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Abstract
In this paper, we revisit the seminal work of
Garimella et al. (2019), who reported that
dependency parsers learn demographically-
related signals from their training data and per-
form differently on sentences authored by peo-
ple of different genders. We re-run all the pars-
ing experiments from Garimella et al. (2019)
and find that their results are not reproducible.
Additionally, the original patterns suggesting
the presence of gender biases fail to general-
ize to other treebanks and parsing architectures.
Instead, our data analysis uncovers methodolog-
ical shortcomings in the initial study that arti-
ficially introduced differences into female and
male datasets during preprocessing. These dis-
parities potentially compromised the validity
of the original conclusions.

1 Introduction

NLP tools are commonly trained on textual cor-
pora with authorship imbalances. For instance,
since journalists are predominantly male1, corpora
derived from newspaper articles are largely writ-
ten by men (Falenska et al., 2018; Garimella et al.,
2019). Similarly, Wikipedia, a major resource for
training NLP models (Devlin et al., 2019; Webster
et al., 2019), is edited by a predominantly white and
male group of contributors (Lam et al., 2011; Col-
lier and Bear, 2012). This lack of diversity among
authors can diminish the representation of minority
voices (Bender et al., 2021) and lead to models that
inherently mirror demographic imbalances (Hovy
et al., 2020).

Garimella et al. (2019) was among the first to
demonstrate how authorship imbalances can af-
fect foundational NLP tasks like part-of-speech
tagging and dependency parsing.2 The authors

1https://www.statista.com/statistics/625775/
gender-news-reporting-us/

2Dependency parsing is the task of identifying the gram-
matical relationships between words in a sentence to form a
syntactic dependency tree.

trained models on sentences authored by females
and males, observing error disparities in their re-
sults.3 They found that models trained on male-
authored sentences performed best on male test
data, whereas models trained on a gender-balanced
dataset yielded better results on female test data.
These findings led them to conclude that sentences
written by women exhibit greater “diversity” and
complexity, which are better captured when train-
ing data includes contributions from both genders.
In contrast, sentences by men showed less syntac-
tic variability, resulting in decreased performance
when female-authored sentences were included in
the training set. Due to the heavy gender imbal-
ance in the dataset (1:3 female to male authors),
the authors concluded that the syntax of sentences
written by women showed resilience despite the
allocation bias, while men “lucked out” by having
more training examples to boost accuracy.

The findings of Garimella et al. (2019) brought
attention to the problem of gender bias in NLP mod-
els. The work was widely cited, for example, in
the following work by the same authors (Garimella
et al., 2021), influential surveys (Stanczak and Au-
genstein, 2021; Blodgett et al., 2020; Shah et al.,
2020), and most importantly, as an argument that
gender bias exists in NLP on the grammatical level
(Lauscher et al., 2022). However, despite its signif-
icance, the study has notable deficiencies. Its scope
is limited to English and only on a single parsing ar-
chitecture. Moreover, the evaluation methodology
lacks any report of statistical significance testing
on the results. Given the minor differences in the
obtained accuracy and the non-deterministic nature
of neural models (Reimers and Gurevych, 2018),
there is a potential that the findings of Garimella
et al. (2019) could be attributed to chance.

To advance our understanding of potential gen-

3We refer to Shah et al. (2020) for an overview of different
types of biases.
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der biases in foundational NLP tasks such as part-
of-speech tagging and dependency parsing, it is cru-
cial to establish a well-defined foundation. There-
fore, in this paper, we revisit Garimella et al. (2019)
and aim to answer three research questions:
RQ1 Are the results presented in Garimella et al.
(2019) reproducible and statistically significant?
RQ2 Do Garimella et al.’s (2019) results general-
ize to other languages and parsing architectures?
RQ3 What other factors, if not gender bias, could
have been captured by their work?

We begin by replicating Garimella et al.’s (2019)
methodology and rerunning their experiments (§3).
Interestingly, our findings do not support the orig-
inal claims regarding biases (§4). Further tests
on the generalizability of these claims to a differ-
ent language and parsing architecture also fail to
replicate the original patterns. Our data analysis
uncovers a small yet significant methodological
flaw in the original study that can be responsible
for the original results (§5). Consequently, we
urge the gender bias research community to ap-
proach the results of Garimella et al. (2019) with
caution. Moving forward, we recommend focusing
more on specific syntactic differences related to
demographic variations and their impact on model
performance rather than relying solely on average
scores, which can be misleading.

2 Bias Statement

According to the predictive bias framework pro-
posed by Shah et al. (2020), the gender bias dis-
cussed in this paper is a form of selection bias –
effects from the compositions of training data and
their influence on downstream tasks. This selec-
tion bias manifests as error disparity, where models
perform inconsistently across data from different
demographic groups. While our focus is on depen-
dency parsing, it is challenging to identify imme-
diate, concrete harms directly caused by this bias.
However, any subsequent applications that rely on
these dependency parsers, such as authorship pro-
filing based on syntactic trees (Morales Sánchez
et al., 2022), could be affected. Depending on the
specific application of the downstream task, this
could lead to allocation or representation harms,
where one demographic group might be unfairly
treated or misrepresented due to biased model per-
formance (Blodgett et al., 2020).

For our experiments, we require sentences anno-
tated with the gender of their authors, along with

gold-standard syntactic trees. To the best of our
knowledge, we use the only two treebanks available
that meet these criteria. These datasets categorize
gender in binary terms, limiting our analysis to
female and male authors. We recognize that this
limitation excludes non-binary individuals, con-
tributing to recognition bias against them.

3 Experimental Setup

We extend the experimental framework from
Garimella et al. (2019) by incorporating additional
data, parsing architectures, and robust evaluation.

3.1 Data

We use two well-established treebanks in English
and German.

English We use the same gender-annotated sub-
set of Penn Treebank (Marcus et al., 1993) as
Garimella et al. (2019). It contains 19,399 trees for
sentences from male authors and 7,282 for female.

German To compare the English results with a
different language, we use the TIGER 2.2 treebank
(Brants et al., 2004) comprised of syntactically-
annotated German sentences from newspapers. A
subset of the data was further annotated with the
author’s name and binary female/male gender by
Falenska et al. (2018). The gender information
was induced from the gold-standard morphological
features of the authors’ names. After removing
all of the sentences annotated with HEADER and
META labels, indicating meta-level information
such as the article’s title or time of document’s
creation, we were left with 3,550 trees for sentences
written by female authors and 15,184 by male.

3.2 Preprocessing

Both English and German datasets are imbalanced
wrt. to the gender of the authors. We will refer
to these original datasets as RAW and use their
BALANCED versions for the parsing experiments.
For the balancing, we follow the same exact steps
as Garimella et al. (2019):
1. Sort the sentences of each gender class in de-
scending order according to the number of tokens.
2. Match each female sentence with a male sen-
tence where the amount of tokens does not differ
by more than 15%.
3. If there are no more male sentences that satisfy
condition 2, the next male sentence in descending
order with 5 to 30 tokens is chosen.
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Once we have female and male datasets with an
equal amount of sentences, we randomly choose an
equal amount of sentences from those two to create
a mixed-gender dataset of the same size. While
Garimella et al. (2019) use 5-fold cross validation
on their data for training and testing, we instead
opt for the standard practice of a simpler 80-10-10
ratio split into training, development, and test sets
when training models.

3.3 Dependency Parsers
Dependency parsers can generally be categorized
into two classes: graph-based (Eisner, 1996; Mc-
Donald et al., 2005) and transition-based (Yamada
and Matsumoto, 2003; Nivre, 2003). Since parsers
from the two paradigms make different types of
errors (McDonald and Nivre, 2007), we use one
model from each category to additionally control
for the role of the parsing architecture in our results.

Transition-based (TB) The original results of
Garimella et al. (2019) used a transition-based
parser SyntaxNet (Andor et al., 2016). However,
the tool has been deprecated since the release
of TensorFlow 2.0 in 2019.4 Therefore, we re-
implement all of their architecture with PyTorch
(Paszke et al., 2019).5. Concretely, we use the arc-
standard decoding algorithm (Nivre, 2004), Chen
and Manning’s (2014) feature function with fast-
Text word vectors (Grave et al., 2018), and a feed-
forward neural network with a ReLU activation
function. We provide all the additional details and
hyperparameters in Appendix A.1.1.

Graph-based (GB) In order to present a fair
comparison to our transition-based parser, we use
a graph-based parser with a similar neural archi-
tecture. We re-implement Pei et al.’s (2015) neu-
ral graph-based parser with Eisner’s (1996) de-
coder, an adaptation of the Chen and Manning’s
(2014) architecture to a graph-based system. For
more details and hyperparameters, we refer to Ap-
pendix A.1.2.

3.4 Evaluation
We evaluate the experiments using Unlabeled
(UAS) and Labeled Attachment Score (LAS).6 We

4It would not be possible to run SyntaxNet without in-
stalling TensorFlow 1.x and all its associated old dependencies,
making it impractical to run on modern systems.

5The code is available at https://github.com/
paulstanleygo/goparser

6The percentage of tokens that received the correct head
and label (LAS) or just head (UAS).

use the three training sets to train FEMALE, MALE,
and GENERIC models (to differentiate data from
models, we will refer to the latter with capital-
ized names) and select the best-performing models
based on the LAS of the corresponding develop-
ment set. Subsequently, we test each of the models
on the female, male, and generic test sets. We eval-
uate the statistical significance of all our models
by following the recommendations of Reimers and
Gurevych (2018): we train six models with differ-
ent random seeds for each dataset and perform a
Wilcoxon signed-rank test.

4 Parsing Results

We start by answering RQ1 – are the results from
Garimella et al. (2019) reproducible? For easier
comparison, we repeat the original findings in Ta-
ble 1a. The highest scoring models are highlighted
in bold. The table presents the main finding of the
study, namely that the GENERIC model performs
the best on the female data and the MALE model
on the male sentences.

4.1 English Results

We apply our TB parser to the English data, repli-
cating the conditions used in Garimella et al.
(2019). Table 1b presents the results averaged
across six runs. The highest scores (i.e., the best
LAS and UAS in the row) are highlighted in bold.
Additionally, we report statistical significance for
these results using superscripts with names of
the models compared to which significance was
achieved. For example, a 86.84M UAS for the
FEMALE model on the female test set not only in-
dicates the highest score on this dataset compared
to the MALE score (86.17) and GENERIC (86.69)
but also signifies that the result is statistically sig-
nificant relative to the MALE model, though not to
the GENERIC.

Comparing Tables 1a and 1b, we observe that
the patterns are markedly different. In our analysis,
the FEMALE model achieves the best results on
the female data, and the GENERIC model excels
on both the male and generic data. Moreover, the
statistical significance of the results is mixed, with
some instances showing significance but not con-
sistently across all results or in comparison to both
other models. The only consistent finding with
Garimella et al.’s (2019) is that the MALE model
performs better on male sentences than the FE-
MALE model, as indicated by the F,M significance.
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Test
Train FEMALE MALE GENERIC

LAS LAS LAS

female 83.17 83.12 83.46
male 81.15 83.21 82.53
generic 82.01 83.11 83.03

(a) Results reported by Garimella et al. (2019)

Train FEMALE MALE GENERIC

Test UAS LAS UAS LAS UAS LAS

female 86.84M 85.24 86.17F 84.58 86.69 85.11
male 84.73M,G 83.03G 85.39F 83.70 85.46F 83.73F

generic 85.39 83.76 85.39 83.83 85.74 84.09

(b) Averages across six runs with different random seeds. Statistical
significance is shown with a superscript indicating the models with
which the significance is associated.

Table 1: Transition-based (TB) test results for English. Highest performing models are highlighted in bold (separately
for UAS and LAS).

However, this is only observed in the UAS metric.
Interestingly, one additional pattern emerges

from the analysis – sentences written by female
authors are the easiest to parse. Regardless of the
model used, all achieve the highest UAS and LAS
scores on this dataset. Conversely, sentences au-
thored by males prove to be the most challenging,
consistently showing the lowest scores. We will
explore this finding in the later discussion.

4.2 German Results

We switch to RQ2 and ask whether the results from
Garimella et al. (2019) can be replicated in a dif-
ferent language and parser architectures. Table 2
presents the German test results from TB and GB,
averaged across six models. For TB (Table 2a),
unlike the English results, we observe some sim-
ilarities to the findings of Garimella et al. (2019).
The GENERIC model achieves the highest scores
on the female dataset, and the MALE model sur-
passes the others on the male (UAS) and generic
datasets (both metrics). However, none of these dif-
ferences are statistically significant, except for the
performance of GENERIC compared to FEMALE

on the male test set – a result that is not relevant
for the narrative of Garimella et al.’s (2019).

Switching to GB (Table 2b), we observe that the
performance differences are not consistent across
parsing architectures. Interestingly, the results
show more parallels with the English TB, where
the FEMALE model performs best on the female
data, and the GENERIC model excels on the male
and generic data. The statistically significant re-
sults also align more closely with the TB English
results. Most importantly, these findings are simi-
larly inconsistent with Garimella et al. (2019).

Finally, across both parsing architectures, the
same clear pattern emerges as for the English re-
sults: sentences written by female authors are the
easiest to parse, while those authored by males are

the most difficult.

4.3 Error Analysis

The results presented in Tables 1 and 2 do not con-
firm the findings from Garimella et al. (2019). How-
ever, since UAS and LAS average scores across all
dependency arcs, there might be still some patterns
that we do not observe by only looking at single
numbers. Therefore, as a final sanity check, we
zoom into these results by performing error analy-
sis on the models’ performance. Following McDon-
ald and Nivre (2011, 2007), we look at dependency
length and distance to root to determine if there are
any differences in parsing errors between models
trained on the different data.

Figure 1 presents a sample of the results – the
TB performance on the female and male datasets.7

We select these datasets because they are crucial
for the scenarios highlighted by Garimella et al.
(2019), i.e., GENERIC on female data and MALE

on the male data. We leave the other results to
Appendix A.2 together with analysis of distance
to root, which shows similar patterns to the depen-
dency length. Overall, the results corroborate our
averaged findings. For the female dataset (left), up
to a dependency length of 9, the FEMALE model
performs the best, followed by the GENERIC and
then the MALE model. Beyond this length, the
differences vary, likely due to the limited num-
ber of long arcs. For the male dataset (right),
MALE slightly outperforms the others for arcs up
to a length of 3, but thereafter is outperformed by
the GENERIC model. In conclusion, we do not
find indicators that would align with the results of
Garimella et al. (2019).

7We analyze models with the highest validation LAS.
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Train FEMALE MALE GENERIC

Test UAS LAS UAS LAS UAS LAS

female 80.52 76.67 80.70 76.66 80.82 77.10
male 77.25G 73.02 78.06 73.89 78.00F 74.01
generic 79.45 75.34 80.19 76.14 79.93 75.94

(a) Transition-based parser (TB)

FEMALE MALE GENERIC

UAS LAS UAS LAS UAS LAS

80.28M 75.72 79.81 75.04 80.03 75.30
77.35M,G 72.36M 78.07F 73.37F 78.13F 73.31
78.50 73.53 78.58 73.66 78.74 73.75

(b) Graph-based parser (GB)

Table 2: German test results averaged across six runs with different random seeds. Highest performing models are
highlighted in bold (separately for UAS and LAS). Statistical significance is marked with a superscript indicating
the models with which the significance is achieved.
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(a) Female sentences
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(b) Male sentences

Figure 1: TB precision for the English datasets relative to dependency length.

5 Data Analysis

If not gender bias, what was captured by the models
of Garimella et al. (2019)? To answer RQ3, we
perform analysis of our training datasets.

5.1 Sentence Length
We begin by examining the most straightforward
factor – sentence length. Figure 2 displays the
English data divided into bins by the number of
tokens for the three datasets: female, male, and
generic. The results for BALANCED (Figure 2a),
the dataset that we used for training all the parsers,
reveal a distinct pattern: female-authored sentences
are shorter, with more falling within the 11-20 and
21-30 length bins. In contrast, male-authored sen-
tences are more frequently in the longer 31-40,
41-50, and 51+ bins. Given that parsing accuracy
generally declines with increased sentence length
McDonald and Nivre (2011, 2007), this result can
explain the pattern that we consistently observed
across languages and architectures, i.e., that female
sentences are “easier” to parse than male.

The results from Figure 2a exhibit the opposite
trend from what is generally assumed in the previ-
ous literature, that female sentences are typically

longer (Cornett, 2014, among others). However,
as shown Figure 2b, this finding can not be at-
tributed to the sociolinguistic factors in the data,
but simply Garimella et al.’s (2019) preprocessing
steps described in Section 3.2. In the original RAW

dataset, male sentences are slightly more frequent
in the 1-10 and 41-50 length categories, while fe-
male sentences predominate in the 21-30 and 31-40
ranges, with the 11-20 range being roughly equiv-
alent for both genders. The balancing procedure
used by Garimella et al. (2019) alters this distri-
bution, resulting in shorter female sentences and
longer male sentences. Originally, the average RAW

male sentences were 0.24 tokens shorter than those
of females in English and 0.13 tokens shorter in
German. After preprocessing, the average length
of BALANCED male sentences became 3.19 tokens
longer than female sentences in English and 2.41
tokens longer in German. As a result and by acci-
dent, all the parsing results were influenced.

5.2 Tree Characteristics

Dependency parsing is a structure prediction task
where the number of tokens in sentences is strongly
related to other treebank characteristics, such as
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Figure 2: Proportion of sentences with different lengths in the English datasets.
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Figure 3: Proportion of distance to root lengths in the English datasets.

the types and configurations of arcs in the trees.
Therefore, by modifying the distribution of sen-
tence lengths, it is possible to impact many other
attributes of the tree structures. Figure 3 illustrates
the proportions of distances to the root in both the
RAW and BALANCED English datasets. In the RAW

datasets (Figure 3b), there are no major differences
in distance to root between genders. However, look-
ing at the BALANCED datasets (Figure 3a), we see
a different distribution. There are more tokens with
distance to root of 1 to 4 in the BALANCED female
dataset and conversely, more tokens with distance
to root of 5 to 11+ in the BALANCED male dataset.
This demonstrates that the balancing procedure re-
sults in a shorter average distance to root in the
female dataset and a longer average distance to root
in the male dataset.8 Given that arcs further from

8A similar pattern for dependency length is less pro-
nounced and visible only for arcs of 15+ tokens (see Figure 6
in Appendix A.2).

the root are typically more challenging to parse
(McDonald and Nivre, 2011), this provides another
insight into why all models consistently show lower
performance on the male-authored datasets.

6 Conclusion

In this paper, we revisited the seminal work on gen-
der bias by Garimella et al. (2019). Our analysis
demonstrated that their findings do not general-
ize to other languages or parsing architectures and,
more critically, are not reproducible even with the
same parsing architecture and dataset as the origi-
nal study. A consistent observation from our work
was that sentences written by females were easier
to parse than those written by males. However, this
pattern was due to a methodological oversight in
the original study, where the preprocessing step
inadvertently produced longer male sentences. As
sentence length correlates with more complex tree
structures, such as long arcs and dependents far
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from the root, this error introduced artificial parsing
difficulty. Coupled with our inconsistent statisti-
cal significance results across various applications,
these findings challenge the validity of the gender
bias claims made by Garimella et al. (2019).
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A Appendix

A.1 Parsing Hyperparameters

A.1.1 Transition-based parser

In general, we re-implement the SyntaxNet archi-
tecture. We incorporate Weiss et al.’s (2015) refine-
ments to the Chen and Manning (2014) architecture
by replacing the nonlinear activation function with
ReLU (Nair and Hinton, 2010) and increasing the
number of hidden layers to two. We apply dropout
(Srivastava et al., 2014) to the hidden layers and fol-
lowing Kiperwasser and Goldberg (2016), we also
add a word dropout that is inversely proportional to
the frequency of the word to better deal with out-of-
vocabulary words. The word embeddings are ini-
tialized with pre-trained 300-dimensional fastText
word vectors (Grave et al., 2018), while all other
weights are randomly initialized with a Kaiming
uniform distribution (He et al., 2015). We pur-
posely refrain from using more expressive feature
representations such as the BiLSTM feature extrac-
tor (Kiperwasser and Goldberg, 2016) since there
is a possibility that the increased expressiveness
may influence our gender bias results and make it
difficult to compare with Garimella et al.’s (2019)
results. Moreover, for simplicity, we exclude Syn-
taxNet’s beam search since it is used for alleviating
search error and omitting it is unlikely to affect the
overall result concerning gender bias. Table 3 sum-
marizes all the details and used hyperparameters.

Decoder Arc-standard
Word embedding dimension 300
Part-of-speech embedding dim. 32
Dependency label embedding dim. 32
Number of hidden layers 2
Hidden layer dimensions 256, 256
Hidden layer dropout p 0.5
Word dropout α 0.25
Word embedding initialization fastText
Weight initialization Kaiming uniform
Criterion Cross-entropy loss
Optimizer Adam
Learning rate 1e-5
nonlinear activation function ReLU

Table 3: Hyperparameters for TB.

A.1.2 Graph-based parser
We use two hidden layers to match our transition-
based parser and follow Kiperwasser and Goldberg
(2016) in adding word dropout and using loss aug-
mented inference (Taskar et al., 2005) by augment-
ing the scores of all incorrect arcs with a constant
value of 1. The word embeddings are initialized
with pre-trained 300-dimensional fastText word
vectors (Grave et al., 2018), while all other weights
are randomly initialized with a Xavier uniform dis-
tribution (Glorot and Bengio, 2010). Once again,
we refrain from using more expressive feature rep-
resentations for comparison purposes and use Pei
et al.’s (2015) 1-order-atomic features. Hyperpa-
rameters can be found in Table 4.

Decoder Eisner’s
Word embedding dimension 300
Part-of-speech embedding dimension 32
Distance embedding dimension 32
Number of hidden layers 2
Hidden layer dimensions 256, 256
Hidden layer dropout p 0.5
Word dropout α 0.25
Word embedding initialization fastText
Weight initialization Xavier uniform
Criterion Hinge loss
Optimizer Adam
Learning rate 1e-3
nonlinear activation function Tanh-cube

Table 4: Hyperparameters for GB.

A.2 Parsing Results and Data Analysis
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Figure 4: TB precision (left) and recall (right) on the English datasets relative to dependency length.
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Figure 5: TB precision (left) and recall (right) on the English datasets relative to distance to root.
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Figure 6: Proportion of dependency lengths in the RAW (left) and BALANCED (right) English datasets.
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