
Proceedings of the 1st Workshop on Knowledge Graphs and Large Language Models (KaLLM 2024), pages 92–104
August 15, 2024 ©2024 Association for Computational Linguistics

STAGE: Simplified Text-Attributed Graph Embeddings Using Pre-trained
LLMs

Aaron Zolnai-Lucas1*, Jack Boylan1*, Chris Hokamp1, Parsa Ghaffari1

1Quantexa,
Correspondence: {firstname}{lastname}@quantexa.com

Abstract

We present Simplified Text-Attributed Graph
Embeddings (STAGE), a straightforward yet
effective method for enhancing node features
in Graph Neural Network (GNN) models that
encode Text-Attributed Graphs (TAGs). Our
approach leverages Large-Language Models
(LLMs) to generate embeddings for textual
attributes. STAGE achieves competitive re-
sults on various node classification benchmarks
while also maintaining a simplicity in imple-
mentation relative to current state-of-the-art
(SoTA) techniques. We show that utilizing pre-
trained LLMs as embedding generators pro-
vides robust features for ensemble GNN train-
ing, enabling pipelines that are simpler than cur-
rent SoTA approaches which require multiple
expensive training and prompting stages. We
also implement diffusion-pattern GNNs in an
effort to make this pipeline scalable to graphs
beyond academic benchmarks.

1 Introduction

A Knowledge Graph (KG) typically includes enti-
ties (represented as nodes), relationships between
entities (represented as edges), and attributes of
both entities and relationships (Ehrlinger and Wöß,
2016). These attributes, referred to as metadata,
are often governed by a domain-specific ontology,
which provides a formal framework for defining the
types of entities and relationships as well as their
properties. KGs can be used to represent structured
information about the world in diverse settings, in-
cluding medical domain models (Koné et al., 2023),
words and lexical semantics (Miller, 1995), and
commercial products (Chiang et al., 2019).

Text-Attributed Graphs (TAGs) can be viewed
as a subset of KGs, where some node and edge
metadata is represented by unstructured or semi-
structured natural language text (Yang et al., 2023).
Examples of unstructured data values in TAGs

*Authors contributed equally.

could include the research article text represent-
ing the nodes of a citation graph, or the content of
social media posts that are the nodes of an interac-
tion graph extracted from a social media platform.
Many real-world datasets are naturally represented
as TAGs, and studying how to best represent and
learn using these datasets has received attention
from the fields of graph learning, natural language
processing (NLP), and information retrieval.

Graph Learning and LLMs With the emer-
gence of LLMs as powerful general purpose rea-
soning agents, there has been increasing interest in
integrating KGs with LLMs (Pan et al., 2024). Cur-
rent SoTA approaches combining graph learning
with (L)LMs follow either an iterative or a cascad-
ing method. Iterative methods involve jointly train-
ing an LM and a GNN for the given task. While
this approach can produce a task-specific feature
space, it may be complex and resource-intensive,
particularly for large graphs. In contrast, cascading
methods first apply an LM to extract node features
which are then used by a downstream GNN model.
Cascading models demonstrate excellent perfor-
mance on TAG tasks (He et al., 2024; Duan et al.,
2023a), although they often require multiple stages
of training targeted at each pipeline component.
More recent cascading techniques implement an
additional step, known as text-level enhancement
(Chen et al., 2024), whereby textual features are
augmented using an LLM.

Simplifying Node Representation Generation
To the best of our knowledge, all existing cascading
approaches require multiple rounds of data gener-
ation or finetuning to achieve satisfactory results
on TAG tasks (He et al., 2024; Duan et al., 2023a;
Chen et al., 2024). This bottleneck increases the
difficulty of applying such methods to real-world
graphs. Our proposed method, STAGE, aims to
simplify existing approaches by foregoing LM
finetuning, and only making use of a single pre-

92



������

���������

��������������������������������������
�
����	������	�������������
�������������������
������������	���������
����
���

���������������	����	�����
������������
�������������	��������	������
����	������	����
�����������
��������
����	�������������
	��������	���	���������
�����������

����������������
�������

��������������������

���

������
������	

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

...

����������
�����

...

������

���

����

���

��	�
������
��		�����		���

���	

����
������

����������������
���������������

��������		���������

Figure 1: Our proposed approach to node classification. Firstly, the textual attributes of the input graph nodes
are encoded using an off-the-shelf LLM. The text embeddings will be used alongside the graph adjacency matrix
as input to train a downstream ensemble of GNNs. GNN predictions are then mean-pooled to obtain the final
prediction.

trained LLM as the node embedding model, with-
out data augmentation via prompting. We study
possible configurations of this simplified pipeline
and demonstrate that this method achieves compet-
itive performance while significantly reducing the
complexity of training and data preparation.

Scalable GNN Architectures The exponentially
growing receptive field required during training of
most message-passing GNNs is another bottleneck
in both cascading and iterative approaches, becom-
ing computationally intractable for large graphs
(Duan et al., 2023b; Liu et al., 2024). Because we
wish to study approaches that can be applied in
real-world settings, we also explore the implemen-
tation of diffusion-pattern GNNs, such as Simple-
GCN (Wu et al., 2019) and SIGN (Frasca et al.,
2020), which may enable STAGE to be applied
to much larger graphs beyond the relatively small
academic benchmarks. Our code is available at
https://github.com/aaronzo/STAGE.

Concretely, this work studies several ways to
make learning on TAGs more efficient and scalable:

• Single Training Stage: We perform ensem-
ble GNN training with a fixed LLM as the
node feature generator, which significantly re-
duces training time by eliminating the need
for multiple large model training runs.

• No LLM Prompting: We do not prompt an
LLM for text-level augmentations such as pre-

dictions or explanations. Instead, we use only
the text attributes provided in the dataset.

• Direct Use of LLM as Text Embedding
Model: Using an off-the-shelf LLM as the
embedding model makes this method adapt-
able to new models and datasets. We study
several alternative base models for embedding
generation.

• Diffusion-pattern GNN implementation:
We contribute an investigation into diffusion-
pattern GNNs which enable this method to
scale to larger graphs.

The rest of the paper is organized as follows: sec-
tion 2 gives an overview of related work, section 3
discusses our approach in detail, section 4 studies
the performance of STAGE in various settings, and
section 5 is a discussion of the experimental results.

2 Background

Text-Attributed Graphs Yan et al. (2023) sug-
gest that integrating topological data with textual
information can significantly improve the learning
outcomes on various graph-related tasks. Chien
et al. (2022) incorporate graph structural informa-
tion into the pre-training stage of pre-trained lan-
guage models (PLMs), achieving improved per-
formance albeit with additional training overhead,
while Liu et al. (2023) further adopt sentence em-
bedding models to unify the text-attribute and

93

https://github.com/aaronzo/STAGE


0 100 200 300 400 500 600
70

72

74

76

78

80

LM
104min, 73.61%

STAGE (Ours)
4min, 77.77%

GLEM
551min, 76.57%

TAPE
192min, 77.50%

Total Training Time (min)

A
cc

ur
ac

y
(%

)

Finetuned LM
STAGE (ensemble GNNs)

LM-based GLEM
LLM-based TAPE

Figure 2: The performance trade-off between node classification accuracy and total training time on ogbn-arxiv for
SoTA LM-GNN methods. The STAGE model uses text embeddings generated from Salesforce-Embedding-Mistral
and an ensemble of GNNs (GCN, SAGE and RevGAT) and MLP. The size of each marker indicates the total number
of trainable parameters. Figure adapted from (He et al., 2024).

graph structure feature space, proposing a unified
model for diverse tasks across multiple datasets.

LLMs as Text Encoders General purpose text
embedding models, used in both finetuned and
zero-shot paradigms, are a standard component
of modern NLP pipelines (Mikolov et al., 2013;
Pennington et al., 2014; Reimers and Gurevych,
2019). As LLMs have emerged as powerful zero-
shot agents, many studies have considered generat-
ing text embeddings as an auxiliary output (Muen-
nighoff, 2022; Mialon et al., 2023). BehnamGhader
et al. (2024) introduce LLM2Vec, an unsupervised
method to convert LLMs into powerful text en-
coders by using bidirectional attention, masked
next token prediction and contrastive learning,
achieving state-of-the-art performance on various
text embedding benchmarks.

Language Models and GNNs Graph Neural Net-
works have been successfully applied to node clas-
sification and link prediction tasks, demonstrating
improved performance when combined with tex-
tual features from nodes (Kipf and Welling, 2017;
Li et al., 2022b). Several studies show that finetun-
ing pre-trained Language Models (PLMs), such as
BERT (Devlin et al., 2019) and DeBERTa (He et al.,
2021), enhances GNN performance by leveraging
textual node features (Chen et al., 2024; Duan et al.,
2023a; He et al., 2024).

Recent research has explored the integration of

LLMs with GNNs, particularly for TAGs. LLMs
contribute deep semantic understanding and com-
monsense knowledge, potentially boosting GNNs’
effectiveness on downstream tasks. However, com-
bining LLMs with GNNs poses computational chal-
lenges. Techniques like GLEM (Zhao et al., 2023)
use the Expectation Maximization framework to
alternate updates between LM and GNN modules.

Other approaches include the TAPE method,
which uses GPT (OpenAI, 2023; OpenAI et al.,
2024) models for data augmentation, enhancing
GNN performance through enriched textual em-
beddings (He et al., 2024). SimTeG demonstrates
that parameter-efficient finetuning (PEFT) PLMs
can yield competitive results (Duan et al., 2023a).
(Ye et al., 2024) suggest that finetuned LLMs can
match or exceed state-of-the-art GNN performance
on various benchmarks.

Building on these insights, the STAGE method
focuses on efficient and scalable learning for TAGs
by utilizing zero-shot capabilities of LLMs to
generate representations without extensive task-
specific tuning or auxiliary data generation.

3 Approach

Our cascading approach consists of two steps:

• A zero-shot LLM-based embedding generator
is used to encode the title and abstract (or

94



equivalent textual attribute) of each node. We
denote the generated node embeddings as X .

• An ensemble of GNN architectures are trained
on X , and their predictions are mean-pooled
to obtain the final node predictions.

Ensembling the predictions from multiple GNN
architectures was motivated by our observation of
strong performance by different models across dif-
ferent datasets.

3.1 Text Embedding Retrieval
For the text embedding model, we select a
general-purpose embedding LLM that ranks
highly on the Massive Text Embedding Bench-
mark (MTEB) Leaderboard1. Specifically,
we evaluate gte-Qwen1.5-7B-instruct,
LLM2Vec-Meta-Llama-3-8B-Instruct, and
SFR-Embedding-Mistral. MTEB ranks em-
bedding models based on their performance
across a wide variety of information retrieval,
classification and clustering tasks. This model is
used out-of-the-box without any finetuning. An
appealing aspect of LLM-based embeddings is
the possibility to add instructions alongside input
text to bias the embeddings for a given task. We
empirically evaluate the effect of instruction biased
embeddings is in Table 2 of section 4.

Node representations X are generated using only
the title and abstract, or equivalent textual node
attributes, omitting the LLM predictions and ex-
planations provided by (He et al., 2024). X will
then be used as enriched node feature vectors for
training a downstream GNN ensemble.

3.2 GNN Training
Using the previously generated embeddings X as
node features, we train an ensemble of GNN mod-
els on the node classification task:

Losscls = Lθ (ϕ(GNN(X ,A)),Y) , (1)

where ϕ(·) is the classifier, A is the adjacency ma-
trix of the graph and Y is the label. For the GNN
architectures we choose GCN (Kipf and Welling,
2017), SAGE (Hamilton et al., 2018) and RevGAT
(Li et al., 2022a). We also evaluate a multi-layer
perceptron (MLP) (Haykin, 1994) among our GNN
models. To combine the predictions from each of
the K models in the ensemble, we compute the
mean prediction as follows:

1https://huggingface.co/spaces/mteb/
leaderboard

p̄ =
1

K

K∑

k=1

pk, (2)

Cross-entropy loss is used to compute the loss
value.

Diffusion-based GNNs For a graph G with node
features X , a diffusion operator is a matrix AOP
with the same dimensions as the adjacency matrix
of G. Diffused features H are then calculated via
H = AOPX .

We explored Simple-GCN (Wu et al., 2019) and
SIGN (Frasca et al., 2020), both of which em-
ploy adjacency-based diffusion operators to pre-
aggregate features across the graph before training.
SIGN is a generalization of Simple-GCN, to extend
to Personalized-PageRank (Page et al., 1998) and
triangle-based operators. This allows expensive
computation to be carried out by distributed com-
puting clusters or efficient sparse graph routines
such as GraphBLAS (Davis, 2019), which do not
need to back-propagate through graph convolution.
The prediction head can then be a shallow MLP
or logistic regression. We provide implementation
specifics in appendix section C to ensure repeata-
bility.

3.3 Parameter-efficient Finetuning LLM

Motivated by the node classification performance
gains seen by (Duan et al., 2023a) using PEFT,
we finetune an LLM on the node classification task.
Concretely, we use an LLM embedding model with
a low-rank adapter (LoRA) (Hu et al., 2021a) and a
densely connected classifier head. The pre-trained
LLM weights remain frozen as the model trains on
input text T to reduce loss according to:

Losscls = L(ϕ(LLM(T )), Y ) (3)

where ϕ(·) is the classifier head and Y is the label.
Again, we use cross-entropy loss to compute the
loss value.

4 Experiments

We investigate the performance of STAGE over five
TAG benchmarks: ogbn-arxiv (Hu et al., 2021b), a
dataset of arXiv papers linked by citations; ogbn-
products (Hu et al., 2021b), representing an Ama-
zon product co-purchasing network; PubMed (Sen
et al., 2008), a citation network of diabetes-related
scientific publications; Cora (McCallum et al.,

95

https://huggingface.co/spaces/mteb/leaderboard
https://huggingface.co/spaces/mteb/leaderboard


Dataset Method hshallow hGIANT GPT3.5 LMfinetune hTAPE hSTAGE(OURS)

Cora MLP 0.6388 ± 0.0213 0.7196 ± 0.0000 0.6769 0.7606 ± 0.0378 0.8778 ± 0.0485 0.7680 ± 0.0228
GCN 0.8911 ± 0.0015 0.8423 ± 0.0053 0.6769 0.7606 ± 0.0378 0.9119 ± 0.0158 0.8704 ± 0.0105
SAGE 0.8824 ± 0.0009 0.8455 ± 0.0028 0.6769 0.7606 ± 0.0378 0.9290 ± 0.0307 0.8722 ± 0.0063

RevGAT 0.8911 ± 0.0000 0.8353 ± 0.0038 0.6769 0.7606 ± 0.0378 0.9280 ± 0.0275 0.8639 ± 0.0129
Ensemble - - - - - 0.8824 ± 0.0155

PubMed MLP 0.8635 ± 0.0032 0.8175 ± 0.0059 0.9342 0.9494 ± 0.0046 0.9565 ± 0.0060 0.9142 ± 0.0122
GCN 0.8031 ± 0.0425 0.8419 ± 0.0050 0.9342 0.9494 ± 0.0046 0.9431 ± 0.0043 0.8960 ± 0.0042
SAGE 0.8881 ± 0.0002 0.8372 ± 0.0082 0.9342 0.9494 ± 0.0046 0.9618 ± 0.0053 0.9087 ± 0.0064

RevGAT 0.8850 ± 0.0005 0.8502 ± 0.0048 0.9342 0.9494 ± 0.0046 0.9604 ± 0.0047 0.8654 ± 0.0952
Ensemble - - - - - 0.9265 ± 0.0068

ogbn-arxiv MLP 0.5336 ± 0.0038 0.7308 ± 0.0006 0.7350 0.7361 ± 0.0004 0.7587 ± 0.0015 0.7517 ± 0.0011
GCN 0.7182 ± 0.0027 0.7329 ± 0.0010 0.7350 0.7361 ± 0.0004 0.7520 ± 0.0005 0.7377 ± 0.0010
SAGE 0.7171 ± 0.0017 0.7435 ± 0.0014 0.7350 0.7361 ± 0.0004 0.7672 ± 0.0007 0.7596 ± 0.0040

RevGAT 0.7083 ± 0.0017 0.7590 ± 0.0019 0.7350 0.7361 ± 0.0004 0.7750 ± 0.0012 0.7638 ± 0.0054
Ensemble - - - - - 0.7777 ± 0.0019

ogbn-products MLP 0.5385 ± 0.0017 0.6125 ± 0.0078 0.7440 0.7297 ± 0.0023 0.7878 ± 0.0082 0.7277 ± 0.0054
GCN 0.7052 ± 0.0051 0.6977 ± 0.0042 0.7440 0.7297 ± 0.0023 0.7996 ± 0.0041 0.7679 ± 0.0109
SAGE 0.6913 ± 0.0026 0.6869 ± 0.0011 0.7440 0.7297 ± 0.0023 0.8137 ± 0.0043 0.7795 ± 0.0012

RevGAT 0.6964 ± 0.0017 0.7189 ± 0.0030 0.7440 0.7297 ± 0.0023 0.8234 ± 0.0036 0.8083 ± 0.0051
Ensemble - - - - - 0.8140 ± 0.0033

tape-arxiv23 MLP 0.6202 ± 0.0064 0.5574 ± 0.0032 0.7356 0.7358 ± 0.0006 0.8385 ± 0.0246 0.7940 ± 0.0022
GCN 0.6341 ± 0.0062 0.5672 ± 0.0061 0.7356 0.7358 ± 0.0006 0.8080 ± 0.0215 0.7678 ± 0.0024
SAGE 0.6430 ± 0.0037 0.5665 ± 0.0032 0.7356 0.7358 ± 0.0006 0.8388 ± 0.0264 0.7894 ± 0.0024

RevGAT 0.6563 ± 0.0062 0.5834 ± 0.0038 0.7356 0.7358 ± 0.0006 0.8423 ± 0.0256 0.7880 ± 0.0023
Ensemble - - - - - 0.8029 ± 0.0020

Table 1: Node classification accuracy for the Cora, PubMed, ogbn-arxiv, ogbn-products, and tape-arxiv23 datasets.
The experiment is run over four seeds, with mean accuracy and standard deviation shown. The best results are
coloured green (first), yellow (second), and orange (third). For hSTAGE, we use SFR-Embedding-Mistral as the
embedding model on TA features only, and the simple task instruction to bias the embeddings. We adapt the table
from (He et al., 2024) and include our results.

2000), a dataset of scientific publications catego-
rized into one of seven classes; and tape-arxiv23
(He et al., 2024), focusing on arXiv papers pub-
lished after the 2023 knowledge cut-off for GPT3.5.
We use the subset of ogbn-products provided by
(He et al., 2024). Further details can be found in
appendix Table 7.

For each experiment using Cora, PubMed or
tape-arxiv23, 60% of the data was allocated for
training, 20% for validation, and 20% for testing.
For the ogbn-arxiv and ogbn-products datasets,
we adopted the standard train/validation/test split
provided by the Open Graph Benchmark (OGB)2

(Hu et al., 2021b).
Our main results can be seen in Table 1. Mul-

tiple GNN models are trained using embeddings
from a pre-trained LLM as node features. We en-
semble the predictions across model architectures
by taking the mean prediction.

Node classification accuracy is provided for var-
ious datasets, measured across multiple methods
and feature types. Each column represents a spe-

2https://ogb.stanford.edu/

cific metric or method:

• hshallow: Performance using shallow features,
indicating basic attributes provided as part of
each dataset

• hGIANT: Results obtained by using GIANT
features as proposed by (Chien et al., 2022),
designed to incorporate graph structural infor-
mation into LM training

• GPT3.5: Accuracy when using zero-shot pre-
dictions from GPT-3.5-turbo, demonstrating
the utility of state-of-the-art language models
in a zero-shot setting

• LMfinetune: Performance metrics reported by
(He et al., 2024) after finetuning the DeBERTa
(He et al., 2021) model on labeled nodes from
the graph, showing the benefits of supervised
finetuning

• hTAPE: Shows results for the TAPE features
(He et al., 2024), which includes the original
textual attributes of the node, GPT-generated
predictions for each node, and GPT-generated

96

https://ogb.stanford.edu/


Dataset Method hno instruction htask instruction hgraph-aware-instruction

Cora MLP 0.7772 ± 0.0205 0.7680 ± 0.0228 0.7763 ± 0.0193
GCN 0.8612 ± 0.0121 0.8704 ± 0.0105 0.8718 ± 0.0085
SAGE 0.8833 ± 0.0125 0.8722 ± 0.0063 0.8704 ± 0.0109

RevGAT 0.8630 ± 0.0119 0.8639 ± 0.0129 0.8676 ± 0.0125
Ensemble 0.8930 ± 0.0086 0.8824 ± 0.0155 0.8875 ± 0.0118

PubMed MLP 0.9305 ± 0.0052 0.9142 ± 0.0122 0.9185 ± 0.0145
GCN 0.9021 ± 0.0034 0.8960 ± 0.0042 0.8978 ± 0.0046
SAGE 0.9268 ± 0.0052 0.9087 ± 0.0064 0.9126 ± 0.0024

RevGAT 0.8637 ± 0.0942 0.8654 ± 0.0952 0.9211 ± 0.0022
Ensemble 0.9358 ± 0.0035 0.9265 ± 0.0068 0.9313 ± 0.0025

ogbn-arxiv MLP 0.7417 ± 0.0015 0.7517 ± 0.0011 0.7519 ± 0.0028
GCN 0.7336 ± 0.0029 0.7377 ± 0.0010 0.7367 ± 0.0045
SAGE 0.7515 ± 0.0027 0.7596 ± 0.0040 0.7559 ± 0.0039

RevGAT 0.7629 ± 0.0035 0.7638 ± 0.0054 0.7607 ± 0.0011
Ensemble 0.7745 ± 0.0013 0.7777 ± 0.0019 0.7740 ± 0.0019

ogbn-products MLP 0.6841 ± 0.0054 0.7277 ± 0.0054 0.7163 ± 0.0172
GCN 0.7367 ± 0.0068 0.7679 ± 0.0109 0.7729 ± 0.0033
SAGE 0.7543 ± 0.0065 0.7795 ± 0.0012 0.7811 ± 0.0049

RevGAT 0.8016 ± 0.0078 0.8083 ± 0.0051 0.8000 ± 0.0078
Ensemble 0.7991 ± 0.0034 0.8140 ± 0.0033 0.8090 ± 0.0037

tape-arxiv23 MLP 0.7803 ± 0.0014 0.7940 ± 0.0022 0.7948 ± 0.0025
GCN 0.7518 ± 0.0044 0.7678 ± 0.0024 0.7703 ± 0.0025
SAGE 0.7702 ± 0.0022 0.7894 ± 0.0024 0.7917 ± 0.0021

RevGAT 0.7880 ± 0.0047 0.7880 ± 0.0023 0.7906 ± 0.0034
Ensemble 0.8013 ± 0.0017 0.8029 ± 0.0020 0.8054 ± 0.0025

Table 2: Node classification accuracy for the Cora, PubMed, ogbn-arxiv, ogbn-products, and tape-arxiv23 datasets,
demonstrating the effect of varying an instruction to bias the embeddings from the pre-trained LLM. The experiment
is run over four seeds, with mean accuracy and standard deviation shown. The best results are coloured green (first),
yellow (second), and orange (third). For all experiments, we use SFR-Embedding-Mistral as the embedding model
on TA features only, and the simple task instruction to bias the embeddings.

explanations of ranked predictions to enrich
node features.

• hSTAGE: Reflects the model’s performance
training with node features generated by a
pre-trained LLM.

Instruction-biased Embeddings Textual at-
tributes for each node are passed to the embedding
LLM together with a task description which re-
mains constant for every text, prefixing each input
with a task-specific system prompt. We evaluated
3 simple task descriptions:

1. A short prompt describing the classification
task for the text, as used during the pre-
training stage of the LLM.

2. A description of the types of relationships
between texts to form a graph, along with
the classification task description. Specific
graph structure for each node is not included
in the prompt, unlike the proposed method
from (Fatemi et al., 2024).

3. No task description.

Our findings are summarized in Table 2. Further
details of the instructions can be found in appendix
Table 8.

Parameter-efficient Finetuning In Table 3 we
investigate the effect of using parameter-efficient
finetuning (PEFT) on the pre-trained LLM, as de-
scribed in (Duan et al., 2023a). We also compare
this against finetuning both the LLM (using PEFT)
and the GNN in unison.

Embedding Model Type In Table 4, we compare
the results when using different pre-trained LLMs
as the text encoder.

Diffusion GNNs Included in Table 4, we study
the performance of using SimpleGCN and SIGN
models individually. Model selection and imple-
mentation details can be found in the appendix
sections C and D.

Ablation Study To study the impact of each com-
ponent in the GNN ensemble, we perform a de-
tailed ablation study. The results can be found in
6.

97



Dataset LLM + GNN Ensemble LLMfinetuned LLMfinetuned + GNN Ensemble

Cora 0.8824 ± 0.0155 0.8063 0.8856
PubMed 0.9265 ± 0.0068 0.9513 0.9559
ogbn-arxiv 0.7777 ± 0.0019 0.7666 0.7813
ogbn-products 0.8140 ± 0.0033 0.8020 0.8257
tape-arxiv23 0.8029 ± 0.0020 0.8021 0.8095

Table 3: Effect of using parameter-efficient finetuning (PEFT) on the pre-trained LLM, as described in (Duan et al.,
2023a). Comparison of GNN-only trained, LLM finetuned without GNNs, and LLM and GNN trained separately.
The best results are highlighted in bold.

Dataset Method SFR-Embedding-Mistral LLM2Vec gte-Qwen1.5-7B-instruct

Cora MLP 0.7680 ± 0.0228 0.8026 ± 0.0141 0.7389 ± 0.0136
GCN 0.8704 ± 0.0105 0.8778 ± 0.0046 0.8621 ± 0.0105
SAGE 0.8722 ± 0.0063 0.8773 ± 0.0062 0.8658 ± 0.0049

RevGAT 0.8639 ± 0.0129 0.8810 ± 0.0033 0.8408 ± 0.0076
Ensemble 0.8824 ± 0.0155 0.8898 ± 0.0066 0.8686 ± 0.0024

Simple-GCN 0.7389 ± 0.0120 0.6983 ± 0.0120 0.7491± 0.0166
SIGN 0.8819 ± 0.0074 0.8856 ± 0.0083 0.8575 ± 0.0157

PubMed MLP 0.9142 ± 0.0122 0.9321 ± 0.0013 0.8808 ± 0.0107
GCN 0.8960 ± 0.0042 0.8996 ± 0.0011 0.8591 ± 0.0041
SAGE 0.9087 ± 0.0064 0.9231 ± 0.0056 0.8733 ± 0.0051

RevGAT 0.8654 ± 0.0952 0.9312 ± 0.0026 0.8754 ± 0.0010
Ensemble 0.9265 ± 0.0068 0.9357 ± 0.0031 0.8941 ± 0.0041

Simple-GCN 0.7505 ± 0.0048 0.7400 ± 0.0037 0.7472 ± 0.0076
SIGN 0.8868 ± 0.0062 0.9004 ± 0.0038 0.8611 ± 0.0084

ogbn-arxiv MLP 0.7517 ± 0.0011 0.7331 ± 0.0033 0.7603 ± 0.0011
GCN 0.7377 ± 0.0010 0.7324 ± 0.0014 0.7369 ± 0.0022
SAGE 0.7596 ± 0.0040 0.7428 ± 0.0039 0.7664 ± 0.0029

RevGAT 0.7638 ± 0.0054 0.7529 ± 0.0044 0.7738 ± 0.0009
Ensemble 0.7777 ± 0.0019 0.7701 ± 0.0018 0.7817 ± 0.0011

Simple-GCN 0.3337 ± 0.0107 0.3614 ± 0.0039 0.3463 ± 0.0181
SIGN 0.6150 ± 0.0182 0.6035 ± 0.0084 0.6285 ± 0.0114

ogbn-products MLP 0.7277 ± 0.0054 0.6913 ± 0.0052 0.7231 ± 0.0050
GCN 0.7679 ± 0.0109 0.7479 ± 0.0128 0.7701 ± 0.0117
SAGE 0.7795 ± 0.0012 0.7496 ± 0.0163 0.7921 ± 0.0069

RevGAT 0.8083 ± 0.0051 0.7883 ± 0.0014 0.7955 ± 0.0096
Ensemble 0.8140 ± 0.0033 0.7908 ± 0.0045 0.8104 ± 0.0041

Simple-GCN 0.6216 ± 0.0052 0.6040 ± 0.0039 0.6219 ± 0.0039
SIGN 0.6668 ± 0.0078 0.6621 ± 0.0009 0.6698 ± 0.0010

tape-arxiv23 MLP 0.7940 ± 0.0022 0.7772 ± 0.0033 0.8008 ± 0.0018
GCN 0.7678 ± 0.0024 0.7541 ± 0.0042 0.7746 ± 0.0025
SAGE 0.7894 ± 0.0024 0.7677 ± 0.0018 0.7975 ± 0.0016

RevGAT 0.7880 ± 0.0023 0.7840 ± 0.0058 0.7954 ± 0.0028
Ensemble 0.8029 ± 0.0020 0.7967 ± 0.0037 0.8065 ± 0.0022

Simple-GCN 0.2516 ± 0.0027 0.2451 ± 0.0004 0.258 ± 0.0011
SIGN 0.7186 ± 0.0041 0.6804 ± 0.0041 0.733 ± 0.0009

Table 4: Node classification accuracy for the Cora, PubMed, ogbn-arxiv, ogbn-products, and tape-arxiv23 datasets,
demonstrating the effect of changing the pre-trained LLM text encoder. The experiment is run over four seeds,
with mean accuracy and standard deviation shown. The best results are coloured green (first), yellow (second), and
orange (third). For all experiments, we use TA features only, and the simple task instruction to bias the embeddings.

5 Analysis

Main Results (Table 1) We find that ensembling
GNNs always leads to superior performance across
datasets when taking the STAGE approach.

Despite the reduced computational resources and

training data requirements, the STAGE method re-
mains highly competitive across all benchmarks.
The ensemble STAGE approach lags behind the
TAPE pipeline by roughly 5% on Cora, 3.5% on
Pubmed, 0.8% on ogbn-products, and 4% on tape-

98



arxiv23. This is a strong result when we consider
that STAGE involves training only the GNN en-
semble, whereas TAPE also requires two finetuned
LMs to generate node features. We see marginally
superior results on the ogbn-arxiv dataset using the
ensemble STAGE approach.

Instruction-biased Embedding Results (Table
2) From our findings we conclude that varying
the instructions to bias embeddings has little effect
on downstream node classification performance for
the models we evaluated. We note that while the
authors of all embedding models recommend pro-
viding instructions along with input text in order to
avoid degrading performance, we did not measure
a performance improvement in our experiments.

This experiment further supports our claim that
an ensemble approach improves robustness across
datasets and methods of node feature generation.

PEFT Results (Table 3) Finetuning each LLM
gave marginal performance improvements across
all datasets to varying degrees; we see the largest
improvement on pubmed (3%). It is of note that
finetuning significantly increases the number of
trainable parameters (see Table 5) and total training
time. Specifically, PEFT for 7B embedding models
has over 20 million trainable parameters. On a
single A100 GPU, training runs lasted 6 hours on
ogbn-arxiv.

LLM Embedding Model Comparison (Table 4)
All three LLM embedding models demonstrated
comparable performance on the graph tasks, with
each model exhibiting marginally better results on
different datasets. Notably, there was no clear win-
ner among them. The LLM2Vec model exhibited
slightly weaker performance on the larger datasets
(ogbn-arxiv, ogbn-products, tape-arxiv23), while
it was marginally stronger on the smaller datasets
(Cora, PubMed).

Ensembling the GNN models consistently
ranked among the top three models across all three
LLM embedding models, delivering an average per-
formance increase of 1%. Among the individual
GNN architectures, RevGAT consistently demon-
strated superior performance.

Diffusion-pattern GNN Results (Table 4) The
diffusion-based GNNs yielded variable results
across datasets. Specifically, SIGN emerged as
the second-best performer on the Cora dataset. As
expected, SIGN consistently outperformed Simple-
GCN, given that it generalizes the latter. Due to

its low training time, SIGN is a viable candidate
for large datasets, although careful tuning of its
hyper-parameters is recommended for optimal per-
formance.

Ablation Study Results (Table 6) From our ab-
lation study we observe that no individual GNN
model outperforms any ensemble of models on any
dataset. Additionally, we find that the full ensem-
ble of MLP, GCN, SAGE and RevGAT achieve
the highest and most stable accuracy scores across
datasets.

Scalability An important advantage of STAGE is
the lack of finetuning necessary to achieve strong
results. This lies in contrast to approaches such as
TAPE (He et al., 2024) and SimTeG (Duan et al.,
2023a), both of which require finetuning at least
one LM. Training an ensemble of GNNs and MLP
head over the ogbn-arxiv dataset can be performed
on a single consumer-grade GPU in less than 5
minutes. This is illustrated in Figure 2 where we
compare the relationship between training time and
accuracy for a number of SoTA node classification
approaches. When using SIGN diffusion, train-
ing time was under 12 seconds for the ogbn-arxiv,
but this came at a performance cost. Moreover,
TAPE relies on text-level enhancement via LLM
API calls, which adds a new dimension of cost and
rate-limiting3 to consider when adapting to other
datasets.

6 Conclusions

This work introduces STAGE, a method to use pre-
trained LLMs as text encoders in TAG tasks with-
out the need for finetuning, significantly reducing
computational resources and training time. Ad-
ditional gains can be achieved through parameter-
efficient finetuning of the LLM. Data augmentation,
which is orthogonal to our approach, could improve
performance with general-purpose text embedding
models. However, it likely remains intractable for
many large-scale datasets due to the need to query
a large model for each node.

We also demonstrate the effect of diffusion oper-
ators (Frasca et al., 2020) on node classification per-
formance, decreasing TAG pipeline training time
substantially. We aim to examine the scalability of
diffusion-pattern GNNs on larger datasets in later
work.

3https://platform.openai.com/docs/guides/
rate-limits

99

https://platform.openai.com/docs/guides/rate-limits
https://platform.openai.com/docs/guides/rate-limits


Future work may aim to refine the integration
of LLM encoders with GNN heads. Potential
strategies include an Expectation-Maximization ap-
proach or a joint model configuration (Zhao et al.,
2023). A significant challenge is the requirement
for large, variable batch sizes during LLM fine-
tuning due to current neighborhood sampling tech-
niques, which necessitates increased computational
power. We anticipate that overcoming these limi-
tations will make future research more accessible
and expedite iterations.

References
Parishad BehnamGhader, Vaibhav Adlakha, Marius

Mosbach, Dzmitry Bahdanau, Nicolas Chapados, and
Siva Reddy. 2024. Llm2vec: Large language mod-
els are secretly powerful text encoders. Preprint,
arXiv:2404.05961.

Zhikai Chen, Haitao Mao, Hang Li, Wei Jin, Hongzhi
Wen, Xiaochi Wei, Shuaiqiang Wang, Dawei Yin,
Wenqi Fan, Hui Liu, and Jiliang Tang. 2024. Explor-
ing the potential of large language models (llms) in
learning on graphs. Preprint, arXiv:2307.03393.

Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy
Bengio, and Cho-Jui Hsieh. 2019. Cluster-gcn: An
efficient algorithm for training deep and large graph
convolutional networks. In Proceedings of the 25th
ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, KDD ’19. ACM.

Eli Chien, Wei-Cheng Chang, Cho-Jui Hsieh, Hsiang-
Fu Yu, Jiong Zhang, Olgica Milenkovic, and In-
derjit S Dhillon. 2022. Node feature extraction by
self-supervised multi-scale neighborhood prediction.
Preprint, arXiv:2111.00064.

Timothy Davis. 2019. Algorithm 1000: Suites-
parse:graphblas: Graph algorithms in the language
of sparse linear algebra. ACM Transactions on Math-
ematical Software, 45:1–25.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. Preprint, arXiv:1810.04805.

Keyu Duan, Qian Liu, Tat-Seng Chua, Shuicheng Yan,
Wei Tsang Ooi, Qizhe Xie, and Junxian He. 2023a.
Simteg: A frustratingly simple approach improves
textual graph learning. Preprint, arXiv:2308.02565.

Keyu Duan, Zirui Liu, Peihao Wang, Wenqing Zheng,
Kaixiong Zhou, Tianlong Chen, Xia Hu, and
Zhangyang Wang. 2023b. A comprehensive study
on large-scale graph training: Benchmarking and
rethinking. Preprint, arXiv:2210.07494.

Lisa Ehrlinger and Wolfram Wöß. 2016. Towards a
definition of knowledge graphs. In International
Conference on Semantic Systems.

Bahare Fatemi, Jonathan Halcrow, and Bryan Perozzi.
2024. Talk like a graph: Encoding graphs for large
language models. In The Twelfth International Con-
ference on Learning Representations.

Fabrizio Frasca, Emanuele Rossi, Davide Eynard,
Ben Chamberlain, Michael Bronstein, and Federico
Monti. 2020. Sign: Scalable inception graph neural
networks. arXiv preprint arXiv:2004.11198.

Johannes Gasteiger, Aleksandar Bojchevski, and
Stephan Günnemann. 2022. Predict then propagate:
Graph neural networks meet personalized pagerank.
Preprint, arXiv:1810.05997.

William L. Hamilton, Rex Ying, and Jure Leskovec.
2018. Inductive representation learning on large
graphs. Preprint, arXiv:1706.02216.

Taher H. Haveliwala. 2002. Topic-sensitive pagerank.
In Proceedings of the 11th International Conference
on World Wide Web, WWW ’02, page 517–526, New
York, NY, USA. Association for Computing Machin-
ery.

Simon Haykin. 1994. Neural networks: a comprehen-
sive foundation. Prentice Hall PTR.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and
Weizhu Chen. 2021. Deberta: Decoding-
enhanced bert with disentangled attention. Preprint,
arXiv:2006.03654.

Xiaoxin He, Xavier Bresson, Thomas Laurent, Adam
Perold, Yann LeCun, and Bryan Hooi. 2024. Har-
nessing explanations: Llm-to-lm interpreter for en-
hanced text-attributed graph representation learning.
Preprint, arXiv:2305.19523.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2021a. Lora: Low-rank adaptation of
large language models. Preprint, arXiv:2106.09685.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao
Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. 2021b. Open graph benchmark:
Datasets for machine learning on graphs. Preprint,
arXiv:2005.00687.

Thomas N. Kipf and Max Welling. 2017. Semi-
supervised classification with graph convolutional
networks. Preprint, arXiv:1609.02907.

Constant Joseph Koné, Michel Babri, and Jean Marie
Rodrigues. 2023. Snomed ct: A clinical terminology
but also a formal ontology. Journal of Biosciences
and Medicines.

Guohao Li, Matthias Müller, Bernard Ghanem, and
Vladlen Koltun. 2022a. Training graph neural net-
works with 1000 layers. Preprint, arXiv:2106.07476.

Rui Li, Jianan Zhao, Chaozhuo Li, Di He, Yiqi
Wang, Yuming Liu, Hao Sun, Senzhang Wang,
Weiwei Deng, Yanming Shen, Xing Xie, and

100

https://arxiv.org/abs/2404.05961
https://arxiv.org/abs/2404.05961
https://arxiv.org/abs/2307.03393
https://arxiv.org/abs/2307.03393
https://arxiv.org/abs/2307.03393
https://doi.org/10.1145/3292500.3330925
https://doi.org/10.1145/3292500.3330925
https://doi.org/10.1145/3292500.3330925
https://arxiv.org/abs/2111.00064
https://arxiv.org/abs/2111.00064
https://doi.org/10.1145/3322125
https://doi.org/10.1145/3322125
https://doi.org/10.1145/3322125
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/2308.02565
https://arxiv.org/abs/2308.02565
https://arxiv.org/abs/2210.07494
https://arxiv.org/abs/2210.07494
https://arxiv.org/abs/2210.07494
https://api.semanticscholar.org/CorpusID:8536105
https://api.semanticscholar.org/CorpusID:8536105
https://openreview.net/forum?id=IuXR1CCrSi
https://openreview.net/forum?id=IuXR1CCrSi
https://arxiv.org/abs/1810.05997
https://arxiv.org/abs/1810.05997
https://arxiv.org/abs/1706.02216
https://arxiv.org/abs/1706.02216
https://doi.org/10.1145/511446.511513
https://arxiv.org/abs/2006.03654
https://arxiv.org/abs/2006.03654
https://arxiv.org/abs/2305.19523
https://arxiv.org/abs/2305.19523
https://arxiv.org/abs/2305.19523
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2005.00687
https://arxiv.org/abs/2005.00687
https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1609.02907
https://api.semanticscholar.org/CorpusID:265433665
https://api.semanticscholar.org/CorpusID:265433665
https://arxiv.org/abs/2106.07476
https://arxiv.org/abs/2106.07476


Qi Zhang. 2022b. House: Knowledge graph embed-
ding with householder parameterization. Preprint,
arXiv:2202.07919.

Hao Liu, Jiarui Feng, Lecheng Kong, Ningyue Liang,
Dacheng Tao, Yixin Chen, and Muhan Zhang. 2023.
One for all: Towards training one graph model for all
classification tasks. Preprint, arXiv:2310.00149.

Juncheng Liu, Bryan Hooi, Kenji Kawaguchi, Yiwei
Wang, Chaosheng Dong, and Xiaokui Xiao. 2024.
Scalable and effective implicit graph neural networks
on large graphs. In The Twelfth International Confer-
ence on Learning Representations.

Andrew McCallum, Kamal Nigam, Jason D. M. Rennie,
and Kristie Seymore. 2000. Automating the con-
struction of internet portals with machine learning.
Information Retrieval, 3:127–163.

Grégoire Mialon, Roberto Dessì, Maria Lomeli, Christo-
foros Nalmpantis, Ram Pasunuru, Roberta Raileanu,
Baptiste Rozière, Timo Schick, Jane Dwivedi-Yu,
Asli Celikyilmaz, Edouard Grave, Yann LeCun, and
Thomas Scialom. 2023. Augmented language mod-
els: a survey. Preprint, arXiv:2302.07842.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Cor-
rado, and Jeffrey Dean. 2013. Distributed representa-
tions of words and phrases and their compositionality.
Preprint, arXiv:1310.4546.

George A. Miller. 1995. Wordnet: a lexical database for
english. Commun. ACM, 38(11):39–41.

Niklas Muennighoff. 2022. Sgpt: Gpt sen-
tence embeddings for semantic search. Preprint,
arXiv:2202.08904.

OpenAI. 2023. Introducing chatgpt. Accessed: 2023-
05-20.

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal,
Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, and Janko Altenschmidt. 2024. Gpt-
4 technical report. Preprint, arXiv:2303.08774.

Lawrence Page, Sergey Brin, Rajeev Motwani, and
Terry Winograd. 1998. The PageRank Citation Rank-
ing: Bringing Order to the Web. Technical report,
Stanford Digital Library Technologies Project.

Shirui Pan, Linhao Luo, Yufei Wang, Chen Chen, Ji-
apu Wang, and Xindong Wu. 2024. Unifying large
language models and knowledge graphs: A roadmap.
IEEE Transactions on Knowledge and Data Engi-
neering, page 1–20.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. GloVe: Global vectors for word
representation. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing (EMNLP), pages 1532–1543, Doha, Qatar.
Association for Computational Linguistics.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing. Associa-
tion for Computational Linguistics.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise
Getoor, Brian Galligher, and Tina Eliassi-Rad. 2008.
Collective classification in network data. AI Maga-
zine, 29(3):93.

Felix Wu, Amauri Souza, Tianyi Zhang, Christopher
Fifty, Tao Yu, and Kilian Weinberger. 2019. Simplify-
ing graph convolutional networks. In Proceedings of
the 36th International Conference on Machine Learn-
ing, volume 97 of Proceedings of Machine Learning
Research, pages 6861–6871. PMLR.

Hao Yan, Chaozhuo Li, Ruosong Long, Chao Yan,
Jianan Zhao, Wenwen Zhuang, Jun Yin, Peiyan
Zhang, Weihao Han, Hao Sun, et al. 2023. A compre-
hensive study on text-attributed graphs: Benchmark-
ing and rethinking. Advances in Neural Information
Processing Systems, 36:17238–17264.

Junhan Yang, Zheng Liu, Shitao Xiao, Chaozhuo
Li, Defu Lian, Sanjay Agrawal, Amit Singh,
Guangzhong Sun, and Xing Xie. 2023. Graphform-
ers: Gnn-nested transformers for representation learn-
ing on textual graph. Preprint, arXiv:2105.02605.

Ruosong Ye, Caiqi Zhang, Runhui Wang, Shuyuan Xu,
and Yongfeng Zhang. 2024. Language is all a graph
needs. In Findings of the Association for Computa-
tional Linguistics: EACL 2024, pages 1955–1973,
St. Julian’s, Malta. Association for Computational
Linguistics.

Jianan Zhao, Meng Qu, Chaozhuo Li, Hao Yan, Qian
Liu, Rui Li, Xing Xie, and Jian Tang. 2023. Learning
on large-scale text-attributed graphs via variational
inference. Preprint, arXiv:2210.14709.

A Appendix

B Negative Results

Co-training LLM and GNN: In a similar ap-
proach to iterative methods, we investigated co-
training the LLM and GNN on the ogbn-arxiv
node classification task to facilitate a shared rep-
resentation space. This proved unfeasible due to
the memory requirements exceeding the capacity
of one A100 GPU.

C Implementation of Diffusion Operators

We implement diffusion operators from two meth-
ods, Simple-GCN (Wu et al., 2019) and SIGN
(Frasca et al., 2020). In the case of SIGN, the au-
thors omit implementation details of the operators,
so we include them here.

101

https://arxiv.org/abs/2202.07919
https://arxiv.org/abs/2202.07919
https://arxiv.org/abs/2310.00149
https://arxiv.org/abs/2310.00149
https://openreview.net/forum?id=QcMdPYBwTu
https://openreview.net/forum?id=QcMdPYBwTu
https://api.semanticscholar.org/CorpusID:349242
https://api.semanticscholar.org/CorpusID:349242
https://arxiv.org/abs/2302.07842
https://arxiv.org/abs/2302.07842
https://arxiv.org/abs/1310.4546
https://arxiv.org/abs/1310.4546
https://doi.org/10.1145/219717.219748
https://doi.org/10.1145/219717.219748
https://arxiv.org/abs/2202.08904
https://arxiv.org/abs/2202.08904
https://openai.com/index/chatgpt/
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.31.1768
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.31.1768
https://doi.org/10.1109/tkde.2024.3352100
https://doi.org/10.1109/tkde.2024.3352100
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
http://arxiv.org/abs/1908.10084
http://arxiv.org/abs/1908.10084
https://doi.org/10.1609/aimag.v29i3.2157
https://proceedings.mlr.press/v97/wu19e.html
https://proceedings.mlr.press/v97/wu19e.html
https://proceedings.neurips.cc/paper_files/paper/2023/file/37d00f567a18b478065f1a91b95622a0-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/37d00f567a18b478065f1a91b95622a0-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/37d00f567a18b478065f1a91b95622a0-Paper-Datasets_and_Benchmarks.pdf
https://arxiv.org/abs/2105.02605
https://arxiv.org/abs/2105.02605
https://arxiv.org/abs/2105.02605
https://aclanthology.org/2024.findings-eacl.132
https://aclanthology.org/2024.findings-eacl.132
https://arxiv.org/abs/2210.14709
https://arxiv.org/abs/2210.14709
https://arxiv.org/abs/2210.14709


Let A denote the adjacency matrix of a possibly
directed graph G, X its node features, and D the
diagonal degree matrix of G.

We denote the random-walk normalized adja-
cency ARW& := AD−1 and the GCN-normalized
adjacency (Kipf and Welling, 2017)

AGCN := (D + I)−1/2 (A+ I) (D + I)−1/2 (4)

The Personalized PageRank matrix is then given
by (Gasteiger et al., 2022):

APPR := α (In − (1− α)ARW)−1 (5)

And we denote the triangle-based adjacency ma-
trix by A∆, where (A∆)ij counts the number of
directed triangles in G that contain the edge (i, j)

Diffusion is applied to node features X by ma-
trix multiplication. Simple-GCN takes a power k
of AGCN as its diffusion operator, whilst SIGN dif-
fusion generalizes this to concatenate powers of
AGCN, APPR and A∆.

Diffusion can be calculated efficiently if sparse-
matrix-sparse-matrix multiplication is avoided. For
both SIGN and Simple-GCN, the order of oper-
ations for applying a power of an operator Aop
should be

Aop(Aop(...(Aop(X))...)︸ ︷︷ ︸
k times

(6)

as opposed to (Ak
op)X , where the operator matrix

Aop is feasible to calculate, since the former avoids
sparse matrix multiplication. In SIGN, the recur-
sive nature of eq.6 can be exploited to reuse results
for calculating successive powers.

In the case of personalized pagerank diffusion,
we first use a trick from (Gasteiger et al., 2022) to
approximate the diffused features of personalized
pagerank matrix APPRX in linear time and avoid
calculative APPR directly, by viewing eq.5 as topic-
sensitive PageRank (Haveliwala, 2002). We use
the random-walk normalized adjacency matrix.

The following power iteration approximates
APPRX (notation from (Gasteiger et al., 2022)):

Z(0) := X

Z(k+1) := (1− α)AZ(k) + αX

To compute the nth diffused power, we repeat
the process n times:

Z
(0)
0 = X

Z
(0)
n+1 = lim

k→inf
Z(k)
n

Lastly, for triangle-based diffusion, we count tri-
angles using linear algebra. For unweighted A we
perform a single sparse matrix multiplication to ob-
tain A2, in which element (i, j) counts the directed
paths in G for node i to node j. We then calculate

A∆ = AT ⊙A2

where ⊙ denotes the Hadamard product, which can
be efficiently calculated for sparse matrices. We
then normalize and diffuse features over powers of
A∆ in the same fashion as for AGCN .

An implementation of these operators as Graph-
BLAS (Davis, 2019) code is published alongside
this paper.

C.1 Parallelism of diffusion operators
All operations above can be be parallelized across
columns of X , either keeping A in shared memory
on one machine or keeping a copy on each execu-
tor in a distributed computing infrastructure like
Apache Spark.

D Preprocessing & Model Selection for
Diffusion Operators

For Simple-GCN (Wu et al., 2019), we set the de-
gree k by selecting the highest validation accuracy
from k = 2, 3, 4, of which k = 2 had the highest
accuracy in each case. For SIGN (Frasca et al.,
2020), we choose s, p, t from the highest valida-
tion accuracy amongst (3, 0, 0) (3, 0, 1) (3, 3, 0),
(4, 2, 1) (5, 3, 0). For Cora and PubMed, (4, 2, 1)
was chosen, and for ogbn-arxiv, ogbn-products,
and tape-arxiv23 (3, 3, 0) was chosen. We chose
the number of layers for the Inception NLP to
match the number of layers in other GNNs tested,
4. We did not perform additional hyper-parameter
tuning. When preprocessing the embeddings, we
centered and scaled the data to unit variance for
Simple-GCN and SIGN only.

E Model Trainable Parameters

102



Model Trainable Parameter Count

RevGAT 3,457,678
GCN 559,111
SAGE 1,117,063
MLP 117,767
Simple-GCN 24,111
SIGN-(3,3,0) 500,271
SIGN-(4,2,1) 582,575
PEFT 7B LLM >20M

Table 5: Trainable parameter counts for different models.
7B LLM refers to all finetuned LLM embedding models
used during experiments (see Section 3.1)

F Ablation Study

To study the effect each model has on the GNN
ensemble step of STAGE, we perform a detailed
ablation study. The results are shown in Table 6.

G Datasets

In this section, we describe the characteristics of
the node classification datasets we used during our
work. The statistics are shown in Table 7.

H Instruction-biased Embeddings

In Table 8 we list the specific instructions used to
655 investigate the effect of biasing embeddings.

103



Method Cora PubMed ogbn-arxiv ogbn-products tape-arxiv23

Full Ensemble 0.8824 ± 0.0155 0.9265 ± 0.0068 0.7777 ± 0.0019 0.8140 ± 0.0033 0.8029 ± 0.0020
No MLP 0.8838 ± 0.0039 0.9239 ± 0.0036 0.7748 ± 0.0012 0.8093 ± 0.0021 0.8015 ± 0.0010
No GCN 0.8685 ± 0.0209 0.9240 ± 0.0076 0.7731 ± 0.0017 0.8100 ± 0.0038 0.8028 ± 0.0023
No SAGE 0.8759 ± 0.0207 0.9258 ± 0.0110 0.7739 ± 0.0020 0.8116 ± 0.0045 0.8021 ± 0.0035
No RevGAT 0.8764 ± 0.0180 0.9272 ± 0.0052 0.7717 ± 0.0007 0.8029 ± 0.0036 0.7985 ± 0.0018

Best Individual 0.8722 ± 0.0063 0.9142 ± 0.0122 0.7638 ± 0.0054 0.8083 ± 0.0051 0.7880 ± 0.0023

Best Individual Model SAGE MLP RevGAT RevGAT RevGAT

Table 6: Ablation study results for the ensemble model on various datasets. The table shows the accuracy when
each component is removed from the ensemble. The experiment is run over four seeds, with mean accuracy and
standard deviation shown. The best results are coloured green (first), yellow (second), and orange (third). For all
experiments, we use SFR-Embedding-Mistral as the embedding model on TA features only, and the simple task
instruction to bias the embeddings.

Dataset Node Count Edge Count Task Metric

Cora (McCallum et al., 2000) 2,708 5,429 7-class classif. Accuracy
Pubmed (Sen et al., 2008) 19,717 44,338 3-class classif. Accuracy
ogbn-arxiv (Hu et al., 2021b) 169,343 1,166,243 40-class classif. Accuracy
ogbn-products (Hu et al., 2021b) (subset) 54,025 74,420 47-class classif. Accuracy
tape-arxiv23 (He et al., 2024) 46,198 78,548 40-class classif. Accuracy

Table 7: Statistics of the TAG datasets

Dataset Prompt Type Prompt
ogbn-arxiv, arxiv_2023, cora, pubmed Simple Task Identify the main and secondary category of Arxiv

papers based on the titles and abstracts.
ogbn-arxiv, arxiv_2023, cora, pubmed Graph-Aware Identify the main and secondary category of Arxiv

papers based on the titles and abstracts. Your pre-
dictions will be used in a downstream graph-based
prediction that for each paper can learn from your
predictions of neighboring papers in a graph as well
as the predictions for the paper in question. Papers
in the graph are connected if one cites the other.

ogbn-products Simple Task Identify the main and secondary category of this prod-
uct based on the titles and description.

ogbn-products Graph-Aware Identify the main and secondary category of this prod-
uct based on the titles and description. Your pre-
dictions will be used in a downstream graph-based
prediction that for each product can learn from your
predictions of neighboring products in a graph as well
as the predictions for the paper in question. Products
in the graph are connected if they are purchased to-
gether.

Table 8: Task descriptions for embedding bias across various datasets.

104


