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Abstract

Large Language Models (LLMs) have ex-
hibited impressive capabilities in various
tasks, yet their vast parameter sizes restrict
their applicability in resource-constrained
settings. Knowledge distillation (KD) of-
fers a viable solution by transferring exper-
tise from large teacher models to compact
student models. However, traditional KD
techniques face specific challenges when
applied to LLMs, including restricted ac-
cess to LLM outputs, significant teacher-
student capacity gaps, and the inherited
mis-calibration issue. In this work, we
present PLaD, a novel preference-based
LLM distillation framework. PLaD ex-
ploits the teacher-student capacity discrep-
ancy to generate pseudo-preference pairs
where teacher outputs are preferred over
student outputs. Then, PLaD leverages a
ranking loss to re-calibrate student’s estima-
tion of sequence likelihood, which steers
the student’s focus towards understanding
the relative quality of outputs instead of sim-
ply imitating the teacher. PLaD bypasses
the need for access to teacher LLM’s inter-
nal states, tackles the student’s expressivity
limitations, and mitigates the student mis-
calibration issue. Through extensive exper-
iments on two sequence generation tasks
and with various LLMs, we demonstrate
the effectiveness of our PLaD framework.

1 Introduction

Large language models (LLMs) have shown
remarkable abilities across a wide range of
tasks (OpenAI, 2022; Anil et al., 2023). How-
ever, their huge parameter sizes and computa-
tional requirements pose significant challenges

1Work conducted during an internship at Google.
2Now in Google DeepMind.

for practical deployment, especially in environ-
ments with limited resources. Knowledge dis-
tillation (KD) has emerged as a technique for
addressing these challenges by transferring in-
sights from a large, sophisticated teacher model
to a compact student model with reduced mem-
ory footprints and inference costs. The seminal
work (Hinton et al., 2015) proposes to train a
student model to match the output class distri-
bution of the teacher model. Kim and Rush
(2016) further extends this idea to the sequence
level and teaches the student to directly produce
teachers’ decoded sequences. Another line of
work (Jiao et al., 2019; Wang et al., 2020) seeks
to align the student model’s intermediate-layer
representations with the teacher’s. All these
approaches employ a teacher-forcing strategy,
training the student to fully match the outputs
or representations of the teacher model.

Applying conventional KD methods to LLMs
presents several significant challenges. First,
those LLM teachers are typically only available
through API calls. The absence of direct ac-
cess to the full output logits or internal states
of LLM teachers hinders the implementation
of traditional distillation techniques. Second,
the capacity gap between the student model and
LLM teachers becomes significantly larger com-
pared to the previous instances when a relatively
smaller teacher model was employed. This dis-
parity exacerbates the student model’s limited
ability to fully match the teacher LLM’s out-
put distribution. Third, as LLMs increase in
size, they often encounter a mis-calibration is-
sue (Zhao et al., 2023) where sequences that
are highly likely according to the model don’t
necessarily exhibit high quality for target tasks.
Consequently, when a student model is trained
to mimic these outputs from the teacher LLM,
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it inherits this mis-calibration, leading to sub-
optimal performance. Although some recent
studies have enhanced the standard teacher-
forcing KD paradigm with improved loss func-
tions (Zhang et al., 2023b; Wen et al., 2023;
Gu et al., 2023) or learning strategies (Agarwal
et al., 2023), these advancements have not yet
fully addressed the above challenges, leaving
efficient and effective LLM distillation as an
open research question.

In this work, we present Preference-based
Large Language Model Distillation (PLaD), a
novel framework for distilling LLM knowledge
with preference data. PLaD is developed based
on the following observation: sequences de-
coded by the teacher model typically surpass the
output sequences of the student in quality. By
sampling outputs from both the teacher and stu-
dent, PLaD generates pseudo-preference pairs
and calculates a ranking loss that re-calibrates
sequence likelihood on the student side. This
innovation acknowledges the complex teacher-
student interaction dynamics within the realm
of LLMs and thus shifts the student’s learning
focus towards understanding the relative quality
of different outputs. Without strictly adhering
to teacher forcing, we address the student’s in-
herent limitations in expressivity.

Moreover, the introduction of calibration loss
directly ties the quality of generation to its like-
lihood, allowing for a targeted optimization of
output quality through calibration. This strat-
egy also skillfully bypasses the requirement for
teacher model internal access and presents an
annotation-free method to construct preference
pairs based on the inherent capacity gap be-
tween teacher and student models. PLaD is
also flexible enough to be applied in scenarios
where additional reward models or ranking met-
rics are available. This versatility makes it a
powerful framework for LLM distillation.

We evaluate PLaD on Anthropic helpful dia-
logue generation (Bai et al., 2022) and Reddit
TL;DR summarization (Stiennon et al., 2020).
with two different model families LLaMA-
2 (Touvron et al., 2023) and GPT-Neo (Black
et al., 2021). The student model learned by
our PLaD framework can outperform the one
learned with other state-of-the-art KD methods

with respect to the win rate of model genera-
tions compared to the target sequences. We
also show that PLaD are universally applicable
across model families: from PaLM2-L (Anil
et al., 2023) to T5-Large (Raffel et al., 2020).

Contributions. The major contributions of
this work are summarized as follows: (1) We
propose PLaD, a novel framework that distills
LLMs with preference data; (2) We present
a metric-free approach to construct pseudo-
preference pairs without human annotations;
(3) We facilitate the LLM distillation with an
explicit calibration objective and improve the
student model’s generation capability; (4) We
conduct comprehensive experiments on multi-
ple tasks with different-sized teacher models to
demonstrate the effectiveness of PLaD.

2 Related Work

Sequence Knowledge Distillation. Knowledge
distillation (KD) is first proposed in (Buciluǎ
et al., 2006) to compress the large models to
smaller, faster models without a significant per-
formance drop. Hinton et al. (2015) general-
izes this technique by introducing a temper-
ature parameter to smooth the teacher model
prediction. SeqKD (Kim and Rush, 2016), ini-
tially targeting the neural machine translation
task, extends the scope of KD from multi-class
classification to sequence generation and learns
a distill student model to generate a sequence
holistically. Further developments have seen the
incorporation of contrastive learning (Tian et al.,
2019) and patient distillation techniques (Sun
et al., 2019), where the student learns from mul-
tiple layers of the teacher model. Transformer-
specific distillation methods have also been pro-
posed (Sanh et al., 2019; Jiao et al., 2019),
focusing on attention and hidden state align-
ment for efficient knowledge transfer. These
advancements underscore the ongoing efforts
to refine SeqKD for natural language process-
ing tasks, balancing model size with linguistic
performance.

Learning from Preference Data. The pivotal
Reinforcement Learning from Human Feedback
(RLHF) framework (Christiano et al., 2017) first
uses preference data to fit a reward model and
then fine-tunes the LM to maximize the given
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reward using reinforcement learning algorithms.
In practice, however, using RL to directly fine-
tune LMs are challenging, incurring significant
computational costs and requiring extensive hy-
perparameter tuning. To mitigate this issue,
DPO (Rafailov et al., 2023) proposes to directly
train the policy LM using the pairwise logistic
loss without explicitly fitting a reward model.
SLiC (Zhao et al., 2023) and RRHF (Yuan et al.,
2023) adopt the pairwise hinge loss to train the
policy LM. RSO (Liu et al., 2023) further intro-
duces the statistical rejection sampling method
to improve DPO by addressing the distribution
drift issue. More recently, LiPO (Liu et al.,
2024) leverages a ranked list of responses (ei-
ther rated by humans for ranked by models (Qin
et al., 2023)) for LLM alignment. All these
studies require either human annotations or ex-
ternal reward models to obtain the preference
data and focus on aligning a single model with
human preference. Additionally, some works
have attempted to explain the distillation mech-
anisms from multiple perspectives(Lopez-Paz
et al., 2015; Lopes et al., 2017; Zhang et al.,
2020; Menon et al., 2021; Zhang et al., 2022),
but none have yet bridged the preference learn-
ing and knowledge distillation, while it is a nat-
ural approach given the capacity gap between
teacher and student models. In this work, we fo-
cus on distilling a teacher model into a student
model with self-supervised preference pairs.

LLM Distillation. Recent efforts in the dis-
tillation of Large Language Models (LLMs)
have introduced innovative approaches to refine
the knowledge transfer process. (Liang et al.,
2023) employ a task-aware, layer-wise distilla-
tion method which effectively tackles the chal-
lenges of tasking student models mimicking the
hidden representation of a much larger teacher,
but it requires access to the teacher model’s in-
termediate layers, whereas our research focuses
on the scenarios where only the teacher model’s
final sequence-level output is available, which is
common in the context of LLMs. (Zhang et al.,
2023a) seek to bridge the capacity gap between
student models and teacher models by deploy-
ing the mixture of experts (MoE) architecture
on the student side, thereby increasing its capac-
ity. We alternatively address the capacity gap by

shifting from traditional teacher-forcing distilla-
tion to a preference-based distillation, leverag-
ing synthetic preference data and avoid memory
footprint overhead increased by complex archi-
tectures of the student model.

Another line of works leverages additional
knowledge to improve LLM distillation. For
instance, “Distillation step-by-step” by (Hsieh
et al., 2023) enriches the student model training
by integrating LLM output rationales, aiming
for a deeper understanding and replication of
the teacher model’s reasoning pathways. Simi-
larly, Fu et al. (2023) advance the methodology
by focusing on LLM output Chains of Thought
(CoT), engaging in per token distribution match-
ing to capture nuanced decision-making pro-
cesses. Shridhar et al. (2023) take a special-
ized approach towards reasoning tasks, propos-
ing a dual-student model framework where one
student model is dedicated to problem decom-
position and the other to solving the identi-
fied subproblems, facilitating a more segmented
yet comprehensive distillation strategy. Addi-
tionally, Zhang et al. (2023b) also introduce a
non-teacher forcing distillation approach, where
the teacher output is perturbed to get a proxy
teacher with a distribution closer to the ground
truth. Despite these advancements, none of
these works incorporate preference data into
the distillation process, highlighting a key con-
tribution of this study.

3 Preliminaries

3.1 Auto-Regressive Text Generation

We denote the input and output sequence as
x and y, respectively. Let V denote the vo-
cabulary comprising of M tokens, y<n+1 =
(y1, y2, . . . , yn) denote the generated output se-
quence up to the n-th token, and Ly denote the
length of sequence y. An auto-regressive policy
p(.|y<n, x) outputs a next-token probability dis-
tribution over all tokens in V , conditioned on
the input x and output sequence y<n. The prob-
ability p(yn|x) of predicting the n-th token in
sequence y is determined by a softmax function
with temperature γ as follows:

p(yn|x) = exp(zn/γ)∑M
i=1 exp(zi/γ)

, (1)
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where zi is the logit score for the i-th token in V .
Higher values of γ introduce more randomness,
while a lower value makes the output more de-
terministic by favoring the most probable words.
In conditional language generation tasks, the
model produces a response y conditioning on
a prompt x sampled from the distribution px.
The output sequence y is sampled from the gen-
erative model in an auto-regressive manner as
described above.

3.2 Sequence Knowledge Distillation

We approach knowledge distillation (KD) as
an optimization problem to minimize the dif-
ference between a fixed teacher model output
distribution p(y|x) and a student model output
distribution qθ(y|x), parameterized by θ. The
standard KD method for generative models aims
to minimize the forward KL divergence:

KL[p||q] = Ex∼px,y∼p′ log
p(y|x)
qθ(y|x)

, (2)

where p′ represents either the real data distri-
bution for word-level KD or the teacher dis-
tribution p for sequence-level KD. However,
KL[p||q] tends to overestimate the low-value re-
gions of p in language generation tasks when qθ
lacks the expressiveness to cover all the modes
of p′. This issue is particularly pertinent for
LLMs that perform a variety of tasks in a gen-
erative manner, since the low-capacity student
models are unable to imitate the complex lan-
guage generation distribution of their teacher
models or that of humans perfectly.

4 PLaD: Preference-based Large
Language Model Distillation

4.1 Framework Overview

Our proposed PLaD framework starts from the
supervised fine-tuning (SFT) phase for both
the teacher and the student models. First, the
teacher model undergoes SFT to optimize its pa-
rameters for the target tasks. The student model
is similarly fine-tuned to prepare for the sub-
sequent distillation phase. Then, we construct
pseudo-preference pairs to calibrate the likeli-
hood of the student generation. Specifically, we
conduct inference on a distillation set, which

consists of task-specific inputs without corre-
sponding target outputs. The sampled genera-
tions from both the teacher and student models
are used to form the pseudo-preference data,
where we assume the teacher output is preferred
over student output due to their capacity differ-
ence. Finally, with the pseudo-preference data,
we implement a calibration loss to optimize the
generation quality in the distillation phase ex-
plicitly. The final distilled student model is eval-
uated by win rate and ROUGE scores to com-
pare with its SFT predecessor and other base-
lines. We outline the proposed PLaD frame-
work in Figure 1.

4.2 Pseudo Preference Pairs Generation
Our PLaD framework pivots around the con-
cept of pseudo-preference data, offering a prac-
tical and efficient alternative to human anno-
tated preference pairs. Traditional approaches
to preference learning, such as Deep Prefer-
ence Optimization (DPO) (Rafailov et al., 2023)
and Reinforcement Learning from Human Feed-
back (RLHF) (Christiano et al., 2017), rely on
preference data obtained through costly human
annotations or inferences from state-of-the-art
models. These methods, while effective, are
prohibitively expensive and time-consuming for
large-scale applications.

To mitigate these issues, we capitalize on
the reliable assumption that the teacher model’s
generative quality supersedes that of the student
due to its greater capacity. Consequently, we
can generate pseudo-preference pairs by sam-
pling outputs from both models on the distil-
lation set and assuming the teacher output is
preferred over the student output. Formally, the
generation process for a given input x from the
distillation set can be expressed as:

(ŷ+, ŷ−) := (ŷT , ŷS) = (p(y|x), qθ(y|x))
(3)

where ŷT and ŷS represent the generations from
the teacher and student models, respectively.
We then construct the preference pairs (ŷ+, ŷ−),
with ŷ+ := ŷT signifying the teacher’s higher-
quality output and ŷ− := ŷS indicating the stu-
dent’s output. These pseudo-preference pairs
provide a cost-effective and scalable alternative
to human-annotated or AI-annotated data, en-
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2. Pseudo-Preference Pair Collection 3. Distillation with Preference Pairs

Teacher Model

1. SFT Initialization

Student Model

Ground 

Truth 

Data

ො𝑦+

ො𝑦−

𝑞𝜃  ←  𝑞𝜃 − ∇ℒ𝑐𝑎𝑙
A Priori Teacher 

Reward Distribution

 

A Priori Student 

Reward Distribution

Pseudo-negative

Pseudo-positive
ො𝑦+ ො𝑦−

ො𝑦+ ො𝑦−
ො𝑦+ ො𝑦−

Initial Student Model

Distilled Student Model

Figure 1: Our PLaD framework starts with separate SFT processes for both the teacher and student models.
The best checkpoint of the teacher model is selected based on the win rate over targets, while the student
model went through the whole SFT for initialization. In the next stage, we generate pseudo-preference data
by sampling generation pairs from the teacher and the student. The student model then undergoes preference
distillation using this pseudo-preference data to produce a distilled student model.

abling the student model to redirect the teacher
to the relative importance of learning.

4.3 Distillation with Preference Pairs

The distillation with preference pairs is for-
malized through a calibration loss, designed
to bridge the student’s generative quality to its
likelihood. We employ two types of losses: the
ranking calibration loss, Lcal

rank, and the margin
calibration loss, Lcal

margin.
The ranking calibration loss is defined as:

Lcal
rank = max(0, β − logPθ(ŷ+|x) + logPθ(ŷ−|x)),

(4)

where β is a margin hyper-parameter, and ŷ+
(ŷ−) represents the teacher (student) outputs
from the pseudo preference pairs, respectively.
This loss encourages the student model to in-
crease the probability of the preferred output
while decreasing the likelihood of the less pre-
ferred one.

The margin calibration loss is introduced to
refine the student’s output by considering a scor-
ing function s, which provides an additional
quality measure for the generated sequences:

Lcal
margin = max(0, β(s(y; ŷ+;x)− s(y; ŷ−;x))

− logPθ(ŷ+|x) + logPθ(ŷ−|x))
(5)

In this equation, s(y; ŷ+;x) and s(y; ŷ−; y;x)
represent the scores of the preferred and less-
preferred outputs, respectively. This loss func-
tion penalizes the student model when the score
of the less-preferred output is too close to that
of the preferred one, promoting a distinction be-
tween high and low-quality generations. In prac-

Algorithm 1 Teacher-Student Knowledge Dis-
tillation with Calibration Loss
1: Require: Teacher model p, student model qθ , SFT

dataset D0 with labeled target sequences, and distilla-
tion set D.

2: // Step 1: Initialization
3: Learn SFT teacher p and initial student qθ on D0.
4: // Step 2: Pseudo-Preference Pair Construction
5: for each input sequence x ∈ D do
6: Sample teacher output yT = p(y|x).
7: Sample student output yS = qθ(y|x).
8: Make pseudo-preference pairs (ŷ+, ŷ−) :=

(yT , yS).
9: end for

10: // Step 3: Student Distillation with Preference Pairs
11: for each batch in D do
12: Compute loss Lcal via Eq. 4 or 5.
13: Update student model qθ ← qθ −∇Lcal.
14: end for
15: Output: Distilled student model qθ .

tice, we choose the learning objectives based on
the performance on the validation set.

By leveraging the calibration loss in conjunc-
tion with pseudo-preference pairs, our method
enables an effective distillation process, foster-
ing a student model that not only performs well
on text generation tasks but also exhibits cali-
brated confidence in its outputs. We summarize
the framework in Algorithm.1.

5 Experiments

5.1 Experiment Setup

Datasets. We conduct experiments on the fol-
lowing datasets: (1) TL;DR (Stiennon et al.,
2020) which comprises around 140k Reddit
posts along with their TL;DR summarizations,
providing a rich source for training and eval-
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uating text summarization models, and (2)
Anthropic-HH (Bai et al., 2022) which initially
designed for training preference models in a di-
alog system with Reinforcement Learning from
Human Feedback (RLHF). We use its helpful
slice for experiments. More detailed dataset
statistics are listed in Appendix A.1.
Models. We evaluate two model families in our
main experiments: (1) LLaMA-2 Models (Tou-
vron et al., 2023) include LLaMA-2-13B as the
teacher model and LLaMA-2-7B as the student
model, and (2) GPT-Neo Models (Black et al.,
2021) include GPT-Neo-2.7B as the teacher
model and GPT-Neo-1.3B as the student model.
Besides, we also extend PLaD to PaLM-2 (Anil
et al., 2023) and T5 models (Raffel et al., 2020)
to show its broad applicability.
Baseline Methods. We compare PLaD to
both classic KD techniques and LLM KD tech-
niques, including (1) Standard KD (Hinton
et al., 2015): The foundational knowledge dis-
tillation technique that trains a student model
to replicate the teacher model’s output distribu-
tions; (2) SeqKD (Kim and Rush, 2016): An ex-
tension of standard KD to sequence generation
that distills the student model directly on the
teacher’s generations; (3) f-distill (Wen et al.,
2023): A framework that addresses KL diver-
gence’s the mode averaging and collapsing prob-
lems by minimizing a symmetric f-divergence;
and (4) MiniLLM (Gu et al., 2023): A frame-
work that distills LLMs into their smaller coun-
terparts using reverse KL divergence.
Evaluation Schemes. We calculate the win rate
as the major metric for model evaluation. Win
rate is defined as the ratio of preferred gener-
ation compared to the target text. Specifically,
we deploy a task-specific reward model and use
the human-written reference sequence as the tar-
get. Both the reward model and the reference
sequence are pre-provided in the open-source
community and the datasets. Besides, we also
provide ROUGE scores for reference. More
details are provided in Appendix A.2.
Implementation Details. We split each task’s
original training set into two equal shards for
training and distillation. Given the training set
D0, we do 1-epoch fully supervised training
to get the teacher model and initialize the stu-

dent model. We run inference and construct
teacher-student pseudo-preference pairs for the
distillation set D. The original test set is kept
for evaluation. For model training, the learn-
ing rate is 1e−4 with a linear scheduler, and the
per-device batch size is 8. We also use LoRA
(Hu et al., 2021) for all experiments for training
efficiency. Specifically, we set LoRA rank as 8,
LoRA dropout as 0.1, and LoRA alpha as 32.
We list more details in Appendix A.6.

5.2 Main Results

Table 1 presents our main experiment results.
PLaD exhibits a notable capacity for closing the
teacher-student performance gap. Compared to
the initial student and the SFT baseline, the
student model learned by PLaD not only sig-
nificantly improves the win rate but also en-
hances the ROUGE scores. Impressively, for the
Anthropic-HH task, the student model learned
by PLaD even surpasses the teacher model in
terms of the win rate (student’s 27.74% win rate
against the teacher’s 26.96% win rate).

In comparison to KD baselines, our ap-
proach consistently delivers superior perfor-
mance across different settings. This is evi-
dent from our method exhibiting the highest
win rate among all the student models distilled
by baseline methods. We also count the genera-
tion length by the number of words to verify if
the quality improvement comes from the output
verbosity. We notice that the word count across
different methods is relatively stable. We thus
further conduct an experiment in Section 5.4 to
justify the performance on different generation
length ranges.

Moreover, the Teacher-Student Win Rate (T-
S WR) emerges as a critical determinant in the
final performance. For the stronger teachers like
the LLaMA teacher and the GPT-Neo teacher
on the TL;DR task, the distilled student im-
proves by relatively larger margins. Conversely,
when learning from a mediocre teacher model,
as in the case of the Anthropic-HH task with
a lower T-S WR, the distilled student models
show only marginal advancements. This high-
lights the importance of the teacher model’s
quality in the distillation process and its impact
on the student model’s ultimate efficacy.
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Model Method
TL-DR | T-S WR = 64.86 Anthropic-HH | T-S WR = 53.97

Word Count R-1 R-2 R-L RM WR (%) Word Count R-1 R-2 R-L RM WR (%)

LLaMA-2

Teacher 25.51 33.14 11.40 25.31 45.28 67.78 25.15 6.50 16.32 26.95
Initial Student 27.24 26.68 8.98 20.60 33.42 67.80 24.96 6.48 16.26 25.63

SFT 25.77 30.06 9.95 22.97 35.13 67.64 25.33 6.66 16.51 25.52
Standard KD 26.32 31.45 10.04 23.78 37.70 67.60 25.06 6.57 16.31 25.83

SeqKD 25.67 31.67 10.42 24.20 37.92 67.73 25.02 6.51 16.28 26.24
f-distill 25.98 32.09 10.65 24.42 38.35 68.24 25.23 6.72 16.40 25.98

MiniLLM 25.80 31.32 10.48 24.25 38.07 68.05 25.42 6.76 16.53 26.61
Ours 26.02 31.46 10.79 24.91 40.46 67.93 25.54 6.82 16.70 27.74

Model Method
TL-DR | T-S WR = 60.80 Anthropic-HH | T-S WR = 55.23

Word Count R1 R2 RL RM WR (%) Word Count R1 R2 RL RM WR (%)

GPT-Neo

Teacher 25.81 29.64 8.82 22.22 15.35 72.55 21.47 4.12 13.66 15.52
Initial Student 26.35 29.04 8.34 21.66 11.51 73.53 19.77 3.36 12.67 8.73
SFT Student 25.88 29.08 8.44 21.76 11.40 73.49 18.51 2.76 11.93 8.79
Standard KD 26.50 29.15 8.51 21.84 12.47 73.09 20.35 3.56 12.78 8.94

SeqKD 26.14 29.23 8.57 21.82 13.18 73.11 20.74 3.75 13.05 9.25
f-distill 25.73 29.34 8.62 21.91 13.55 72.68 20.67 3.84 13.74 9.66

MiniLLM 25.86 29.37 8.62 22.03 13.73 72.38 20.90 3.80 13.56 9.81
Ours 25.77 29.50 8.69 22.08 14.76 72.76 21.12 3.82 12.83 10.38

Table 1: Main results with the LLaMA-2 and GPT-Neo models. For the LLaMA-2 group, the teacher
model is LLaMA-2-13B, and the student model is LLaMA-2-7B. For the GPT-Neo group, the teacher model
is GPT-Neo-2.7B, and the student model is GPT-Neo-1.3B. WR stands for win rate, and RM refers to a
task-specific reward model. The teacher-student win rate (T-S WR) on the distillation set evaluated by a
reward model is provided for reference.

5.3 Impact of Real Preference Pairs

In this set of experiments, we investigate the
effect of using real preference pairs compared
to pseudo-preference pairs. We use both the
LLaMA-2 model and the GPT-Neo model on
TL;DR and Anthropic-HH datasets, each set-
ting comes with varying ratios of real to pseudo
preference pairs. Here we use a reward model
to evaluate all the pairs and adjust the ranking
within each pair based on their reward values.

In Figure 2, we observe a slight improvement
in the win rate against using pseudo pairs as
the ratio of real preference pairs increases. This
trend is evident across both models and settings,
albeit to varying degrees. The win rate improve-
ment is more pronounced in the LLaMA-2 mod-
els on the TL;DR dataset, indicating a model-
specific benefit from real preference data.

Considering the original improvements from
using pseudo-preference pairs, the gain of re-
placing the pseudo-preference pairs with real
ones is marginal. While the use of real prefer-
ence pairs does yield improvements in model
performance, it also incurs additional human
annotation costs. This presents a trade-off sce-
nario where the gains from real preference data
are weighed against the resource expenditure
associated with their use.

In conclusion, the experiment outcomes
support the reliability of employing pseudo-
preference pairs in LLM distillation, supple-
mented by the proposed calibration objective.
Despite the slight edge provided by real prefer-
ence pairs, the cost-effective and time-efficient
nature of pseudo pairs makes them a viable
alternative. This study suggests that pseudo-
preference pairs, when properly constructed,
can serve as a practical proxy to real prefer-
ence data without significantly compromising
the learning efficacy of language models.

5.4 Performance in Length Ranges

In this experiment, we examine the correlation
between generation length and win rate. This
experiment is conducted on the TL-DR task
using LLAMA-2 models. Figure. 3 indicates
all methods maintain a relatively stable win
rate improvement across varying generation
lengths. It also illustrates that our method
consistently leads to better performance across
all generation lengths of student models, with
a notable peak within the (20, 30] interval,
achieving the highest win rate improvement
to the initial student and the highest margin
over the baselines. Considering the average
generation length is around 26 on this task,
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Figure 3: The △ win rate against the initial student
v.s. the length of student model generation. Experi-
ments are conducted on TL-DR with LLaMA-2.

this suggests that our approach is particularly
effective in the most commonly encountered
scenario within the TL-DR task, and the en-
hancement at this central interval is especially
valuable given its prevalence in the dataset.

5.5 Scaling with Distillation Data

We present a scaling analysis in Figure 4 to
demonstrate how our distillation method’s ef-
fectiveness varies with changes in the amount
of distillation data. We keep the same setting
as the LLaMA-TL;DR group in the main exper-
iments, and perform distillation with different
distillation data usage.

The figure illustrates that as the percentage
of distillation data increases from 5% to 100%,
all methods show an upward trend in win rate
over the target, indicating improved model per-
formance with access to more distillation data.
Notably, PLaD demonstrates a steep improve-
ment curve, outperforming the other methods,
particularly at higher data usage levels. This
suggests that PLaD is highly efficient in refin-
ing the student model.
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Figure 4: Scaling properties of the distillation data.

Task Teacher Initial Distill
TL-DR T5-xxl 36.67 44.46

Anthropic-HH PaLM-2-S 15.32 17.88

Table 2: Win rates of using PALM-2 and T5 mod-
els. The teacher model is T5-XXL and PaLM-2-S,
respectively, and the student model is T5-large.

5.6 Results on More LLMs
To demonstrate the generalizability of our
framework, we extend our investigations to
more LLMs including PaLM 2 (Anil et al.,
2023) and T5 (Raffel et al., 2019). Specifically,
we employ the T5-XXL as the teacher model
for the TL;DR task and the PaLM-2-S as the
teacher model for the Anthropic-HH task. They
are distilled into a T5-Large student model in
both tasks. The results are presented in Table. 2,
and the same conclusion holds that the student
distilled with PLaD gets a significantly higher
win rate compared to the initial student. Our re-
sults, spanning LLaMA-2, GPT, T5, and PaLM
models, underscore the framework’s adaptabil-
ity across a range of LLM families.

5.7 Efficacy of General-Purpose Models in
Win Rate Calculation

We explore the efficacy of using general-
purpose models, specifically GPT-3.5-turbo,
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Original: This happened last night, didn't realize it was a FU until a few mins ago: I was playing 2K15 on 
my gaming desktop PC. I am the home team (Lakers, of course), and am down by 2 with 2.5 seconds 
left and have the ball. I take the ball out of bounds and pass it to Kobe who was wide open standing at 
the 3point line. I shoot, the shot meter was almost perfect, just not quite, and the ball hits the front of the 
rim and I lose the game... Without thinking about it I kick my desk hard as hell, and everything just 
shakes, my speakers fell down, and the game freezes. I’m too pissed so I just force shutdown and go to 
bed. Now I have to do some very important, design-intensive work and come to realize that my GPU is 
dead and my pc will only boot with the integrated one, which is not powerful enough to work with.

SFT Student: I kicked my desk hard and my GPU died. Now I have to do some very important 
design-intensive work and my GPU will only boot with the integrated one, which is not powerful enough 
to work with.

Distilled Student: I lost a game on my gaming desktop PC, kicked my desk hard and my GPU died, 
now my pc won't boot with the GPU and will only boot with the integrated one.

factual error redundant parts

concise, accurate, key points captured

Figure 5: The case study on the TL;DR dataset.

TL;DR T-S WR Initial Baseline† PLaD
DeBERTa RM 60.80 33.42 38.35 40.46
GPT-3.5-turbo 63.81 31.69 37.42 38.17

Anthropic-HH T-S WR Initial Baseline* PLaD
DeBERTa RM 55.23 25.63 26.24 27.74
GPT-3.5-turbo 58.95 24.43 25.06 26.22

Table 3: Comparison of win rates calculated by
the task-specific reward model DeBERTa and the
general-purpose model GPT-3.5-turbo. The teacher
model is LLaMA-2-13B and the student model is
LLaMA-2-7B. We present the best baseline methods
where † refers to f-distill and * refers to MiniLLM.

for calculating win rates, to provide a paral-
lel evaluation with our deployed task-specific
reward models. Table 3 shows that the per-
formance advantage in terms of win rate still
holds when evaluated by the general-purpose
model. Notably, the T-S WR increases when
evaluated by GPT-3.5-turbo, albeit accompa-
nied by a marginal decline in the win rate of
model-generated text over the target text. It in-
dicates that compared to the preference made by
the reward model, GPT-3.5-turbo favors teacher
generation in the teacher-student comparison,
while simultaneously showing a slight prefer-
ence for the target text over model-generated
content. Nevertheless, the results affirm that
PLaD secures an enhancement in win rate com-
pared to the initial student and the most compet-
itive baseline methods.

5.8 Case Study

In Figure 5, we present a comparative case study
from TL;DR to illustrate the efficacy of PLaD.
We examine the quality of summaries generated

by both an SFT (Self-Training) student model
and our distilled student model against the orig-
inal text. Key points from the original narrative
are highlighted, providing a benchmark for eval-
uating the student models’ performance. We
detail the discussion in Appendix A.4.

6 Conclusions and Future Work

In this work, we introduce PLaD, a novel
preference-based LLM distillation framework
that leverages pseudo preference pairs to effi-
ciently transfer knowledge from a large LLM
teacher to a compact student model. By focus-
ing on the relative ranking of outputs, we allow
the student model to learn in a way that is both
resource-efficient and aligned with the qualita-
tive nuances of language generation tasks. Our
experiments demonstrate that PLaD learns a
student model that retains a high level of per-
formance, measured by traditional metrics like
ROUGE, and shows significant improvements
in terms of generation quality measured by win
rate. The ablation studies further underscore the
importance of our design choices, particularly
the use of pseudo-preference pairs over real re-
ward pairs and the implementation of length
normalization techniques.

As LLMs continue to expand their role in
various applications, methods like PLaD that
optimize for efficiency and quality without re-
quiring extensive computational resources will
become increasingly vital. We hope our work
will pave the way for more sustainable and ac-
cessible AI language systems in the future.
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7 Limitations

Potential limitations are: (1) the work depends
on the assumption that the teacher model is bet-
ter than the student model. While the assump-
tion might hold at the beginning stage of student
model training, it might not hold when the stu-
dent model is very carefully trained. This might
explicitly create a ceiling for the student model
performance. The iterative methods could be
considered for future work. (2) Our approach
requires computation resources for conducting
bulk inference for both teacher and student mod-
els. (3) To accurately obtain ranking pairs, we
can resort to a reward model in the loop. How-
ever, it brings computational overhead to the
current pipeline.
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A Appendix

A.1 Dataset Statistics

Table 4 shows the statistics of studied datasets.

Dataset Train Distillation Dev Test

TL;DR 56k 56k 0.5k 12k
Anthropic-HH 58k 58k 6.4k 6.6k

Table 4: Dataset Statistics

A.2 Model Details

We leverage the open-sourced pre-trained mod-
els in our main experiments. The model cards
can be found via LLaMA-2 and GPT-Neo on
Hugging Face.

A.3 Reward Model

For the reward model, we use the reward-model-
deberta-v3-large-v2 released on Hugging Face.
It is trained on

• webgpt_comparisons;
• summarize_from_feedback;
• synthetic-instruct-gptj-pairwise;
• anthropic_hh-rlhf,

which covers the related datasets of our studied
tasks. Its performance is listed in Table 6.

Model Summary Anthropic RLHF
deberta-v3-large-v2 71.47 69.25

Table 6: Reward Model Performance.

A.4 Case Study

Figure 5 presents the case study on the TL;DR
dataset. In the original text, critical details are
highlighted in green. Similarly, in the student’s
summary, critical details are also highlighted in
green, with redundant parts in yellow and fac-
tual errors in red. Compared to the summaries
produced by the SFT student model, those gen-
erated by the student model distilled with our
method are notably more concise and accurate,
capturing a broader range of key points.

The original text describes an incident with
details. The SFT student’s summary, while cap-
turing the essence of the event, includes factual
errors and redundant elements. It incorrectly

states the GPU’s issue, which is a misinterpre-
tation of the original event. Furthermore, it
redundantly mentions details not central to the
original account’s focus. In contrast, the sum-
mary produced by our distilled student model
is concise and free of factual inaccuracies. It
accurately captures the original text and summa-
rizes it into a brief one, maintaining the critical
details: the loss of the game, the subsequent
damage to the GPU, and the resulting limitation
on the computer’s functionality. This case study
shows an evident improvement after distillation
with PLaD , in the model’s ability to preserve
key information while eliminating superfluous
details.

A.5 Computing Resources
We test our code on the System Ubuntu 18.04.4
LTS with CPU: Intel(R) Xeon(R) Silver 4214
CPU @ 2.20GHz and GPU: NVIDIA A100
(80G). We implement our method using Python
3.9, PyTorch 2.0.1, and transformers 4.32.

A.6 Hyper-parameters
We list the search range of hyperparamters in
Table 5. The search for batch size and learn-
ing rate is applied to all the methods. And for
each baseline, we search for the best baseline-
specific hyper-parameters. For those method-
specific hyperparameters, the LoRA rank r does
not impact the final performance much, while
the margin β and the temperature τ slightly
impacts the final performance, and we choose
them carefully. Specifically, we have τ = 0.7
and β = 1.0 in the main experiments.

A.7 Score Function
The score function in Eq. 5 is defined as

s(ŷ, y;x) =
∑

n

Fn (e(ŷ, y), e(ŷ, x)) , (6)

where Fn = 2PnRn/(Pn + Rn). The defini-
tions of Pn, Rn, Fn can be found in (Zhang et
al., 2019). When n > 1, we have

Rn =
1

|e|
∑

i+n∈e
max
j+n∈e

eTi ej+n, (7)

and
Pn =

1

|e|
∑

j:n∈e
eTi ej:n+n. (8)
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Hyper-parameter Search Range

Learning Rate {1, 2, 3, 5} × 10−4

Batch Size for LLaMA {1, 2, 4, 8, 16}
Batch Size for GPT-Neo {4, 8, 16, 32}

Temperature τ {0.1, 0.3, 0.5, 0.7, 0.9}
Margin β {0.1, 0.2, 0.4, 0.6, 0.8, 1.0, 1.5, 2.0, 2.5}

LoRA rank {8, 16, 32}

Table 5: The search range of hyper-parameters.

TL;DR Lrank
cal TL;DR L

margin
cal HH Lrank

cal HH L
margin
cal

LLaMA-2 40.46 40.21 27.65 27.74
GPT-Neo 14.70 14.76 10.38 9.94

Table 7: Ranking calibration loss v.s. margin calibration loss.

This score function measures the similarity
between the positive (negative) text and the
reference text with negligible computational
overhead, because it uses the student model
to obtain the representation instead of an ex-
ternal model. By integrating it into Eq. 5, we
aim to scale the margin β with the score dif-
ference s(ŷ, y′;x) − s(ŷ, y′′;x). This modula-
tion increases the margin when the positive se-
quence closely resembles the reference text. A
larger margin means that the positive sequences
should be preferred more via a higher likeli-
hood in the generation process. This dynamic
adjustment of the margin essentially encourages
a clearer distinction between positive and nega-
tive sequence pairs during training.

For the empirical validation, we choose be-
tween the ranking calibration loss and the mar-
gin calibration loss based on their performance
on the validation set. We report the numbers of
each loss in the main experiments setting here.
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