
Proceedings of the 1st Workshop on Knowledge Graphs and Large Language Models (KaLLM 2024), pages 1–11
August 15, 2024 ©2024 Association for Computational Linguistics

Multi-hop Database Reasoning with Virtual Knowledge Graph

Juhee Son1, Yeon Seonwoo1, Seunghyun Yoon2, James Thorne1, Alice Oh1

1KAIST, 2Adobe
{sjh5665, yeon.seonwoo, thorne}@kaist.ac.kr,

syoon@adobe.com, alice.oh@kaist.edu

Abstract

Application of LLM to database queries on
natural language sentences has demonstrated
impressive results in both single and multi-
hop scenarios. In the existing methodolo-
gies, the requirement to re-encode query vec-
tors at each stage for processing multi-hop
queries presents a significant bottleneck to
the inference speed. This paper proposes
VKGFR (Virtual Knowledge Graph based
Fact Retriever) that leverages large language
models to extract representations correspond-
ing to a sentence’s knowledge graph, signifi-
cantly enhancing inference speed for multi-hop
reasoning without performance loss. Given
that both the queries and natural language
database sentences can be structured as a
knowledge graph, we suggest extracting a
Virtual Knowledge Graph (VKG) representa-
tion from sentences with LLM. Over the pre-
constructed VKG, our VKGFR conducts re-
trieval with a tiny model structure, showing
performance improvements with higher compu-
tational efficiency. We evaluate VKGFR on the
WikiNLDB and MetaQA dataset, designed for
multi-hop database reasoning over text. The
results indicate 13x faster inference speed on
the WikiNLDB dataset without performance
loss.

1 Introduction

If open-domain question-answering models could
accurately reason with large-scale facts in
databases, it would make it feasible to substitute
or augment existing database management systems
with NLP technology (Thorne et al., 2021b). Sev-
eral benchmarks have been proposed (Weston et al.,
2016a; Dua et al., 2019; Thorne et al., 2021a),
which range in size and complexity and require
systems to conduct discrete reasoning (incorporat-
ing numerical operations like counting and argmax)
by collating multiple facts within the database. To
facilitate the reasoning at the scale of databases,

𝑫𝑩 𝑫𝑩

Retriever

𝒒 ∶

𝑓!:	John is a writer
𝑓":	John lives in New York
𝑓#:	Mary is a writer
𝑓$:	Mary lives in Seattle
𝑓%:	Tom is 16 years old

… 

List all writers who live in New York

Retriever Retriever

𝑓!:	John is a writer 𝑓#:	Mary is a writer

𝑓":	John lives in New York END

𝑫𝑩

𝒒 𝒒

𝑫𝑩 Retriever

END

𝒒

Figure 1: Illustration of the multi-hop reasoning pro-
cedure for answering the database query. The retriever
searches related facts in the database per each reason-
ing step. As the database sizes increases, the number
of facts used for multi-hop reasoning increases, so the
number of retriever’s operation gets higher.

NLP systems are required to access numerous sets
of relevant sentences, often in combination with
multi-hop retrieval (Figure 1).

For open-domain NLP systems to reason over
only the relevant subset of facts from a corpus,
a two-stage architecture of retrieval and reason-
ing is typically used (Petroni et al., 2021). How-
ever, challenges in database-style reasoning re-
quire additional complexity with retrieving non-
redundant sets of tens or hundreds of facts. For the
WikiNLDB benchmark, Thorne et al. (2021a) pro-
posed an incremental retrieval architecture called

1



SSG (Support Set Generator) built on sentence-
BERT (Reimers and Gurevych, 2019). The in-
ference speed of the SSG is not scalable because
it encodes query vectors for each reasoning step
in multi-hop retrieval through the transformer
(Vaswani et al., 2017), causing computation in-
efficiency. As the size of the database increases,
retrieval slows down significantly. For example,
with 25 facts in the database, SSG processes 21.51
queries per second, but as the number of facts in-
creases to 1000, SSG only processes 1.46 queries
per second.

In this paper, we propose VKGFR (Virtual
Knowledge Graph based Fact Retriever) which
significantly improves the inference speed and re-
trieval performance. Since the WikiNLDB dataset
can be represented in the knowledge graph struc-
ture, we suggest constructing a virtual knowledge
graph (Wang et al., 2017, VKG) for fact retrieval
with LLM. The VKG embedding provides com-
pressed vectorized representations of facts and
queries and can be pre-indexed, enabling efficient
and accurate multi-hop retrieval. Recent works
have used VKG to predict target entities from
knowledge bases (Dhingra et al., 2020; Sun et al.,
2021) or retrieve facts to claim verification (de Jong
et al., 2021). However, the number of reasoning
steps and hop lengths are predetermined for these
specific tasks, making it challenging to adapt them
directly to database reasoning. Applying the VKG
to the database reasoning task is non-trivial because
it requires various hops of reasoning, and the can-
didates per each reasoning step are not known a
priori, and our work is the first to employ VKG for
database reasoning.

We evaluate VKGFR on WikiNLDB, a database
reasoning task consisting of various sizes of
database facts and corresponding queries, and
MetaQA (Zhang et al., 2018), a conventional multi-
hop QA dataset over the knowledge base. VKGFR
performs best compared with several other VKG-
based models and multi-hop dense retrieval mod-
els (Xiong et al., 2021; Lee et al., 2021) on both
datasets. Furthermore, VKGFR shows at least 4.7
times faster inference time than SSG in all database
sizes of WikiNLDB (Figure 6). We conduct an
ablation study with different types of entity em-
bedding and model structure, and our approach
shows the best performance. Our main contribu-
tion is to propose a significantly more efficient and
accurate VKG-based retriever enabling natural lan-
guage database reasoning.

Facts
• John is a writer who lives in Seoul, 35

years old
• Marry is 18 year old girl graduated from 

Boston school 
• James is a 40 years old lawyer graduated 

from Harvard law school
Queries 
• Argmax: Who is the oldest person? 
• Set: List all writers lives in New York.
• Count: How many people live in Seoul?
• Bool: Did James graduate from Harvard?

Figure 2: Examples of facts included in natural language
databases and database queries. The highlighted texts
are entities important for reasoning on the database.

2 Background

2.1 Natural Language Databases (NLDBs)
Natural language databases (Thorne et al., 2021a,b)
model large collections of facts stored in plain text
as the storage media for database reasoning. In con-
trast to open-domain question answering, database
reasoning requires making inferences over large
sets of facts related to one query. Conventional
open-domain question-answering methods need to
encode all relevant facts, possibly in the thousands,
perform discrete reasoning to get the most related
facts, and then decode a sequence of tokens repre-
senting the answer to the query. Previous works
have studied small synthetic settings (Weston et al.,
2016b) or reasoning over a single passage (Dua
et al., 2019).

Conventional databases store facts in structured
forms with labeled columns and are queried with
formal languages such as SQL. Much work in
NLP has studied the parsing of user queries into
structured representations or exposing the database
through a natural language interface (Androut-
sopoulos et al., 1995; Zhong et al., 2017). However,
in NLDBs, because both the stored text and queries
are natural languages, NLDBs are not restricted
by any predefined database schema allowing the
addition of new topics without defining tables or
columns, reducing maintenance overheads.

NLDBs are studied using the WikiNLDB dataset
(Thorne et al., 2021a), which contains databases
varying in size (from 25 to 1000 facts) and question-
answer pairs. An example is provided in Figure 2.
In WikiNLDB, four different types of queries re-
quire different reasoning processes (specifically,
counting, min/max, argmin/argmax, and set-based

2



answers) and over single entities and short multi-
hop chains (referred to as joins).

2.2 Virtual Knowledge Graphs (VKGs)
Our proposed solution is to perform retrieval by
modeling the set of facts as a VKG: a knowl-
edge graph representation where pairs of enti-
ties and the relation between them is embedded:
(me1 ,me2 , r⃗(e1,e2)). VKG representations have
been used for retrieval in QA, but their usage and
constructions vary by application. DrKIT (Dhin-
gra et al., 2020) and TOME (de Jong et al., 2021)
used the entity representation as a memory bank
for fixed-length multi-hop retrieval. OPQL (Sun
et al., 2021) constructs a key-value memory with
VKG for the fixed length of multi-hop retrieval
and multi-hop slot filling task. The key in OPQL
is the concatenation of the target entity embed-
ding and the relation vector, and the remaining
entity embedding becomes the value of the mem-
ory. VKGDR (Seonwoo et al., 2022) uses VKG
for zero-shot domain-specific retrieval and calcu-
lates the relevance score of queries and documents
by multiplying the relation vectors. In contrast to
previous work in VKG-based retrieval, which uses
a subset of the VKG for a fixed number of hops,
we use the whole VKG representation to perform
variable-length multi-hop retrieval.

3 Methods

Our multi-hop fact retriever VKGFR comprises
two key steps: first, facts and queries are embed-
ded into VKGs (Section 3.1, Figure 3); second,
multi-hop retrieval is performed over the embedded
VKG (Section 3.2, Figure 4). In contrast to SSG
(Thorne et al., 2021a), the embeddings of facts are
immutable and can be pre-indexed, yielding faster
retrieval. For inference, VKG embeddings of new
facts or queries can be embedded on demand.

3.1 Building the VKG
Entity Encoder We extract the entity spans from
the text with a predefined entity vocabulary built
over the Wikipedia entities. All possible pairs of
extracted entities become part of the VKG. We
use a pre-trained language model to compute the
contextualized embeddings of those entities. We
experiment with various models (Karpukhin et al.,
2020; de Jong et al., 2022; Devlin et al., 2019) and
use the best-performing model, DensePhrase.
Relation Encoder The relation encoder computes
a relation vector between a pair of entities (Seon-

Pre-indexed VKGNLDB

John is a writer

Entity 
Encoder

𝑚!! 	
𝑚!" 	 𝑟!!,!"ℎ$! 	

…

𝒇𝟏:	John is a writer
𝒇𝟐:	Mary is a writer and lives in Seattle…

Relation
Encoder

John is a writer [ENT] [R1] is a [ENT] [R2]

Entity Tagging

ℎ$"

𝑽𝑲𝑮(𝒇𝟏)𝟏
𝑽𝑲𝑮(𝒇𝟐)𝟏
𝑽𝑲𝑮(𝒇𝟐)𝟐

𝑽𝑲𝑮(𝒇𝑵)𝑴

Figure 3: Illustration of our VKG construction method.
Each encoder independently builds the vectorized rep-
resentation of facts. The concatenation of the entity
and relation embeddings becomes our VKG represen-
tations of the text. For the f2, there are two entity
pairs (Mary-writer, Mary-Seattle) so the corresponding
VKG representation is indexed as two different triplets
(V KG(f2)1, V KG(f2)2).

woo et al., 2022; Sun et al., 2021; Baldini Soares
et al., 2019). Consistent with previous approaches,
the input to the relation encoder is a sentence with
two entities masked and a special relation token
inserted behind each masked token (e.g. “[ENT]
[R1] is a [ENT] [R2] who lives in L.A.”). The
masking makes the model learn the relation repre-
sentation based on the context of the entities rather
than the textual representation itself. For the two
relation tokens, the relation vector is computed by
concatenation and linear projection:

r⃗e1,e2 = W ⊺[hr1 ;hr2 ] (1)

Hyper parameter described on section 8
The relation encoder is trained with supervision

that relations containing the same entity pairs are lo-
cated in a similar vector space. The relation vectors
that consist of the same entity pairs are regarded
as positive samples. Below is the cross-entropy
training loss for the relation encoder:

Lrel_enc = CE(σ(r⃗⊺e1,e2 r⃗ei,ej ),

I(e1=ei,e2=ej)) (2)

Following Sun et al. (2021), we pre-train the re-
lation encoder with Wikidata and fine-tune it on the
respective target datasets (WikiNLDB, MetaQA).

VKG for WikiNLDB As described above, we
build VKG embeddings for the facts and queries in
WikiNLDB. For the facts, we extract the entity span

3



𝑽𝑲𝑮(𝒒)

…

𝑽𝑲𝑮(𝒇𝟐)𝟏

𝑽𝑲𝑮(𝒇𝟏)𝟏

End of Retrieval 
(EoR)

Pre-indexed VKG Query

User Input

RNN
Cell

RNN
Cell

RNN
Cell

𝑉!"

Linear

Do retrieval if 
dot product > t

0.9
0.2

0.1

𝑽𝑲𝑮(𝒇𝟏)𝟏

𝑽𝑲𝑮(𝒇𝟏)𝟏

Linear Linear

𝑽𝑲𝑮(𝒇𝟐)𝟏

𝑉!# 𝑉!$

𝑽𝑲𝑮(𝒇𝟐)𝟏 EoR

Retrieved 
Fact Vectors

1hop 2hop 3hop

Figure 4: Illustration of VKGFR’s multi-hop inference
procedure. The query is encoded with an RNN, and
the retrieved fact (f1) becomes the input for the next
hop. This multi-hop reasoning process is repeated until
the model predicts the special END vector, indicating
sufficient information was returned.

(ei, ej) based on the Wikipedia entity vocabulary E
and embed them with pretrained models (mei ,mej )
and calculate a relation vector r(ei,ej) for each pair.
As in Figure 2, facts can contain many entity pairs,
so there can be multiple mention-relation-mention
triplets of the same fact. The VKG representations
for fact f that have n entity pairs are denoted as
follows:

vkg(f) = {[mei ;mej ; rei,ej ]k}nk=1, ∀i ei ∈ E
(3)

For queries, we mask the entity and add the special
relation token at the end of the sentence to compute
the relation vector (e.g. “How many people study
at [ENT][R1]? [ENT][R2]”). If there are multiple
entities in the query, we average the VKG represen-
tation per each entity and take the average because
the query is a single unit used for comparison, so it
is more beneficial to include all entity pair relations
in the query. The following is VKG representation
for query q that has n entities:

vkg(q) =
1

n

n∑

k=1

[mei ;mej ; rei,ej ]k, ∀i ei ∈ E

(4)

3.2 Multi-hop Retriever

Figure 4 depicts the comprehensive inference mech-
anism of VKGFR. VKGFR retrieves relevant facts
by searching over a pre-indexed fact VKG with the
given query VKG. For each retrieval step, VKGFR
applies a linear layer to project the fact (Wf ) and
query (Wq) VKG embeddings. Then, to encode

the multi-hop aspect of retrieval, we apply an RNN
layer to transform the vector (Equation 5), consid-
ering the retrieval history.

V 0
q , h

0 = RNN(W ⊺
q vkg(q), 0) ∈ RD (5)

Using the query vector, the fact that the relation
probability is over the threshold (τ ) is returned
(vkg(ft) = retrieve(V t

q ,τ )). For each retrieval hop,
the retrieved fact vector becomes the input of the
next step (Equation 6)

V t+1
q , ht+1 = RNN(W ⊺

f vkg(ft), h
t) ∈ RD (6)

The retrieved facts are further processed by
VKGFR, repeating this retrieval step until a special
End-of-retrieval (EoR) vector is retrieved.
Training We optimize the cross entropy loss be-
tween the inner products of fact, query vectors, and
the ground truth (gt) label that is 1 if the fact is
correct for the query and 0 otherwise.

Lretreiver = CE(σ(V ⊺
fi
V t
q ), Ifi∈gt(q)) (7)

Retrieval The relevance probability between the
query and fact is estimated by computing the inner
product of the query and fact vectors. If this prob-
ability exceeds a hyper-parameterized threshold
τ = 0.5, the fact is retrieved. To model multi-set
multi-hop retrieval for WikiNLDB, the retrieval
process branches if more than one fact is retrieved.
Each branch is independently decoded until EoR is
predicted.

4 Experiments on WikiNLDB

4.1 Experimental Setup

Data The WikiNLDB dataset consists of databases
between 25 and 1000 facts. The size of the database
defines the upper bound of the number of candi-
dates for retrieval. Following the original paper
(Thorne et al., 2021a), we use the training data
from the database size 25 and train a single model
which was tested for all sizes.
VKG Embedding For the entity encoder, we use
the publicly available BERT-base size DensePhrase
checkpoint1. For the relation encoder, we pre-
trained the BERT-large with the Wikidata and fine-
tuned this on WikiNLDB.

1https://github.com/princeton-nlp/
DensePhrases

4

https://github.com/princeton-nlp/DensePhrases
https://github.com/princeton-nlp/DensePhrases


25 50 100 250 500 1000
Database Size

10

20

30

40

50

60

70

F1
 sc

or
e

SSG
MDPR
TOME
DensePhrase+VKGFR
OPQL+VKGFR
VKGFR (Ours)

(a) Retriever performance

25 50 100 250 500 1000
Database Size

30

40

50

60

Ac
cu

ra
cy

SSG
MDPR
TOME
DensePhrase+VKGFR
OPQL+VKGFR
VKGFR (Ours)

(b) Reader performance

Figure 5: Retriever and reader performance of models on all database sizes

Retriever VKGFR is trained with the pre-indexed
VKGs. We use one RNN layer for multi-hop re-
trieval, chosen empirically. We sample hard nega-
tive facts that share the same entity or same relation
with the ground truth facts for training. We set the
sample ratio as 1:10 and the threshold as 0.5 based
on empirical performance on the validation set.
Full Pipeline (With Reader) The contributions
in this paper focus on the retrieval side of a two-
part architecture. For completeness, we experiment
with the reader component. We use the pre-existing
NeuralSPJ model from Thorne et al. (2021a). This
model is an encoder-decoder transformer based
on the T5 architecture that generates a machine-
readable version of a natural language fact given
a query if the fact is relevant or no output other-
wise. Following previous approach, we trained this
model using the gold passages from WikiNLDB
and sampled false-positive facts from our retriever
for resilience. To train the model to predict no
output for false-positive retrieved facts, we sample
false positives from our retrieved facts.

For evaluation, we report precision, recall, and
F1 score for the retriever and answer exact-match
from the reader. To evaluate variance, we run each
experiment with three seeds and average the results.
Appendix 8 describes the hyperparameters.

4.2 Retrieval Baselines

SSG (Thorne et al., 2021a) is a SentenceBERT-
based multi-hop retriever, using an inner-product-
based search mechanism with branching for multi-
hop retrieval. TOME (de Jong et al., 2022) uses
predefined mention encoding for multi-hop re-
trieval. This shows the best performance on the
fact verification task. We fine-tune TOME for

WikiNLDBs. MDPR (Xiong et al., 2021) uses
dense representation for multi-hop retrieval, itera-
tively encoding the questions using the question en-
coder. To apply MDPR to the WikiNLDB dataset,
the number of candidates retrieved for every reason-
ing step needs to be set, and we set the number as
the maximum reasoning steps of the NLDB train-
ing data (Asai et al., 2020). DensePhrase (Lee
et al., 2021) is the text retrieval model we use for
entity embedding, and we experiment with only
the DensePhrase embedding on our model to figure
out the effect of our relation embedding. OPQL
(Sun et al., 2021) memory uses VKG for multi-hop
reasoning, but their VKG representations consist
of only the relation vector and target entity embed-
ding, so we compare our VKG building method to
the OPQL memory. To enable variable lengths of
multi-hop reasoning on DensePhrase and OPQL,
we add VKGFR over the pre-indexed DensePhrase
and OPQL embedding.

4.3 Ablation Study

To verify our VKG encoding method, we conduct
an ablation study with the following types of en-
tity embedding: 1) DensePhrase (Lee et al., 2021,
DP) records the dense representation of passages,
which can be a single entity. 2) Mention Encoder
(de Jong et al., 2022, ME) encodes dense vector
representations of every entity mention in a text,
which is built on the transformer architecture, and
the entity span is projected to the fixed-sized vector
space. 3) The average value of BERT (Devlin et al.,
2019) hidden embedding between the entity span
used as an entity representation. We build VKG
triplets based on different embedding models and
trained VKGFR over those representations with the

5



same hyperparameter. 4) We compare the VKGFR
model structure between the RNN and Linear layer.

5 Results on WikiNLDB

5.1 Overall Results on Whole Databases

Figure 5 describes the overall performance of the
retriever and reader for all sizes.
Retriever Performance For retrieval performance,
VKGFR shows the best or comparable F1 score on
all database sizes. SSG performs best on the small-
est database size (25 facts), but as the database
size increases, the performance drastically drops.
VKGFR is consistently better than DensePhrase
and OPQL, which means that our VKG-building
methods are effective in improving retrieval. Com-
pared to other retrieval baselines, MDPR shows
low performance with high variance, indicating
that the fixed number of candidates had a negative
impact on performance. TOME shows the lowest
performance, implying that the mention encoding
strategy of TOME is not effective on this dataset.
Reader Performance VKGFR shows the best
performance on large database sizes (>100), but
the SSG is better on smaller database sizes.
DensePhrase, TOME, and OPQL showed con-
sistently lower performance than VKGFR on all
database sizes. MDPR showed much lower perfor-
mance for the reader even though it showed a better
retrieval score than the TOME, caused by noise
from the fixed number of retrieval candidates.

5.2 Results for Different Types of Queries

WikiNLDB consists of four different types of
queries: min/max, set, count, and boolean. We an-
alyze results from the models with different types
of queries on the largest database size (1000 facts).

Retriever Performance We report retrieval re-
sults for all models in Table 1. VKGFR shows the
highest F1 score on most query types, min/max,
set, and count. In comparison to the SSG, VKGFR
showed better precision which leads better F1 score
but the recall score of SSG is higher than VKGFR.
TOME and MDPR showed the lowest precision but
comparable recall scores. All models’ performance
of the boolean query is very low because 94% of
boolean queries have 0-2 positive facts, making it
hard to conduct accurate retrieval on a large size of
database.

Reader Performance We report the correspond-
ing reader accuracy in Table 2. Because of the

40 50 60 70
F1 score

100

101

102

Q/
se

c 4.
7x

5.
6x

8.
5x

10
.0

x

8.6
x

8.6
x

Model
VKGFR (Ours)
SSG

DB Size

25

50

100

250

500

1000

Figure 6: Inference speed and the retrieval performance
of SSG (orange circles) and VKGFR (blue circles) on
different sizes of the WikiNLDB test set. The x-axis rep-
resents the retrieval F1 score, and the y-axis represents
the inference speed. The size of the circles indicates the
database sizes. The numbers on the circles indicate the
ratio of q/sec between two models on the same DB size.

higher variation in reader performance, we report
the standard deviations in the table. Compared to
the SSG, VKGFR shows better answer accuracy, in-
dicating that our more precise retriever leads to per-
formance improvements on the reader. In compari-
son to the OPQL and DensePhrase, VKGFR shows
better total accuracy. The answer candidates of the
boolean query are easier than the other queries, so
the accuracy is much higher for all models, even
TOME, compared to other question types. The
count query exhibits the lowest accuracy compared
to the others due to its requirement of accurately
predicting every positive sample.

5.3 Computational Efficiency

We measure the number of queries that each re-
triever can process in a second (Q/sec); the infer-
ence speed is measured by one Quadro RTX A6000
48GB GPU. We plot the speed-accuracy trade-off
with our model and the SSG baseline in Figure 6.
The speed of all models includes the time required
for query embedding. VKGFR showed at least
8.9 times faster inference speed than the SSG on
all database sizes and a higher F1 score on DB
size larger than 25, which is more representative of
real-world applications. Table 3 shows the retrieval
speed of each model on the largest database size
(1000 facts). VKGFR models can conduct efficient
retrieval with the simple model structure compared
to the other transformer-based models. To perform
inference on WikiNLDB on TOME, MDPR, and
SSG, a new query vector must be encoded for each
reasoning step. For example, based on the SSG,
440 BERT encodings are required per query in DB

6



Min/Max Set Count Bool Total
Model P R F P R F P R F P R F P R F

TOME 17.5 72.5 28.2 15.1 77.5 25.2 14.8 80.5 25.0 2.6 90.9 5.0 15.1 77.2 25.3

MDPR 25.8 72.4 37.7 23.2 77.9 35.3 22.5 79.9 34.9 15.8 77.9 26.2 23.5 76.2 35.7

SSG 35.0 88.3 50.1 27.7 84.7 41.7 26.8 84.6 40.6 19.2 82.4 31.1 29.8 85.9 44.2

VKGFR (Ours) 44.3 70.5 54.4 37.8 76.3 50.5 39.3 76.9 52.0 17.5 82.8 28.9 39.4 74.6 51.6

w/ OPQL embedding 44.0 68.5 53.6 35.2 75.6 48.0 36.5 75.6 49.2 17.7 84.0 29.2 37.9 73.3 50.0

w/ DensePhrase embedding 41.6 68.8 51.8 37.3 72.8 49.3 39.8 74.0 51.7 19.8 83.0 32.0 38.5 72.2 50.2

Table 1: Precision, Recall, F1 score and retrieval speed of each retriever on the database size 1000. VKGFR shows
the highest F1 score on Min/Max, Set, and Count type queries.

Model Min/Max (std) Set (std) Count (std) Bool (std) Tot (std)

TOME 36.68 (0.75) 54.91 (2.81) 15.69 (3.81) 86.75 (3.71) 38.97 (1.94)

MDPR 35.67 (1.28) 41.03 (1.53) 10.83 (1.97) 56.84 (1.77) 31.01 (0.43)

SSG 43.04 (0.44) 58.03 (1.74) 15.37 (1.78) 78.21 (3.06) 41.64 (0.99)

VKGFR (Ours) 44.92 (1.03) 60.01 (0.86) 17.80 (0.89) 83.23 (2.18) 43.91 (0.59)

w/ OPQL embedding 45.61 (1.44) 57.08 (0.94) 16.86 (0.49) 82.16 (0.81) 43.10 (0.23)

w/ DensePhrase embedding 41.30 (3.59) 55.39 (0.70) 17.80 (0.49) 79.70 (0.74) 41.04 (1.64)

Table 2: Fine-tuned reader accuracy on each retriever’s result for different types of queries on the database size
1000. The standard deviation is included in this table because the std of the reader results is bigger than the retrieval
results’ std.

Model Speed
(Q/sec)

F1

TOME 0.19 25.29

MDPR 0.63 35.67

SSG 1.46 44.21

VKGFR (Ours) 12.83 51.59

w/ OPQL embedding 13.01 49.95

w/ DensePhrase embedding 12.45 50.22

Table 3: Represents the speed of each model on the
largest database size (1000) and corresponding retrieval
F1 score.

size 1000 on average, but VKGFR only needs 1
BERT encoding per query.

We included the amortized time for indexing our
embeddings to ensure a fair comparison. However,
this indexing includes additional storage overheads.
We report these storage costs in Table 4.

6 Experiments and Results on MetaQA

Experiment Setup To verify VKGFR on other
tasks, we experiment with MetaQA (Zhang et al.,
2018), which is a multi-hop retrieval over a pre-
defined knowledge base built on the WikiMovies

DB Size # of DBs Avg
Size/DB

Avg Indexing
Time /DB

25 621 1MB 0.3s

50 499 2MB 0.6s

100 250 4MB 1.2s

250 100 10MB 3.3s

500 50 17MB 6.1s

1000 25 26MB 12.0s

Table 4: Represents the size of pre-indexes for test
dataset on each database size, and taking time for the
embedding queries and facts.

dataset. Unlike WikiNLDB, the number of hops
is prefixed before the inference, so there is no end
prediction for this case. The questions of MetaQA
are generated from predefined templates, and corre-
sponding answers exist on the knowledge base. We
fine-tune the relation encoder with MetaQA dataset
as Sun et al. (2021) and use the same training &
inference configuration as 4.1. For inference, we
apply a sparse filter that the retrieved knowledge
base should include the topic entity of the query
for increasing the accuracy (Dhingra et al., 2020;
Sun et al., 2021).

7



Results Table 5 reports the Hit@1 results of differ-
ent models on the MetaQA dataset. The VKGFR
outperforms the previous approach by at least 1.7
points in every case, indicating our VKG repre-
sentation contains the essential information for the
question-answering task more than others. The 1-
hop performance of OPQL is not mentioned in the
paper, but the authors said the performance is lower
than the DrKIT.

Model 1Hop 2Hop 3Hop

KVMem - 7.0 19.5
DrQA 55.3 32.5 19.7
GRAFT-Net 82.5 36.2 40.2
PullNet 84.4 81.0 78.2
DrKIT 84.4 86.0 87.6
OPQL - 88.5 87.1
VKGFR 86.1 93.7 92.1

Table 5: Hit@1 results on MetaQA dataset. Each result
is from the original paper.

7 Related Works

Building a semi-structured representation from tex-
tual sources has been an important direction in
handling reasoning queries (Asai et al., 2020; Sun
et al., 2019; Dhingra et al., 2020). This is be-
cause reasoning tasks often require entity match-
ing, and previous dense retrieval methods are in-
sufficient for entity representation learning. For
this reason, many studies have focused on entity-
matching-based retrieval methods (Sun et al., 2018,
2019; Cao et al., 2019). These studies find support-
ing facts by iteratively matching entities that ap-
peared in a given question and documents, similar
to human information-seeking processes. Further-
more, contextualized entity embedding methods
have been proposed. These methods are specifi-
cally designed for entity representation and capture
more fine-grained semantic meanings of entities
(Lee et al., 2021; de Jong et al., 2021).

Inspired by previous entity-matching-based ap-
proaches, some studies propose to use relations
between entities as well as entity vectors (Dhin-
gra et al., 2020; Sun et al., 2021; Seonwoo et al.,
2022). These approaches use a relation encoder
to encode the semantic meaning of the relation of
entities, then construct a graph consisting of entity
vectors and their relation vectors. Dhingra et al.
(2020) proposes a virtual knowledge base, which

consists of trainable entity vectors. Sun et al. (2021)
further develops this approach to use the relation
between entities and propose a virtual knowledge
graph (VKG), which consists of entity and rela-
tion vectors. Seonwoo et al. (2022) adopts the
VKG to the domain-specific document retrieval
with insufficient training data. Unlike the previ-
ous approach, our methods target variable length
of multi-hop database reasoning and show the best
performance.

8 Conclusions

In this paper, we propose VKGFR enable multi-
hop retrieval with faster speed and high perfor-
mance over the WikiNLDB dataset. Our multi-hop
retrieval mechanism does not require re-embedding
of facts, resulting in fewer queries to an encoder
model and allowing it to take advantage of pre-
indexed fact representations. VKGFR retrieves
upon that pre-indexed VKG representation which
is highly contributing to the faster inference speed.
On other tasks, VKGFR shows the best perfor-
mance on the general knowledge-base multi-hop
QA dataset, MetaQA. This research demonstrates
the applicability of VKG text representation in the
task of multi-hop database reasoning.

Limitations

VKGFR retrieves the knowledge base that consists
of explicit entities and relations. If the knowledge
base becomes more complex, with no explicit en-
tities and relations in the sentence, new VKG en-
coding methods will be required for good perfor-
mance.

References
Ion Androutsopoulos, Graeme D Ritchie, and Peter

Thanisch. 1995. Natural language interfaces to
databases–an introduction. Natural language engi-
neering, 1(1):29–81.

Akari Asai, Kazuma Hashimoto, Hannaneh Hajishirzi,
Richard Socher, and Caiming Xiong. 2020. Learn-
ing to retrieve reasoning paths over wikipedia graph
for question answering. In 8th International Confer-
ence on Learning Representations, ICLR 2020, Addis
Ababa, Ethiopia, April 26-30, 2020. OpenReview.net.

Livio Baldini Soares, Nicholas FitzGerald, Jeffrey Ling,
and Tom Kwiatkowski. 2019. Matching the blanks:
Distributional similarity for relation learning. In Pro-
ceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 2895–

8

https://openreview.net/forum?id=SJgVHkrYDH
https://openreview.net/forum?id=SJgVHkrYDH
https://openreview.net/forum?id=SJgVHkrYDH
https://doi.org/10.18653/v1/P19-1279
https://doi.org/10.18653/v1/P19-1279


2905, Florence, Italy. Association for Computational
Linguistics.

Yu Cao, Meng Fang, and Dacheng Tao. 2019. BAG:
Bi-directional attention entity graph convolutional
network for multi-hop reasoning question answering.
In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 357–362,
Minneapolis, Minnesota. Association for Computa-
tional Linguistics.

Michiel de Jong, Yury Zemlyanskiy, Nicholas FitzGer-
ald, Fei Sha, and William Cohen. 2021. Mention
memory: incorporating textual knowledge into trans-
formers through entity mention attention. ArXiv
preprint, abs/2110.06176.

Michiel de Jong, Yury Zemlyanskiy, Nicholas FitzGer-
ald, Fei Sha, and William W. Cohen. 2022. Mention
memory: incorporating textual knowledge into trans-
formers through entity mention attention. In Interna-
tional Conference on Learning Representations.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Bhuwan Dhingra, Manzil Zaheer, Vidhisha Balachan-
dran, Graham Neubig, Ruslan Salakhutdinov, and
William W. Cohen. 2020. Differentiable reasoning
over a virtual knowledge base. In 8th International
Conference on Learning Representations, ICLR 2020,
Addis Ababa, Ethiopia, April 26-30, 2020. OpenRe-
view.net.

Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel
Stanovsky, Sameer Singh, and Matt Gardner. 2019.
DROP: A reading comprehension benchmark requir-
ing discrete reasoning over paragraphs. In Proceed-
ings of the 2019 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 2368–2378, Min-
neapolis, Minnesota. Association for Computational
Linguistics.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and
Wen-tau Yih. 2020. Dense passage retrieval for open-
domain question answering. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 6769–6781,
Online. Association for Computational Linguistics.

Jinhyuk Lee, Mujeen Sung, Jaewoo Kang, and Danqi
Chen. 2021. Learning dense representations of
phrases at scale. In Proceedings of the 59th Annual

Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 6634–6647, Online. Association for
Computational Linguistics.

Ilya Loshchilov and Frank Hutter. Decoupled weight
decay regularization. In International Conference on
Learning Representations.

Fabio Petroni, Aleksandra Piktus, Angela Fan, Patrick
Lewis, Majid Yazdani, Nicola De Cao, James Thorne,
Yacine Jernite, Vladimir Karpukhin, Jean Maillard,
Vassilis Plachouras, Tim Rocktäschel, and Sebastian
Riedel. 2021. KILT: a benchmark for knowledge
intensive language tasks. In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 2523–2544, Online.
Association for Computational Linguistics.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3982–3992, Hong Kong, China. Association for Com-
putational Linguistics.

Yeon Seonwoo, Seunghyun Yoon, Franck Dernoncourt,
Trung Bui, and Alice Oh. 2022. Virtual knowledge
graph construction for zero-shot domain-specific doc-
ument retrieval. In Proceedings of the 29th Inter-
national Conference on Computational Linguistics,
pages 1169–1178, Gyeongju, Republic of Korea. In-
ternational Committee on Computational Linguistics.

Haitian Sun, Tania Bedrax-Weiss, and William Cohen.
2019. PullNet: Open domain question answering
with iterative retrieval on knowledge bases and text.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 2380–
2390, Hong Kong, China. Association for Computa-
tional Linguistics.

Haitian Sun, Bhuwan Dhingra, Manzil Zaheer, Kathryn
Mazaitis, Ruslan Salakhutdinov, and William Cohen.
2018. Open domain question answering using early
fusion of knowledge bases and text. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 4231–4242,
Brussels, Belgium. Association for Computational
Linguistics.

Haitian Sun, Patrick Verga, Bhuwan Dhingra, Ruslan
Salakhutdinov, and William W. Cohen. 2021. Rea-
soning over virtual knowledge bases with open pred-
icate relations. In Proceedings of the 38th Inter-
national Conference on Machine Learning, ICML
2021, 18-24 July 2021, Virtual Event, volume 139 of
Proceedings of Machine Learning Research, pages
9966–9977. PMLR.

9

https://doi.org/10.18653/v1/N19-1032
https://doi.org/10.18653/v1/N19-1032
https://doi.org/10.18653/v1/N19-1032
https://arxiv.org/abs/2110.06176
https://arxiv.org/abs/2110.06176
https://arxiv.org/abs/2110.06176
https://openreview.net/forum?id=OY1A8ejQgEX
https://openreview.net/forum?id=OY1A8ejQgEX
https://openreview.net/forum?id=OY1A8ejQgEX
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://openreview.net/forum?id=SJxstlHFPH
https://openreview.net/forum?id=SJxstlHFPH
https://doi.org/10.18653/v1/N19-1246
https://doi.org/10.18653/v1/N19-1246
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2021.acl-long.518
https://doi.org/10.18653/v1/2021.acl-long.518
https://doi.org/10.18653/v1/2021.naacl-main.200
https://doi.org/10.18653/v1/2021.naacl-main.200
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://aclanthology.org/2022.coling-1.101
https://aclanthology.org/2022.coling-1.101
https://aclanthology.org/2022.coling-1.101
https://doi.org/10.18653/v1/D19-1242
https://doi.org/10.18653/v1/D19-1242
https://doi.org/10.18653/v1/D18-1455
https://doi.org/10.18653/v1/D18-1455
http://proceedings.mlr.press/v139/sun21e.html
http://proceedings.mlr.press/v139/sun21e.html
http://proceedings.mlr.press/v139/sun21e.html


James Thorne, Majid Yazdani, Marzieh Saeidi, Fab-
rizio Silvestri, Sebastian Riedel, and Alon Halevy.
2021a. Database reasoning over text. In Proceed-
ings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 3091–3104, Online.
Association for Computational Linguistics.

James Thorne, Majid Yazdani, Marzieh Saeidi, Fabrizio
Silvestri, Sebastian Riedel, and Alon Halevy. 2021b.
From natural language processing to neural databases.
In Proceedings of the VLDB Endowment, volume 14,
pages 1033–1039. VLDB Endowment.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Quan Wang, Zhendong Mao, Bin Wang, and Li Guo.
2017. Knowledge graph embedding: A survey of
approaches and applications. IEEE Transactions
on Knowledge and Data Engineering, 29(12):2724–
2743.

Jason Weston, Antoine Bordes, Sumit Chopra, and
Tomás Mikolov. 2016a. Towards ai-complete ques-
tion answering: A set of prerequisite toy tasks. In
4th International Conference on Learning Represen-
tations, ICLR 2016, San Juan, Puerto Rico, May 2-4,
2016, Conference Track Proceedings.

Jason Weston, Antoine Bordes, Sumit Chopra, and
Tomás Mikolov. 2016b. Towards ai-complete ques-
tion answering: A set of prerequisite toy tasks. In
4th International Conference on Learning Represen-
tations, ICLR 2016, San Juan, Puerto Rico, May 2-4,
2016, Conference Track Proceedings.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le
Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander M. Rush. 2020. Transform-
ers: State-of-the-art natural language processing. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Wenhan Xiong, Xiang Lorraine Li, Srini Iyer, Jingfei
Du, Patrick S. H. Lewis, William Yang Wang, Yashar
Mehdad, Scott Yih, Sebastian Riedel, Douwe Kiela,
and Barlas Oguz. 2021. Answering complex open-
domain questions with multi-hop dense retrieval. In
9th International Conference on Learning Represen-
tations, ICLR 2021, Virtual Event, Austria, May 3-7,
2021. OpenReview.net.

Yuyu Zhang, Hanjun Dai, Zornitsa Kozareva, Alexan-
der J. Smola, and Le Song. 2018. Variational reason-
ing for question answering with knowledge graph. In

Proceedings of the Thirty-Second AAAI Conference
on Artificial Intelligence, (AAAI-18), the 30th inno-
vative Applications of Artificial Intelligence (IAAI-
18), and the 8th AAAI Symposium on Educational
Advances in Artificial Intelligence (EAAI-18), New
Orleans, Louisiana, USA, February 2-7, 2018, pages
6069–6076. AAAI Press.

Victor Zhong, Caiming Xiong, and Richard Socher.
2017. Seq2sql: Generating structured queries
from natural language using reinforcement learning.
CoRR, abs/1709.00103.

A Hyperparameters

We use the AdamW optimizer (Loshchilov and
Hutter) with a warmup ratio of 0.1 in all our ex-
periments, and use four Quadro RTX A6000 48GB
GPUs for model training. Table 6 represents our
training hyper-parameters. The relation encoder
and NeuralSPJ are based on the bert-large and T5
respectively. We trained our model based on the
hugging face transformers(Wolf et al., 2020). For
the hyperparameters for relation encoder and Neu-
ralSPJ, we followed the original paper. For the
VKGFR, we experiement with different learning
rate (5e-4, 1e-4) and choosed the best performing
one. For the layer number, we experimented with
1,2,4,8 and choosed the best-performing one.

B Model Parameter Size

Table 7 represents the number of parameters of
baseline models.

C Dataset

The WikiNLDB Data is available on GitHub2

and we used the pre-splited train, valid and test
data. The MetaQA dataset can also be found on
GitHub3, and we followed a similar methodology
as WikiNLDB when working with it.

2https://github.com/facebookresearch/NeuralDB
3https://github.com/yuyuz/MetaQA

10

https://doi.org/10.18653/v1/2021.acl-long.241
http://arxiv.org/abs/1502.05698
http://arxiv.org/abs/1502.05698
http://arxiv.org/abs/1502.05698
http://arxiv.org/abs/1502.05698
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://openreview.net/forum?id=EMHoBG0avc1
https://openreview.net/forum?id=EMHoBG0avc1
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16983
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16983


Model Hyperparmeter Value

Relation Encoder

Learning rate 2e-5
Number of epochs (fine-tuning) 2
Number of epochs (pre-tuning) 3
Batch size per device 24
Relation vector size 1024

VKGFR

Learning rate 5e-4
Hidden dimension of linear layer 4096 * 512
Layer number of rnn 1
Dropout rate 0.2
Number of epochs 20
Batch size for device 16396

NeuralSPJ (Reader)
Learning rate 1e-4
Number of epochs 3
Batch size for device 8

Table 6: Hyperparameters of pre-training and fine-tuning the relation encoder

Model Number of parameters

TOME 53,057,920

MDPR 125,238,274

SSG 66,362,880

VKGFR (Ours) 6,297,088

Table 7: Represents the number of parameters of base-
line models

11


