101817.

Jintao Liu, Felix Schmid, Keping Li, and Wei Zheng.
2021. A knowledge graph-based approach for ex-
ploring railway operational accidents. Reliability
Engineering & System Safety, 207:107352.

Nick McKenna, Tianyi Li, Liang Cheng, Mohammad
Hosseini, Mark Johnson, and Mark Steedman. 2023.
Sources of hallucination by large language models
on inference tasks. In Findings of the Association
for Computational Linguistics: EMNLP 2023, pages
2758–2774, Singapore. Association for Computa-
tional Linguistics.

Nandana Mihindukulasooriya, Sanju Tiwari, Carlos F
Enguix, and Kusum Lata. 2023. Text2kgbench: A
benchmark for ontology-driven knowledge graph gen-
eration from text. In International Semantic Web
Conference, pages 247–265. Springer.

Alec Radford and Karthik Narasimhan. 2018. Im-
proving language understanding by generative pre-
training.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
In Conference on Empirical Methods in Natural Lan-
guage Processing.

Michael Stewart, Melinda Hodkiewicz, Wei Liu, and
Tim French. 2022. Mwo2kg and echidna: Construct-
ing and exploring knowledge graphs from mainte-
nance data. Proceedings of the Institution of Mechan-
ical Engineers, Part O: Journal of Risk and Reliabil-
ity, page 1748006X2211311.

Erik F. Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the CoNLL-2003 shared task:
Language-independent named entity recognition. In
Proceedings of the Seventh Conference on Natural
Language Learning at HLT-NAACL 2003, pages 142–
147.

83

https://aclanthology.org/2024.wnut-1.7
https://aclanthology.org/2024.wnut-1.7
https://aclanthology.org/2024.wnut-1.7
https://doi.org/10.1016/j.mfglet.2020.11.001
https://doi.org/10.1016/j.mfglet.2020.11.001
https://doi.org/10.1016/j.mfglet.2020.11.001
https://doi.org/10.1002/ail2.33
https://doi.org/10.1002/ail2.33
https://api.semanticscholar.org/CorpusID:202583766
https://api.semanticscholar.org/CorpusID:202583766
https://api.semanticscholar.org/CorpusID:202583766
https://doi.org/10.3390/app10186325
https://doi.org/10.3390/app10186325
https://doi.org/10.1016/j.artmed.2020.101817
https://doi.org/10.1016/j.artmed.2020.101817
https://doi.org/10.1016/j.artmed.2020.101817
https://doi.org/10.1016/j.ress.2020.107352
https://doi.org/10.1016/j.ress.2020.107352
https://doi.org/10.18653/v1/2023.findings-emnlp.182
https://doi.org/10.18653/v1/2023.findings-emnlp.182
https://api.semanticscholar.org/CorpusID:49313245
https://api.semanticscholar.org/CorpusID:49313245
https://api.semanticscholar.org/CorpusID:49313245
https://api.semanticscholar.org/CorpusID:201646309
https://api.semanticscholar.org/CorpusID:201646309
https://doi.org/10.1177/1748006X221131128
https://doi.org/10.1177/1748006X221131128
https://doi.org/10.1177/1748006X221131128
https://aclanthology.org/W03-0419
https://aclanthology.org/W03-0419


Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023a. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023b. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

C.J. Van Rijsbergen, S.E. Robertson, and M.F. Porter.
1980. New Models in Probabilistic Information Re-
trieval. British Library research & development
reports. Computer Laboratory, University of Cam-
bridge.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Derong Xu, Wei Chen, Wenjun Peng, Chao Zhang, Tong
Xu, Xiangyu Zhao, Xian Wu, Yefeng Zheng, and
Enhong Chen. 2023. Large language models for
generative information extraction: A survey. arXiv
preprint arXiv:2312.17617.

Yuhao Zhang, Victor Zhong, Danqi Chen, Gabor Angeli,
and Christopher D. Manning. 2017. Position-aware
attention and supervised data improve slot filling. In
Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing (EMNLP
2017), pages 35–45.

84

https://books.google.nl/books?id=WDZ3bwAACAAJ
https://books.google.nl/books?id=WDZ3bwAACAAJ
https://nlp.stanford.edu/pubs/zhang2017tacred.pdf
https://nlp.stanford.edu/pubs/zhang2017tacred.pdf

