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Abstract
Data contamination has garnered increased
attention in the era of large language mod-
els (LLMs) due to the reliance on exten-
sive internet-derived training corpora. The
issue of training corpus overlap with evalua-
tion benchmarks—referred to as contamina-
tion—has been the focus of significant recent
research. This body of work aims to identify
contamination, understand its impacts, and ex-
plore mitigation strategies from diverse per-
spectives. However, comprehensive studies that
provide a clear pathway from foundational con-
cepts to advanced insights are lacking in this
nascent field. Therefore, we present the first
survey in the field of data contamination. We
begin by examining the effects of data con-
tamination across various stages and forms.
We then provide a detailed analysis of cur-
rent contamination detection methods, catego-
rizing them to highlight their focus, assump-
tions, strengths, and limitations. We also dis-
cuss mitigation strategies, offering a clear guide
for future research. This survey serves as a
succinct overview of the most recent advance-
ments in data contamination research, provid-
ing a straightforward guide for the benefit of
future research endeavors.

1 Introduction

Data contamination refers to the accidental or de-
liberate inclusion of evaluation or benchmark data
in the training phase of language models, resulting
in artificially high benchmark scores (Schaeffer,
2023). This issue, while longstanding—stemming
from the foundational ML principle of separating
training and test sets—has garnered increased at-
tention with the advent of large language models
(LLMs). These models are trained on vast corpora
sourced from the web (OpenAI, 2023; Touvron
et al., 2023a), heightening the risk that training data
may inadvertently encompass instances from evalu-
ation benchmarks (Brown et al., 2020; Chowdhery
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Figure 1: Basic illustration of data contamination and
the research questions related to it. Clean evaluation is
defined as having no overlap between the pretraining
corpora and the benchmarks, and contaminated evalua-
tion is defined as significant overlap between it.

et al., 2022; Touvron et al., 2023a,b). Such con-
tamination of evaluation benchmarks can obscure
the true generalization performance of LLMs, as it
might artificially inflate benchmark scores by test-
ing the models’ ability to “memorize” and “recall”
rather than “reason” or “generalize”.

Given the increasing concerns regarding poten-
tial contamination of evaluation benchmarks and its
broader impact on downstream task performance
recently, numerous studies have aimed at identi-
fying and mitigating data contamination in these
benchmarks, and understanding its impact on our
perception of model capabilities. Research on data
contamination could be broadly categorized into
two main areas: (i) investigations of models trained
with open-source data, and (ii) studies relevant to
models developed using proprietary data. Gener-
ally, having access to training data, or the lack
thereof, has a profound influence on modern con-
tamination research.

In this paper, we present the very first compre-
hensive analysis of the growing field of data con-
tamination detection and mitigation. Our objective
is to delve into the downstream impacts of data
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Data Contamination

Task

Definition

Urgency

Domain

White-box
Language Models

Bert (Devlin et al., 2019), GPT (Brown et al., 2020),
OLMo (Groeneveld et al., 2024),Llama (Touvron et al., 2023a)

Gray-box
Large Language Models

Mistral (Jiang et al., 2023), Qwen (Bai et al., 2023),
Falcon (Mei et al., 2022), etc.

Black-box
Large Language Models

ChatGPT (OpenAI, 2022), GPT-4 (OpenAI, 2023),
Gemini (Google, 2023), Claude (Anthropic, 2023), etc.

Impact of Contamination Magar and Schwartz (2022), Blevins and Zettlemoyer (2022),
Jiang et al. (2024), Zhu et al. (2024)

Detection

Retrieval

Model Developer-Side GPT-3 (Brown et al., 2020), PaLM (Chowdhery et al., 2022),
Llama (Touvron et al., 2023a)

Academic Community-Side
Dodge et al. (2021), Piktus et al. (2023a), Elazar et al. (2023)
Kandpal et al. (2023), Deng et al. (2023), Riddell et al. (2024)
Balloccu et al. (2024)

Temporal Cutoff
Pretrain-Level Shi et al. (2023)

Task-Level Li and Flanigan (2023), Roberts et al. (2023),
Aiyappa et al. (2023)

Masking-based
Book-Level Chang et al. (2023)

Benchmark-Level Deng et al. (2023), Bordt et al. (2024), Xu et al. (2024b)

Perturbation-based Wei et al. (2023), Yang et al. (2023), Dekoninck et al. (2024b)
Dekoninck et al. (2024b), Ranaldi et al. (2024)

Canonical Order Oren et al. (2023)

Behavior Manipulation Golchin and Surdeanu (2023b), Golchin and Surdeanu (2023a)
Dong et al. (2024)

Membership Inference
Attacks

Yeom et al. (2018), Carlini et al. (2021), Carlini et al. (2022)
, Mattern et al. (2023), Shi et al. (2023), Xu et al. (2024b)
Ye et al. (2024)

Mitigation
Evaluation Zhu et al. (2023a), Zhu et al. (2023b), Li et al. (2023)

Guideline Jacovi et al. (2023), Zhou et al. (2023), Sainz et al. (2023)

Figure 2: Taxonomy of research on Data Contamination in large language models that consists of the task, effect,
detection and mitigation.

contamination, investigate existing methods for de-
tecting data contamination, and discuss a range of
mitigation strategies. The paper is structured as
outlined in Figure 1. We start by establishing the
background of data contamination (§2) and dis-
cussing the effect of contamination (§3). Follow-
ing this, We provide a detailed analysis of current
methods for detecting data contamination (§4). We
categorize these methods and critically examine the
assumptions each relies on, highlighting their the
prerequisites and limitation for their application.
Subsequently, we explore strategies for mitigating
data contamination (§5), tackling potential hurdles
and proposing avenues for future investigations in
this domain. Together with concurrent studies on
data contamination (Ravaut et al., 2024; Xu et al.,
2024a), this paper aims to furnish NLP researchers
with an in-depth, systematic understanding of data
contamination issues, thereby making a significant
contribution to enhancing the integrity of evalua-
tions in the field1.

1The related materials at https://github.com/
yale-nlp/lm-contamination-survey.

2 Background

To provide a comprehensive understanding of data
contamination, this section delves into its defini-
tion, the urgency of addressing it, and its implica-
tions across different types of language models.

What is data contamination? Data contamina-
tion occurs when benchmark or test set data are
inadvertently included in the training phase. This
issue is particularly relevant when evaluating LLMs
that have been partially trained with a test set from
a benchmark, potentially leading to an inflated per-
formance score. This phenomenon, known as data
contamination, is critical for ensuring fairness and
unbiased evaluation in modern LLMs.

Significance of studying contamination Thor-
ough and complete evaluation of LLM capabili-
ties has remained a largely unsolved problem, with
benchmark contamination playing a critical role
in achieving a comprehensive assessment of LLM
capabilities. Contamination is a significant aspect
of model evaluations. In traditional NLP and ML,
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it was easy to separate training and testing data,
allowing for evaluating models’ generalization ca-
pabilities to new data (Suhr et al., 2020; Talmor
and Berant, 2019; Lake and Baroni, 2018). How-
ever, with web-scale training data of LLMs and
their enormous size in terms of number of parame-
ters, such clear separation has become very difficult.
Thus contamination of evaluation benchmarks has
led to, at best, an incomplete understanding and, at
worst, a misleading assessment of the true capabil-
ities of LLMs. The risk of data contamination in-
creases when the benchmarks for evaluating these
models are derived from the same web sources
used for training. This creates a potential overlap
between training data and evaluation benchmarks,
leading to concerns over the validity and fairness
of model comparisons.

Language model types in data contamination
(1) White-box Language Models: The white-box
language model refers to the model whose internal
workings, such as the model architecture, param-
eters, and training data, are transparent and inter-
pretable, allowing for a deeper understanding and
analysis of its behavior. In the realm of data con-
tamination, the focus often centers on models like
BERT (Devlin et al., 2019) and GPT-2 (Radford
et al., 2019), or larger models like OLMo (Groen-
eveld et al., 2024), to examine the impacts of con-
tamination (§3). This involves exploring the cor-
relation between the contaminated data and down-
stream task performance from the perspective of
how well these models memorize and are influ-
enced by the contaminated input.
(2) Gray-box Language Models: The gray-box lan-
guage model is a type of language model that pro-
vides some level of transparency and interpretabil-
ity into its internal workings, such as revealing cer-
tain architectural components or allowing limited
access to its training data, while still maintaining a
degree of opacity or abstraction over other aspects
of the model. This typically refer to large-scale
models, such as Llama (Touvron et al., 2023a,b),
Mistral (Jiang et al., 2023), Qwen (Bai et al., 2023),
and Phi-3 (Abdin et al., 2024). Although the extent
of openness varies among these models, they are
generally characterized by their accessibility. This
accessibility facilitates extensive research into their
architectures and training datasets, enabling the
development and validation of innovative method-
ologies within the field.
(3) Black-box Language Models: Black-box LLMs

often refer to proprietary models such as Chat-
GPT (OpenAI, 2022), Claude (Anthropic, 2023),
and Gemini (Google, 2023). The defining feature
of these models is the inaccessibility of their train-
ing corpora to researchers, making it challenging
to investigate data contamination. Consequently,
many recent studies have focused on developing
methods to address this issue (Golchin and Sur-
deanu, 2023b; Deng et al., 2023).

3 Impacts of contamination

The contamination effect refers to the extent to
which a model, exposed to contaminated data dur-
ing its training phase, is influenced by this data in
its performance on downstream tasks. Research in
this area typically involves selecting a base model
and a fixed pretraining corpus, while varying mix-
ture of contaminated data (Magar and Schwartz,
2022; Jiang et al., 2024). This approach allows
for observing how changes in the data mix affect
downstream task performance. Additionally, this
area of research is often connected with evaluating
the models’ ability to memorize information and re-
call their parametric knowledge (Geva et al., 2021,
2023; Haviv et al., 2023; Srivastava et al., 2023).

3.1 Task-Level Contamination

Task-level contamination means that researchers
in this field typically select a specific task, such as
classification and question answering. By estab-
lishing a fixed benchmark, they vary the extent of
data contamination to observe changes in perfor-
mance. For example, Magar and Schwartz (2022)
pretrain a BERT-based model (an encoder-only ar-
chitecture) on a combined corpus of Wikipedia
and labeled data from downstream tasks. The find-
ings reveal that while models can memorize data
during pretraining, they do not consistently utilize
this memorized information in an effective man-
ner. Additionally, the extent of exploitation is af-
fected by several factors, including the duplication
of contaminated data and the model size. Jiang
et al. (2024) explore the contamination effect of
the decoder-only architecture using GPT-2. Specif-
ically, they pretrained GPT-2 on a selected portion
of The Pile (Gao et al., 2020) corpora, intention-
ally introducing contaminated data during the pre-
training phase to assess its impact. Their findings
reveal that traditional n-gram-based methods are
limited in detecting contamination, and increase
the repetition of contaminated data inversely af-
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fects model performance, leading to a performance
drop. Zhu et al. (2024) also investigate the rela-
tion between memorization and generation in the
context of critical data size with the configuration
of grokking (Power et al., 2022), a phenomenon
where a model suddenly achieves near-perfect per-
formance on a task after a period of apparent stag-
nation during training. The authors introduce the
Data Efficiency Hypothesis, which outlines three
stages of data interaction during model training:
insufficiency, sufficiency, and surplus. The study
observes that as models grow, they require larger
datasets to reach a smooth phase transition.

3.2 Language-Level Contamination

Most research on task-level contamination is con-
ducted in English. However, in addition to
task-level contamination, Blevins and Zettlemoyer
(2022) also explore language-level contamination,
which refers to the issue in cross-lingual evaluation
where the setting is sometimes compromised be-
cause the pre-training corpora often contain signifi-
cant amounts of non-English text, such as Chinese
characters. If a model is trained on these corpora
and then tested on a Chinese benchmark, the setting
is no longer purely cross-lingual, as the model has
already been exposed to Chinese characters during
training. Their research indicates that the corpora
utilized for pretraining these models include a sig-
nificant amount of non-English text, albeit less than
1% of the total dataset. This seemingly small per-
centage equates to hundreds of millions of foreign
language tokens in large datasets. The study further
reveals that these minor proportions of non-English
data considerably enhance the models’ capability
for cross-language knowledge transfer. There is a
direct correlation between the models’ performance
in target languages and the volume of training data
available in those languages.

4 Detecting Data Contamination

In this section, we discuss various methods for
detecting data contamination. We begin with the
traditional retrieval-based method, which primarily
employs n-gram tokenization and string-matching
for detection. This approach is often documented
in technical reports by proprietary companies. Sub-
sequently, we introduce several modern methods
predominantly developed by the academic commu-
nity. These methods typically detect contamination
indirectly and implicitly, without requiring full ac-

cess to the training corpora.

4.1 Retrieval
One straightforward approach to detecting contam-
ination is searching the training data for examples
that appear in a benchmark. This line of research
can be approached from two perspectives: the per-
spective of model developers and that of the aca-
demic community.

4.1.1 Model Developer-Side
In the era of LLMs, OpenAI set a significant prece-
dent with the release of GPT-3 (Brown et al., 2020).
GPT-3 pioneered a detailed approach to detect-
ing data contamination in LLMs from an inter-
nal perspective. The methodology involved fil-
tering the initial training set to eliminate any text
from the benchmarks that appeared in the train-
ing data. This was achieved by identifying over-
laps through searching for 13-gram matches be-
tween the test/development sets and the training
data. Overlaps were analyzed using a variable word
count, determined by the 5th percentile of example
length in words, with a set minimum threshold of
8 words for non-synthetic tasks and a maximum of
13 words for all tasks.

Following this work, Llama-2 (Touvron et al.,
2023b) employs a similar technique to detect data
contamination, combining retrieval methods with
n-gram-based tokenization. Specifically, any to-
ken n-gram match exceeding 10 tokens indicates
contamination. This method facilitates a nuanced
analysis of contamination levels, classifying sam-
ples as clean (i.e., less than 20% contamination),
not clean (i.e., 20-80% contamination), and dirty
(i.e., more than 80% contamination). It uses skip-
grams longer than 10 tokens and suffix arrays for
efficient identification, employing parallel process-
ing to improve speed and scalability.

4.1.2 Academic Community-Side
Beyond technical reports from model developers,
many recent studies by the academic community
focus on contamination in open-source pretraining
corpora commonly used to develop LLMs. This
body of research typically involves constructing
effective and convenient tools, developing index-
ing systems for retrieval, and designing algorithms
to determine potential contamination between re-
trieved passages and benchmark data.

Searching Tools To explore different pretrained
corpora, various specialized tools have been de-

16081



Method Level Access to Training
Corpora Required?

Logits Prob.
Required? Retrieval? Prompt-

based?

Brown et al. (2020) Instance ✓ ✗ ✓ ✗
Chowdhery et al. (2022) Instance ✓ ✗ ✓ ✗
Touvron et al. (2023a) Instance ✓ ✗ ✓ ✗
Yeom et al. (2018) Instance ✗ ✓ ✗ ✗
Carlini et al. (2021) Instance ✗ ✓ ✗ ✗
Dodge et al. (2021) Instance ✓ ✗ ✓ ✗
Carlini et al. (2022) Instance ✗ ✓ ✗ ✗
Elazar et al. (2023) Instance ✓ ✗ ✓ ✗
Li (2023) Dataset ✗ ✓ ✗ ✗
Shi et al. (2023) Dataset ✗ ✓ ✗ ✗
Aiyappa et al. (2023) Instance ✗ ✗ ✗ ✗
Roberts et al. (2023) Instance ✗ ✗ ✗ ✗
Golchin and Surdeanu (2023a) Dataset ✗ ✗ ✗ ✓
Golchin and Surdeanu (2023b) Both ✗ ✗ ✗ ✓
Oren et al. (2023) Dataset ✗ ✓ ✗ ✗
Deng et al. (2023) Instance ✗ ✗ ✗ ✓
Bordt et al. (2024) Instance ✗ ✗ ✗ ✓
Wei et al. (2023) Instance ✗ ✗ ✗ ✗
Mattern et al. (2023) Instance ✗ ✓ ✗ ✗
Xu et al. (2024b) Instance ✗ ✗ ✗ ✓

Table 1: Comparison of current data contamination detection method.

veloped. Piktus et al. (2023a) introduce a search
engine that spans the entirety of the ROOTS cor-
pus (Laurençon et al., 2023), featuring both fuzzy
and exact search capabilities. Furthermore, Piktus
et al. (2023b) present Gaia, a search engine de-
signed based on established principles, providing
access to four widely recognized large-scale text
collections: C4 (Raffel et al., 2023), The Pile (Gao
et al., 2020), LAION (Schuhmann et al., 2022),
and ROOTS (Laurençon et al., 2023). Additionally,
Elazar et al. (2023) develop WIMBD, a platform
offering 16 analytical tools that enable users to un-
cover and contrast the contents of vast text corpora.

Indexing System The primary limitation of
search tools is their dependency on extensive com-
putational resources, combined with the absence of
APIs for scalable integration. For individuals en-
deavoring to develop a custom information retrieval
system, Lin et al. (2021) introduce Pyserini, a user-
friendly Python-based toolkit designed for replica-
ble information retrieval (IR) research. Pyserini fa-
cilitates various retrieval methods, including sparse
retrieval using BM25 with bag-of-words represen-
tations, dense retrieval via nearest-neighbor search
in transformer-encoded spaces, and a hybrid ap-
proach that combines both methods. Researchers
also have used such indexing tools to investigate
data contamination (Deng et al., 2023) for investi-
gating contamination in commonly used pretrain-
ing corpora such as The Pile and C4.

Benchmarks Overlap Analysis In their pioneer-
ing work, Dodge et al. (2021) conduct the first com-
prehensive analysis of data contamination between
the C4 corpus (Raffel et al., 2023) and downstream
tasks. This study uncovers a significant volume
of text from unexpected sources, including patents
and US military websites. Further scrutiny reveals
the presence of machine-generated content, such as
text from machine translation systems, and evalua-
tion examples from various NLP datasets. Building
on this, Elazar et al. (2023) present an analysis that
explores the overlap between pretraining corpora
and the SuperGLUE (Sarlin et al., 2020) bench-
mark.

4.2 Temporal Cutoff

The concept of time-cutoff implies a significant
distinction between models developed or the use
of training data up to a certain time point. For
instance, GPT-3 was trained using data available
only up to September 2021 (OpenAI, 2022). This
approach assumes that substantial changes in the
dataset’s distributions or variances, stemming from
a specific time cut-off, are critically important.

Roberts et al. (2023) conduct one of the first
comprehensive longitudinal analysis of data con-
tamination in LLMs. Specifically, they leverage the
natural experiment provided by the training cutoffs
in GPT models to examine benchmarks released
over time. They analyze two code/mathematical
problem-solving datasets. Their findings reveal
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statistically significant trends between LLM pass
rates, GitHub popularity, and release dates, which
strongly indicate contamination. Aiyappa et al.
(2023) also conduct similar experiments to assess
performance difference in models before and after
their release. Besides, Shi et al. (2023) create a
benchmark termed WIKIMIA utilizing data com-
piled both before and after model training to facili-
tate accurate detection. Similarly, Li et al. (2023)
employ the most recent data to develop a bench-
mark that is less prone to contamination, enabling
a fair evaluation.

The time-cutoff technique requires verification
that data before and after a specific time-cutoff
exhibit distinct distributions with minimal overlap.
Additionally, new events or messages extracted
from the internet may also overlap with previous
ones. For employing a time-cutoff strategy, it is
essential to account for and evaluate these potential
overlaps in experimental setups.

4.3 Masking-based
Another approach to detecting data contamination
involves masking-based methods, which masks a
word or sentence and provides the LLMs with con-
text from a benchmark to guide them in filling in
the missing portions. The advantage of this ap-
proach is its simplicity and effectiveness.

Book-Level Chang et al. (2023) propose the
name cloze task, wherein names within a book
are masked, prompting LLMs to predict the omit-
ted names. This task is specifically designed to
evaluate the extent to which models like ChatGPT
and GPT-4 have internalized copyrighted content,
linking memorization levels to the prevalence of
book excerpts online. The findings reveal a no-
table performance disparity between GPT-4 and
ChatGPT in executing the name cloze task, sug-
gesting variations in their capacity to recall and
utilize memorized information.

Benchmark-level Deng et al. (2023) introduce
TS-Guessing, a masking-based method designed
for benchmark formats to detect data contamina-
tion. This technique involves masking an incorrect
answer in a multiple-choice question and prompt-
ing the model to complete the missing information.
It also entails hiding an unlikely word in an evalua-
tion example and requesting the model to generate
it. Their findings reveal that several proprietary
LLMs can precisely recall the masked incorrect
choice in the benchmarks, highlighting a significant

potential for contamination in these benchmarks
that warrants attention. However, they note that
their method depends on the proficient instruction-
following capabilities of LLMs. For less capable
LLMs, there is a tendency to replicate other choices
or produce the correct answer without adhering to
the given instructions.

Part of Xu et al. (2024b) also employs similar
methods. Given a sequence, they progressively
move forward from the first token and guide LLMs
to predict the missing portions of the following
part. Their method could be treated as a more
quantitative version of Deng et al. (2023), which
calculates the results primarily on open-sourced
LLMs.

4.4 Perturbation-based

Perturbation-based methods involve using various
techniques to artificially modify or alter test set
samples. This is done to assess if LLMs are overfit-
ting to particular benchmark formats or examples.
The objective of this task is to examine whether
there is a significant drop or change in performance
after applying specific perturbations.

Rephrasing Test Set Yang et al. (2023) demon-
strate that applying minor alterations to test data,
such as rephrasing or translating, can bypass pre-
vious n-gram-based detection methods (§4.1.1).
They reveal that if test data variability isn’t elim-
inated, a 13B model can mimic the performance
of state-of-the-art models like GPT-4 by overfitting
to benchmarks, as evidenced by their experiments
with notable datasets including MMLU (Hendrycks
et al., 2021), GSM8K (Cobbe et al., 2021), and
HumanEval (Chen et al., 2021). To address this
growing issue, they propose a new LLM-based de-
tection approach, which uncovers significant, yet
previously unnoticed overlaps in test sets across
widely used pretraining and fine-tuning corpora.
In a recent paper, Dekoninck et al. (2024b) pro-
pose ConStat, a novel method for detecting and
quantifying contamination in LLMs. The authors
redefine contamination from a performance-based
perspective, considering it as artificially inflated
benchmark performance that fails to generalize to
real-world tasks. ConStat employs a statistical test
that compares a model’s performance on the origi-
nal benchmark to its performance on carefully se-
lected reference benchmarks, while accounting for
differences in difficulty using a set of uncontami-
nated reference models.
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Creating Reference Set In addition to directly
rephrasing test set examples, Wei et al. (2023) use
GPT-4 to create a reference set resembling the test
set. They then calculate the difference between ref-
erence set and test set to assess the contamination
issues, potentially caused by intentional data con-
tamination. Higher differences indicate a greater
potential for data leakage.

4.5 Canonical order

The canonical assumption posits that if a model has
been exposed to data from a dataset, it will exhibit
a preference for the canonical order provided by
the dataset from public repositories, as opposed to
datasets that have been randomly shuffled.

Oren et al. (2023) develop a sensitivity test to
detect biases in the canonical order of benchmark
datasets used for LLMs. Based on the principle
that, in the absence of data contamination, any per-
mutation of an exchangeable benchmark dataset
should be equally likely, they create a methodol-
ogy capable of identifying contamination through
the model’s preference for specific data orderings.
Remarkably, this approach is sophisticated enough
to detect contamination in models with as few as
1.4 billion parameters, utilizing test sets of merely
1,000 examples. It proves effective even in datasets
with minimal representation in the training corpus.

The limitation of this assumption is that if the
model preprocesses the pretraining dataset or inten-
tionally shuffles the benchmark data, it becomes
challenging to identify potential contamination
from the perspective of canonical order.

4.6 Behavior Manipulation

We term behavior observation as a new perspective
that leverages different perspectives of controlling
experiment related to the test set. This is done by
observing whether the behavior (i.e., output and
selection choice) are different.

Golchin and Surdeanu (2023b) propose a dual-
layered approach for identifying contamination in
LLMs at both the instance and partition levels. The
initial phase employs guided instruction, a tech-
nique that utilizes a specific prompt incorporat-
ing the dataset name, partition type, and an initial
segment of a reference instance. This prompt en-
courages the LLM to generate a completion. An
instance is considered contaminated if the LLMs’
output closely resembles or exactly matches the
subsequent segment of the reference. Building on

this concept, Golchin and Surdeanu (2023a) in-
troduce a novel methodology by devising a data
contamination quiz. This quiz presents a set of
choices, including one from the test set and others
that are variations of the original instance. The
model is then tasked with selecting an option, and
its decision is used to assess contamination based
on its choice. This approach not only follows the
general pattern of contamination detection but also
offers a unique perspective by varying the format
of the choices provided to the model.

Besides, Dong et al. (2024) propose CDD (Con-
tamination Detection via output Distribution) for
detecting data contamination and TED (Trustwor-
thy Evaluation via output Distribution) for miti-
gating its impact on evaluation. CDD identifies
contamination by analyzing the peakedness of the
LLM’s output distribution using only the sampled
texts, while TED corrects the output distribution to
ensure trustworthy evaluation.

To employ methods based on this assumption,
researchers must verify that behavior differences
are solely attributable to data contamination, partic-
ularly in contrast to variations arising from random
prompt perturbation.

4.7 Membership Inference Attacks

Membership Inference Attacks (MIA) aim to de-
termine whether a specific data point was used in
the training data of a target model. While MIA is
a well-established concept in traditional machine
learning (Shokri et al., 2017; Hu et al., 2022), their
application in the context of LLMs has been rela-
tively understudied. This subsection explores the
application of MIA to LLMs, demonstrating their
utility in detecting contamination.

Background Yeom et al. (2018) measure the per-
plexity of a sample to measure the memorization of
training data. Carlini et al. (2021) build upon this
work to further improve precision and reduce the
false negative rate by considering the intrinsic com-
plexity of the target point. Furthermore, Carlini
et al. (2022) calibrate the sample’s loss under the
target model using the sample’s zlib compression
size.

Applying MIA to LLMs Mattern et al. (2023)
introduce and assess neighbourhood attacks as a
novel method to evaluate model vulnerabilities
without requiring access to the training data dis-
tribution. They use an estimate of the curvature of
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the loss function at a given sample, which is com-
puted by perturbing the target sequence to create n
neighboring points, and comparing the loss of the
target x, with its neighbors. By comparing model
scores of a given sample with those of synthetically
generated neighbour texts, this approach seeks to
understand if model fragility can enhance security.

Recently, Shi et al. (2023) introduce MIN-K%,
a method that utilizes the k% of tokens with the
lowest likelihoods to compute a score, rather than
averaging over all token probabilities as in tradi-
tional loss calculations. This approach is based on
the hypothesis that an unseen example is likely to
contain a few outlier words with low probabilities
under LLMs, whereas a seen example is less likely
to feature words with such low probabilities.

Additionally, (Ye et al., 2024) propose Polar-
ized Augment Calibration (PAC), a novel approach
for detecting training data contamination in black-
box LLMs. PAC extends the MIA framework by
leveraging confidence discrepancies across spatial
data distributions and considering both distant and
proximal probability regions to refine confidence
metrics.

MIA in the context of LLMs is typically based
on perplexity or variations derived from language
model perplexity. This implies reliance on the out-
put logits probability from the language models.
However, its statistical simplicity also offers sig-
nificant advantages compared to other detection
methods that require careful validation of assump-
tion.

5 Mitigating Data Contamination

Without specific mitigation strategies, the develop-
ment of new benchmarks—often released publicly
on the internet—does not resolve contamination
issues, as newer models can access this data. Con-
sequently, several studies have proposed mitigation
approaches to address this problem. In this sec-
tion, we will introduce these strategies from the
perspectives of benchmark construction, updating,
encryption, and protection.

Benchmark Construct Selection Li et al. (2023)
propose to construct evaluation benchmarks from
the most recent texts, thus minimizing the risk of
overlap with the pre-training corpora.

Dynamic Benchmark Refreshing Zhu et al.
(2023a) introduce a dynamic evaluation protocol
that utilizes directed acyclic graphs to generate eval-

uation samples of varying complexities, aiming to
address the static and potentially contaminated na-
ture of existing benchmarks. Besides, Zhu et al.
(2023b) provide Clean-Eval, which utilizes LLMs
to paraphrase and back-translate contaminated data,
creating a set of expressions that convey the same
meaning in varied forms. This process generates a
candidate set from which low-quality samples are
filtered out using a semantic detector. The final
selection of the best candidate from this refined
set is based on the BLEURT (Sellam et al., 2020)
score, ensuring the chosen expression is seman-
tically similar to the original data but articulated
differently. Furthermore, Zhou et al. (2023) also
suggest providing a diverse set of prompts for test-
ing, which offers a dynamic evaluation to mitigate
data contamination.

Benchmark Data Encryption Jacovi et al.
(2023) suggests that test data released to the public
should be safeguarded through encryption using
a public key, and the distribution of derivatives
should be strictly prohibited by the licensing agree-
ment. To implement this, the recommended ap-
proach is toencrypt the test data before uploading
it. This can be efficiently done by compressing the
data into a password-secured archive.

Benchmark Label Protection Jacovi et al.
(2023) and Zhou et al. (2023) emphasize the crit-
ical need to safeguard the ground truth labels of
test datasets. These labels can inadvertently be
exploited during the training phase, or even inten-
tionally after being rephrased. Providing both the
question and its context is an effective strategy to
prevent such deliberate contamination.

6 Discussion and Future Directions

Besides addressing the impact, detection, and miti-
gation of previously introduced data contamination,
this section will also explore the topic at a higher
level. We aim to offer more insights into the current
challenges, the necessity, and the robustness of de-
tecting data contamination methods. We will also
discuss how these concepts can be applied in more
realistic settings. Additionally, we will consider
data contamination as an overarching research di-
rection and explore potential future pathways for
this field.

Challenges for Detecting Black-Box Models
The primary challenge in evaluating different meth-
ods for detecting data contamination in large lan-
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guage models is the absence of a ground truth label,
i.e., a benchmark dataset comprising entirely con-
taminated data. This absence creates difficulties in
comparing the effectiveness of various detection
techniques designed for black-box models. One
alternative approach involves fine-tuning the model
using test set labels to create artificially contami-
nated data. However, the question remains whether
the scenarios of contamination during the pretrain-
ing phase and the fine-tuning phase are consistent.
Additionally, due to limited access to the complete
training corpus, we can only generate fully contam-
inated data, making it challenging to obtain fully
uncontaminated data. This situation complicates ef-
forts to accurately assess and compare the efficacy
of contamination detection methods.

Dodging Detection of Data Contamination is
Easy Dekoninck et al. (2024a) highlights the ease
with which MIA detection methods can be evaded.
These methods, some of which are also employed
for identifying data contamination, have been crit-
icized in prior research. Notably, the efficacy of
n-gram based substring detection is questioned due
to its numerous vulnerabilities and susceptibility
to manipulation (Zhou et al., 2023; Deng et al.,
2023; Jiang et al., 2024). Beyond the traditional
n-gram and MIA approaches, recent studies have
demonstrated that several contemporary techniques
can be compromised through targeted attacks. For
instance, by integrating a dataset with a signifi-
cantly large pre-trained dataset, one can disrupt the
canonical order assumption, thereby undermining
its integrity.

From Memorization to Exploitation Drawing
a definitive conclusion about the correlation be-
tween memorization and exploitation (i.e., perfor-
mance on downstream tasks) remains challeng-
ing. Various factors can impact the outcomes
observed in our study, including differences in
model architecture, the repetition of contaminated
data, the strategies employed during pretraining
or finetuning phases, and the training principles
used like RLHF+PPO (Zheng et al., 2023) and
DPO (Rafailov et al., 2023). These elements can
significantly influence the models’ downstream
task performance.

Detecting or Mitigating? Currently, there is an
increasing focus on developing novel methods for
detecting data contamination, which is crucial for
investigating and understanding data contamina-

tion scenarios. Effective detection tools can also
help prevent intentional data contamination to a cer-
tain extent. However, there remains a significant
need for research focused on mitigating data con-
tamination. The research question arises: how can
we create a dynamic evaluation method that uses
potentially contaminated benchmarks to provide
clean evaluations? In recent developments, many
have started leveraging language models as agents
to perform various tasks. An intriguing future di-
rection could be to utilize LLMs as ’Benchmark
Agents’ to offer various forms of evaluation that
convey the same meaning.

How to Create Benchmarks without Data Con-
tamination To address the challenge of creating
a benchmark free from data contamination, it is
essential to consider innovative approaches. Firstly,
an effective strategy involves constructing a dataset
significantly larger than the target size. This excess
allows for the application of rigorous data contami-
nation checks to refine the dataset down to its actual
size. Additionally, the implementation of a uni-
fied, reliable, and dynamic evaluation framework
is crucial. Such a framework offers the flexibil-
ity to adaptively assess benchmarks across various
formats, enhancing the robustness of the evalua-
tion process. Beyond these broader strategies, a
practical yet profound method involves generating
content that is rare or virtually nonexistent on the
Internet or other public domains.

7 Conclusion

In this paper, we present an extensive and meticu-
lously organized survey on the topic of data con-
tamination in large language models. We start
by laying the groundwork with a discussion on
the effect of contamination, setting the stage for a
deeper examination of various data contamination
detection methods. We critically analyze the as-
sumptions underlying these methods, highlighting
their limitations and the prerequisites for their ap-
plication. Subsequently, we explore strategies for
mitigating data contamination, addressing poten-
tial challenges and suggesting directions for future
research in this area. Our goal is to provide a com-
prehensive guide for NLP researchers seeking a
systematic understanding of data contamination.
We also aim to underscore the critical importance
of this field, advocating for increased attention due
to its pressing relevance.

16086



8 Limitations

It is challenging to provide a quantitative compari-
son between different data contamination detection
methods due to their varying assumptions and re-
quirements. Ideally, we would conduct a quanti-
tative analysis to assess the effectiveness of these
methods, assigning rankings or benchmarks to dis-
cuss their advantages and disadvantages. Another
limitation of the survey paper is the difficulty in
categorizing each method into a single, definitive
class. For instance, Shi et al. (2023) not only of-
fers benchmarks and analyses but also proposes
a detection method. Similarly, Zhou et al. (2023)
discusses both the detection of contamination and
strategies for its mitigation. Our approach primarily
classifies each work into its most evident category,
aiming for clarity and precision, though this may
sometimes compromise rigor.

9 Ethics Statement

In our survey paper, which examines the impact of
data contamination, alongside methods for its de-
tection and mitigation, we assert that our work not
only adheres to ethical standards and avoids poten-
tial misuse issues, but also offers a comprehensive
summary that contributes to the fair and transparent
evaluation of large language models. This positions
it as a valuable resource for promoting fairness and
transparency within the community.
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