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Abstract
The integration of generative Large Language
Models (LLMs) into various applications, in-
cluding the legal domain, has been accelerated
by their expansive and versatile nature. How-
ever, when facing a legal case, users without
a legal background often struggle to formu-
late professional queries and may inadvertently
overlook critical legal factors when presenting
their case narrative to LLMs. To address this
issue, we propose the Diagnostic Legal Large
Language Model (D3LM), which utilizes adap-
tive lawyer-like diagnostic questions to collect
additional case information and then provides
high-quality feedback. D3LM incorporates
an innovative graph-based Positive-Unlabeled
Reinforcement Learning (PURL) algorithm,
enabling the generation of critical questions
and enhancing user-LLM interactions. More-
over, an integrated LLM-based stopping cri-
terion facilitates precise Court Views Gener-
ation (CVG). Our research also introduces a
new English-language CVG dataset1 based on
the US case law database, enriching the realm
of LLM research and deployment with a vital
dimension. D3LM surpasses classical LLMs
by delivering outstanding performance and a
remarkable user experience in the legal domain.

1 Introduction

Recent years have witnessed a substantial increase
in the demand for legal services (Gans-Morse,
2017; Purba and Syahrin, 2019). Despite this grow-
ing need, legal resources remain scarce, especially
for individuals with modest means (Hadfield, 2010).
This scarcity has led to a significant rise in the cost
of legal assistance (Brescia et al., 2014), making it
difficult for ordinary people to afford the necessary
legal support. Furthermore, this situation exacer-
bates the inherent inequities in legal proceedings
between the affluent and the underprivileged. Afflu-
ent individuals often benefit from dedicated legal

∗Corresponding author
1https://github.com/YANGWU001/US_CVG_dataset.git

teams to represent them in disputes, whereas the
economically disadvantaged lack similar access to
legal aid (Horwitz, 2020). This discrepancy not
only hinders the ability of the poor to seek justice
but also perpetuates a system of latent unfairness
in legal cases across socio-economic divides.

With the advent of LLMs, ordinary individuals
have gained increased access to legal resources and
services. However, the current mode of interaction
between users and LLMs predominantly remains
user-led (Achiam et al., 2023; Touvron et al., 2023),
where users input queries and receive responses
from LLMs. This interaction mode presents signif-
icant limitations, particularly as many users lack a
legal background (Zamfirescu-Pereira et al., 2023).
Their queries often lack the essential factual de-
tails about their legal issues, which in turn, ham-
pers the ability of LLMs to provide effective as-
sistance. Recognizing this challenge, we have de-
veloped D3LM, a novel framework designed to
act as a legal assistant, as illustrated in Fig. 1. In
this toy example, we introduce the D3LM model
through a real-life scenario where a client, facing
legal charges from a minor altercation, seeks as-
sistance. Initially, the client provides a vague de-
scription, prompting a comparison among three
different approaches. Traditional LLMs offer a
broad perspective of the court’s view, but often
overlook critical details due to insufficient infor-
mation. In contrast, consultations with a lawyer
provide a thorough investigation through targeted
questions, albeit at a significant cost. D3LM distin-
guishes itself by autonomously generating specific,
case-relevant questions, thereby gaining a deeper
understanding of the situation and enhancing the
accuracy of legal outcome predictions, all without
incurring the high expenses associated with legal
counsel. By engaging users in a dialogue to extract
detailed information about their legal predicaments,
D3LM mirrors the proactive approach of human
lawyers in gathering pertinent data to better assist
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Were you under the influence of alcohol at 
the time?

Are there any surveillance cameras at the 
bar that might have captured the incident?

Yes, video evidence exists that depicts the 
altercation.

Yes, somewhat intoxicated.

Given the reconciliation with the involved 
party and the absence of intent to cause 

intentional harm, the prosecutor has opted 
to either reduce the charges or withdraw 

them entirely.
LLM

Fact Description Question AnswerCourt View Dialog

D3LM

With the video evidence and taking into 
account the client's state of intoxication, the 

client can be found culpable for causing 
injuries.

With the video evidence and taking into 
account the client's intoxication that resulted 

in injuries, the court may determine the 
client's actions to be culpable.

LawyerClient

Facts Set

          Learn to Generate

I got into a fight at a bar and ended up being 
charged with intentional injury. The thing is, it all 
started from a misunderstandin, and I've already 
apologized to the person I had the alteraction with.

Motivation    v    
Evidence      v
Intoxicated   v

Motivation    v    
Evidence      v
Intoxicated   v

Motivation    v    
Evidence      x
Intoxicated   x

Client Unclear Fact Description

Professional 
Questions

Answers

(High Cost)

(Insufficient)

Figure 1: Comparison of legal service methodologies, highlighting traditional LLMs, lawyer consultations, and the
D3LM model. D3LM innovatively generates professional questions, mirroring the actions of a lawyer, to improve
legal outcome accuracy without high costs, demonstrating a cost-effective, precise approach to legal assistance.

their clients. This innovative engagement method
ensures D3LM delivers highly accurate and cost-
effective legal insights, demonstrating its potential
to transform the provision of legal services.

Moreover, we introduce a novel approach that
leverages LLMs to efficiently process and analyze
extensive U.S. legal cases. Utilizing LLMs, we
generate structured fact-rule graphs and the ’Is-
sue, Rule, Analysis, Conclusion’ (IRAC2) (Gensler,
1985) to transform complex case narratives into
concise representations. Our method integrates
these graphs into a comprehensive knowledge base,
designed to identify and fill in missing factual in-
formation in legal scenarios. By employing a rein-
forcement learning approach, we refine the selec-
tion of relevant fact nodes, enhancing the model’s
ability to guide users through legal inquiries ef-
fectively. This system is rigorously evaluated to
ensure its accuracy and practicality in real-world
legal settings, showcasing its potential to innovate
legal case analysis.

Our contributions in this paper are threefold and
can be summarized as follows:

• Novel User-LLM Interaction Paradigm: We
introduce a new user-LLM conversion frame-
work in legal contexts by shifting from user-
led enquiries to LLM-navigated diagnostics.
Our approach actively seeks detailed case in-
formation from user through targeted ques-
tioning, resulting in unparalleled accuracy and
efficacy in legal advice.

• Pioneering Positive-Unlabeled Reinforcement
Learning (PURL) Algorithm: Leveraging the

2The detailed explanation of IRAC is in Appendix A.2

fusion of LLM and legal graph, PURL iden-
tifies crucial factors dynamically for adaptive
question generation, which enabling LLM’s
information solicitation capabilities in legal
contexts.

• Introducing a new English legal dataset: a new
focus on US legal cases. Departing from prior
studies relying on Chinese data, this dataset
establishes a new benchmark for legal AI ex-
periments in the US case law system.

2 Related Work

2.1 Legal Assistant
Recent advancements in computational meth-
ods have significantly impacted judicial decision-
making, leveraging the text-centric nature of legal
data for natural language processing (NLP) appli-
cations. Early research by Lin et al. (2012), Zhong
et al. (2018), and Hu et al. (2018) treated charge
prediction as a classification problem within legal
judgments, laying the groundwork for NLP in legal
contexts. This foundation expanded to include case
retrieval (Chen et al., 2013) and law article recom-
mendation (Chen et al., 2022), enhancing NLP’s
scope in legal informatics. The interpretability of
legal decisions, explored by Ye et al. (2018) and
(Wu et al., 2020), introduced court view genera-
tion (CVG) as a means to predict judicial outcomes
based on case descriptions, emphasizing the need
for nuanced legal text understanding and genera-
tion. The introduction of LLMs like Lawformer
(Xiao et al., 2021) and Chatlaw (Cui et al., 2023)
further advanced this field, demonstrating LLMs’
potential in generating accurate legal texts. Un-
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like previous models, our D3LM approach mimics
a lawyer’s consultative strategy, engaging in dy-
namic interaction through targeted questioning to
gather comprehensive case details, marking a sig-
nificant evolution in the application of AI for legal
informatics.

2.2 Enhanced Learning through PU Learning
and Reinforcement Learning

In the landscape of computational learning,
Positive-Unlabeled (PU) Learning has emerged as
a key strategy for binary classification, leveraging
a mix of a small number of positive instances and
a large volume of unlabeled data. This method-
ology has been applied in diverse areas including
chronic disease prediction (Chen et al., 2020; Wu
et al., 2023), fake news detection (Liu and Wu,
2020), and recommendation systems (Zhou et al.,
2021), utilizing advanced techniques like uPU and
nnPU (Kiryo et al., 2017) alongside unbiased risk
estimators (Du Plessis et al., 2015) to mitigate
data bias. Innovations such as predictive adver-
sarial learning (Hu et al., 2021; Wei and Li, 2018)
and Dist-PU (Zhao et al., 2022) further refine this
approach by enhancing data generation and label
distribution consistency. Additionally, the adapta-
tion of reinforcement learning, particularly bandit
learning, has introduced novel training signals and
strategies, including context-free (Chapelle and Li,
2011; Auer et al., 2002) and contextual bandits
(Chu et al., 2011; Zhou et al., 2020), to improve
model outcomes. Our work introduces the PURL
framework, integrating the advanced capabilities of
LLMs with domain-specific PU models to achieve
decision-making precision tailored to unique appli-
cation contexts, signifying a notable advancement
in computational learning methodologies.

2.3 Large Model Dataset Creation
In the NLP field, LLMs have transformed dataset
generation, producing extensive datasets that cap-
ture diverse linguistic phenomena, enhancing ver-
satility for various NLP tasks. Examples include
WANLI (Liu et al., 2022), utilizing GPT-3 for
generation and dataset cartography (Swayamdipta
et al., 2020) for refining NLI examples, and DISCO
(Chen et al., 2023), which creates counterfactual
examples through local perturbations. However,
deploying LLMs in legal domains, especially for
U.S. cases, faces challenges like narrative length
and complexity, which exceed LLMs’ token lim-
its, hindering dataset creation and model training

(Jin et al., 2024). Our approach leverages LLMs to
streamline U.S. legal narratives, facilitating man-
ageable CVG dataset creation and bridging English-
language resource gaps with legal expert collabora-
tion. This method addresses English legal analysis
dataset scarcity, adding significant resources to the
domain.

3 Methodology

In this section, we begin by introducing the defini-
tion of the CVG problem in Section 3.1. We then
proceed to present the overall D3LM framework in
Fig. 2 in Section 3.2. Finally, we demonstrate the
PURL algorithm in Alg. 1 in detail in Section 3.3.
To facilitate understanding and clarity, we provide
a summary of the notations used in this paper in
Tab. 1.

Table 1: Notations.

Notations Descriptions
D Cases fact descriptions set.
C Cases court views set .

D
Reconstructed fact descriptions set without
masked facts.

Q
Generated questions based on golden court
views set.

F Candidate fact nodes set.
Ĝ Fact-rule graphs set for cases.

G′ N-hop graphs set of masked fact-rule
graphs.

G Masked fact-rule graphs set.
G Merged fact-rule graph.

3.1 Problem Definition

In this study, we address the challenge of generat-
ing court views in US criminal cases. Our focus
is to formalize this problem through a clear delin-
eation of fact descriptions and court views.
Fact Description (D) is the comprehensive narra-
tive of a given legal case, encompassing all perti-
nent facts and events. We represent fact descrip-
tions as D =

(
D1, D2, ..., D|D|

)
, where each

Di corresponds to the fact description of a unique
case.
Court Views (C) represent the judicial rationale
underlying the court’s verdict for a case. We define
court views as C =

(
C1, C2, ..., C|C|

)
. The pri-

mary task in court views generation is to accurately
derive C given D.
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3.2 D3LM Framework

We elaborate on the D3LM framework as illustrated
in Fig. 2. Our framework activates upon receiving
a legal query from a client, which is then processed
by an advanced Language Model (LLM) to formu-
late an initial court opinion. However, this opinion
is not immediately disclosed; it is contingent on
the following procedure. Leveraging the method-
ology proposed by Schick et al. (2023), we deploy
a specialized token to evaluate the completeness
of case information provided. This binary token
’Y es’ or ’No’ guides the subsequent actions: a
’No’ activates our PURL algorithm to craft new,
case-specific question for client to gather more case
information, whereas a ’Y es’ moves the process
toward the conclusion and delivery of the court
opinion. This dynamic cycle of evaluation and
information enhancement continues until a ’Y es’
token signifies the attainment of a fully informed
court opinion.

Utilizing a Case-View Generation (CVG) dataset
comprising a set of case descriptions D =(
D1, D2, ..., D|D|

)
and corresponding court opin-

ions C =
(
C1, C2, ..., C|C|

)
, for each pair ( Di,

Ci), we randomly mask certain facts from both Di

and Ci to derive Di and Ci. Subsequently, we ap-
pend the special tokens ei at the end of each court
view, as:

e =< T >→ token < / T > (1)

where "< T >", "→", and "< / T >" are fixed
special tokens3."token" is "Y es" for original Ci

and "No" for masked Ci. This augmented dataset
serves to fine-tune the LLM. During the inference
phase, regular decoding proceeds until the fine-
tuned LLM outputs the "→", which dictates the
decision to either continue or conclude the infor-
mation gathering process. By prompting users to
provide detailed responses through case-specific
questions, the D3LM framework iteratively refines
the court view, ensuring that the final advice is
accurate and tailored to the client’s needs. This
innovative method enhances the model’s ability to
collect pertinent information, leading to more pre-
cise legal guidance.

3In practice, we use the token sequences "[", "]" and "->"
to represent "< T >", "< / T >" and "→"

Client Fine_tuned LLM

{Text} 

[No][Yes]

Return

Activate

{Fact} 

+

New Question

PURL

Answer   +   [Token]

End?

Figure 2: D3LM Model Framework Overview: Illus-
trates D3LM’s engagement through context-driven ques-
tions, guided by the PURL algorithm from continuous
and historical dialogues. Aims to collect comprehensive
case details until a fine-tuned LLM token signals ade-
quate information acquisition.

3.3 Positive-unlabeled Reinforcement
Learning (PURL) Question Generation

In this section, we showcase our PURL framework
for next question generation through Fig. 3 and
detail its training process in Alg. 1.

As illustrated in Fig. 3, for each extensive legal
caselaw document, denoted as Casei, we utilize
an LLM to extract a fact-rule graph Gi represent-
ing the case4. Concurrently, we apply the legal
IRAC strategy to summarize the case’s fact descrip-
tion Di and court views Ci. Subsequently, the
LLM generates a set of questions Qi based on the
text of Ci. For model training, we randomly mask
some fact nodes in Gi to create a masked graph
Gi, and then use the LLM to reconstruct the fact
description and corresponding court view as Di

and Ci, respectively. Based on the nodes in Gi,
we extract an N-hop subgraph G′ from the knowl-
edge graph G, which is a merged graph comprising{
G1, G2, . . . , G|G|

}
. We then define the candidate

fact set as Fi =
{
v |v ∈ VG′

i
− VGi

}
, where VG′

i
,

VGi
represent the nodes in G′

i and Gi, respectively.
The task involves selecting the most relevant node
from Fi for the masked case description Di. Fol-
lowing node selection, we use a prompt-based ap-
proach to transform the selected node into a case-
specific question to client. The detailed process for
CVG data generation is formalized in Alg. 2.

4The detailed fact-rule graph generation prompt is in Ap-
pendix A.2
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Figure 3: Illustrative Representation of the PURL Network in Action. This diagram showcases the PURL algorithm’s
training process using Casei as an example. It visually delineates the sequential steps of extracting, summarizing,
and reconstructing case facts, followed by question generation. Specifically, the collaboration of the LLM with the
domain-specific PU model facilitates the final adaptive node selection through NeuralUCB.

3.3.1 Domain Positive-Unlabeled Model
Training

Given a masked case description Di and its corre-
sponding subgraph G′, we initialize the text em-
bedding hi using RoBERTa (Liu et al., 2019) and
randomly initialize the node embeddings as a ma-
trix Hi ∈ Rn×d, where n denotes the number of
nodes and d denotes the embedding dimension. Af-
ter processing the node embeddings through several
DiGCN layers (Tong et al., 2020), a node attention5

network is applied to capture semantic relation-
ships between case description text and candidate
fact nodes. Subsequently, a Multilayer Perceptron
(MLP) is utilized to compute the probability scores.

For each {hi, Hj
i } pair, we designate the set of

masked nodes as positive instances and the remain-
ing nodes as unlabeled instances. During the train-
ing process, we employ the nnPU (Kiryo et al.,
2017) risk estimator, which is defined as follows:

Riskpu(g) =
πp

np

np∑

i=1

l(g(xp
i ),+1)+

max(0,
1

nu

nu∑

i=1

l(g(xu
i ),−1)−

πp

np

np∑

i=1

l(g(xp
i ),−1))

(2)

where π is the positive class prior, l(·, ·) is any
5The detailed information of node attention design is in

Appendix A.1

surrogate loss of zero-one loss (Du Plessis et al.,
2015), np represents the number of labeled positive
instances, nu represents the number of unlabeled
instances, xpi and xui denote instances in the labeled
positive set and the unlabeled set, respectively. All
cases shared the same domain model layer in train-
ing process. The details are formalized in Alg. 3.

Algorithm 1 PURL Training

Input: Training cases fact descriptions set D; N-hop sub-
graphs set G′; positive class priors set π; training epochs
E; step size η; discount factor γ; LLM

Output: Domain_pu model parameters θ and case-specific
NeuralUCB parameters set {ϕ1, ϕ2, . . . , ϕ|X|}

1: Randomly initialize θ and {ϕ1, ϕ2, . . . , ϕ|X|}
2: θ = Train_Domain_PU(D,G′, π, E, η, γ) using Alg. 3
3: Calculate reward R based on Eq. 4
4: for i = 1, 2, . . . , |X| do
5: for t = 1, 2, . . . , T do
6: Observe

{
x
t,F

j
i

}
F

j
i ∈Fi

7: Select action F j
i with the largest upper confidence

bound using NeuralUCB (Zhou et al., 2020)
8: Play action F j

i and observe reward R(F j
i )

9: Update NeuralUCB parameters ϕi using{
xz,(Fi)z

}t

z = 1
and

{
Rz,(Fi)z

}t

z = 1
10: end for
11: end for
12: Return Domain_pu model with updated parameters θ

and case-specific NeuralUCB with updated parameters
set {ϕ1, ϕ2, . . . , ϕ|X|}

3.3.2 LLM Reading Comprehension
For each masked case description Di and its cor-
responding candidate facts set Fi, we utilize the
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reading comprehension capabilities of the LLM
to assess the significance of each candidate fact
F j
i ∈ Fi. Incorporating F j

i into the masked de-
scription aims to enrich the case narrative by re-
constructing the fact description and generating
an enhanced court view Ci(+F j

i ). This enhanced

view, Ci(+F j
i ), is then used to answer the ques-

tions set Qi, derived from the original court views
text Ci. We evaluate the reading comprehension
score of F j

i for case Di as:

RCScore

(
Di, F

j
i ; LLM

)
=

∣∣∣S
(
Ci + F j

i , Qi

)∣∣∣
|Qi|

(3)

where S
(
Ci + F j

i , Qi

)
is a subset of Qi that

consists of questions correctly answered using
Ci(+F j

i ).

3.3.3 Model Training
For each case description text Di and candidate fact
nodes Fi, we denote their corresponding embed-
dings are hi and Hi (Hi is matrix of all fact nodes
embeddings). We calculate two types of rewards:
1)Rpu, the probability score from the domain-

specific PU model, calculated as P
(
hi, H

j
i ; θ

)
,

where θ is the domain positive-unlabeled model; 2)
Rlmrc, the language model reading comprehension
score calculated as Eq. 3. To optimize fact node se-
lection, we employ reinforcement learning (bandit),
which allows the model to refine its choice dynam-
ically. The selected fact node is then formulated
as the next query for the legal client. The overall
reward function is:

Rtotal = Rpu + λRlmrc (4)

where λ adjusts the contribution of the LMRC
score to the total reward, and we set 0.5 in our
model. By leveraging bandit learning for its flexi-
bility, our model surpasses traditional methods by
better handling uncertainty in selecting the most
relevant fact node for next question generation.

3.3.4 Model Inference
During inference, the process involves mapping the
provided case description text to its corresponding
fact-rule graph. From this graph, a subgraph is
extracted from the overarching knowledge graph,
which yields a set of candidate facts. For each of
these facts, the corresponding bandit algorithm is
employed to facilitate the selection process.

4 Experiments

4.1 Data Construction

Addressing the notable absence of English-
language datasets for court views generation
(CVG), our research introduces the first US-CVG
dataset, derived from criminal legal documents
(Caselaw Access Project, 2024). Unlike the struc-
tured format of Chinese legal documents, U.S.
case law’s complexity and length (averaging over
7694 tokens) pose significant challenges for CVG
tasks, often surpassing the token limits of advanced
LLMs.

Our dataset leverages the IRAC framework to
process US caselaw documents, using GPT-4.0 to
summarize and extract fact descriptions and court
views, which enables the reduction of the total to-
ken length to a structured IRAC format. Addition-
ally, we create fact-rule graphs for each case to
support complex analysis. The dataset’s integrity
is ensured through meticulous review by three le-
gal professionals, after which it is segmented into
training, validation, and test sets in an 8:1:1 ratio.

This pioneering dataset fills a critical void for
English-language CVG research, offering a struc-
tured approach to legal document analysis that
paves the way for future computational legal stud-
ies.

Table 2: Statistics of US legal dataset.

Type US
#Train 19491
#Dev 2436
#Test 2437

Avg.#tokens in fact desc. 264
Avg.#tokens in court views 138

4.2 Experimental Settings

The experimental setup for our D3LM model uti-
lized the Llama2-13B as the base architecture. The
sampling parameters were set with a temperature of
0.8 and a top_p value for nucleus sampling at 0.9,
alongside a maximum token count of 4096. We
initialized word embeddings with RoBERTa, while
node embeddings were randomly generated. The
model’s Positive-Unlabeled learning component
consisted of six Multi-Layer Perceptron (MLP) lay-
ers. The learning rate for the PURL was established
at 1e−4, paired with a batch size of 2000. Con-
ducted on an NVIDIA A100 GPU, our experiments
spanned over 100 epochs to ensure comprehensive
training.
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Table 3: Results on US court views generation. Best and second values are both highlighted.

Method ROUGE(%) BLEU(%)

R-1 R-2 R-L B-1 B-2 B-N

BM25 30.8 16.1 28.2 20.1 13.9 10.9
AC-NLG 35.8 18.5 32.7 23.6 16.2 12.7
Llama2-13B-ST 37.5 24.3 37.5 20.8 14.6 11.4
FT-Llama2-13B-ST 39.7 26.5 41.8 24.3 17.4 13.2
GPT4.0-ST 60.3 42.7 57.1 27.2 18.2 14.1
D3LMw/oPU 51.5 31.3 51.5 35.1 25.8 21.5
D3LMw/oLMRC 50.0 27.9 44.1 35.6 27.4 22.7
D3LMw/oRF 54.1 31.9 54.1 39.6 29.9 25.1
D3LM 63.3 53.1 59.2 38.7 31.7 26.9

4.3 Comparisons with Baselines
Evaluation Metrics. To evaluate our model, we
implemented both automatic and human assess-
ment methods. For automatic evaluation, we
used Rouge (Rouge-1, Rouge-2, and Rouge-L for
LCS-based statistics) and BLEU scores (BLEU-1,
BLEU-2, and an average of BLEU-1 to BLEU-4,
denoted as BLEU-N), which are benchmarks in
natural language generation tasks. Furthermore,
human judgment focused on three aspects: 1) flu-
ency, 2) accuracy, and 3) adoptable of rationales
in generating court views, rated on a five-point
scale (with 5 being the highest). This evaluation
was conducted by three legal professionals, ensur-
ing a comprehensive and expert assessment of the
model’s performance in producing contextually ac-
curate and legally coherent text. This streamlined
approach balances thoroughness with brevity, main-
taining the integrity of the evaluation process while
ensuring clarity and conciseness.

Table 4: Results of human judgement

MODEL FLUENT ACC. ADOPT

Llama2-13B-ST 4.68 4.32 4.03
GPT4.0-ST 4.74 4.39 4.06

D3LM 4.71 4.48 4.19

Baselines. We implement the following baselines
for comparison:
• BM25 (Robertson and Walker, 1994) is a classic
retrieval baseline that identifies the most closely
related text content between case fact descriptions
and court views’ rationale sections. In our study,
we treat all court views data (train, dev, test) as a
database, retrieving the court views with the high-
est relevance score to each case’s fact description
using BM25 as our baseline model.
• AC-NLG (Wu et al., 2020)is an attention and

counterfactual-based generative model, designed
to transform fact descriptions into court views by
training with these elements as input and output,
respectively.
• Llama2-13B-ST (Touvron et al., 2023) is a LLM
developed by Meta, which utilizes prompts and
fact descriptions as inputs to generate court views
responses. (ST means single-turn interaction be-
tween user and LLM.)
• FT-Llama2-13B-ST is a fine-tuned version of
Llama2-13B-ST. We use the training data to fine-
tune the model, employing fact descriptions as in-
put and court views as output in the fine-tune pro-
cess.
• GPT4.0-ST (Achiam et al., 2023)is an LLM cre-
ated by OpenAI, employing prompts and fact de-
scriptions to interactively produce court views re-
sponses.
• D3LMw/oPU is a variant of our proposed D3LM
model that does not incorporate positive-unlabeled
learning in its framework.
• D3LMw/oLMRC is a variant of our proposed
D3LM model excluding the use of language model
reading comprehension.
• D3LMw/oRF is a variant of our proposed D3LM
model that operates without the integration of rein-
forcement learning.
Experimental Result. In the automatic evaluation
detailed in Tab. 3, the D3LM model showcases su-
perior performance in generating U.S. court views,
achieving the highest ROUGE and BLEU scores.
Notably, GPT4.0-ST stands out as a particularly
strong competitor, especially in terms of ROUGE
metrics. Furthermore, the variant D3LMw/oRF reg-
isters impressively high BLEU scores, highlighting
its adeptness at capturing the subtle linguistic qual-
ities of the generated court views. The comparison
between D3LM and its ablated versions underlines
the significance of each individual module, con-
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Original Fact 
Description

During a robbery on the evening of January 15, 2015, defendant A allegedly used a firearm and shot a pursuing security guard. 
Surveillance footage captured part of the robbery, but A's presence at the scene has been disputed due to a timestamped 
hospital record indicating her hospitalization at the time of the incident.

Golden Court view Given the substantial evidence supporting defendant A's alibi, the court concludes that there is reasonable about regarding 
defendant A's involvement in alleged crime. Therefore, defendant A is found not guilty of the charges related to the use of a 
firearm and shooting a pursuing security guard during the robbery on January 15, 2015.

Masked Fact 
Description 

During a robbery on the evening of January 15, 2015, defendant A allegedly used a firearm and shot a pursuing security guard. 
Surveillance footage captured part of the robbery. 

GPT4.0 Court 
View

Defendant A faces serious charges, including armed robbery and aggravated assault, due to the use of a firearm in the 
commission of a crime and the subsequent shooting of a security guard.

PURL Node 
Selection

Alibi

Generated 
Question

Can you provide any evidence or details that confirm your whereabouts during the time of the incident?

Recovered Fact A timestamped hospital record.

D3LM Court View Based on the credible alibi provided, the court finds defendant A not guilty of the charges of armed robbery and aggravated.

Figure 4: Case Study.

firming that every element plays a vital role in the
overall success of the model in the complex task of
legal text generation.

In the human evaluation, as illustrated by Tab.
4, our D3LM model demonstrates superior per-
formance in accuracy and adaptability, achiev-
ing scores of 4.48 and 4.19, respectively, which
marginally exceed those of GPT4.0-ST by about 0.1
points in each metric. GPT4.0-ST, however, takes
the lead in fluency with a score of 4.74, proving to
be a formidable competitor in semantic coherence.
This could be attributed, in part, to our model’s
foundation on the Llama2-13B architecture. De-
spite this, the results emphasize D3LM’s capabil-
ity to generate precise and contextually adaptable
court views, underlining its efficacy in comparison
to a notably strong rival in legal text generation.

Table 5: Results of usability testing

Model Reli. Sati. Pref.(%)

GPT4.0-ST 3.03 3.17 37.7
D3LM 3.58 3.65 62.3

4.4 Human Acceptability

To ensure fairness when comparing our model’s
metrics with those of traditional LLMs, we con-
ducted a usability testing to gauge user experience
and perceptions regarding our approach, which in-
volves greater interaction with legal clients and
thus, allows our model to gather more case-specific
information. We invited 69 participants to evalu-
ate their experiences and opinions on the state-of-
the-art LLM, GPT-4.0, versus our model, D3LM,
across three key metrics: 1) Reliability (Reli.), the
perceived reliability of the models; 2) Satisfaction

(Sati.), the level of satisfaction with the models;
and 3) Preference (Pref.), their preference for ei-
ther model. We employed a five-point scale for
both reliability and satisfaction assessments (where
5 represents the highest rating), and participants
were asked to indicate a preference between GPT-
4.0 and D3LM.

The findings, detailed in Table 5, revealed that on
legal tasks, users reported approximately 0.5 points
higher reliability and satisfaction scores for D3LM
compared to GPT-4.0. Moreover, 62.3% of partici-
pants expressed a preference for using D3LM over
GPT-4.0. These results underscore the acceptance
and appreciation for our model’s interactive ques-
tioning approach, highlighting D3LM’s enhanced
accuracy and reliability in legal applications.

4.5 Case Study

Fig. 4 presents a comparison of court views gener-
ated by GPT4.0 and the proposed D3LM method
for a masked fact description in a specific US crim-
inal case. Upon comparison with the actual court’s
view, it is evident that our PURL feature within
D3LM can precisely recover the fact "Alibi" and
systematically generate questions to elicit further
information about the case. Consequently, D3LM
produces a more accurate court view than GPT4.0.

5 Conclusion and Future Work

Our study introduces D3LM, an innovative ap-
proach in legal assistant systems for court view
generation, diverging from traditional methods by
simulating real lawyer-client interactions. By in-
novatively employing Diagnostic Analysis through
continuous user engagement, we enable the gen-
eration of more accurate and case-specific court
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views. The introduction of our PURL algorithm
significantly enhances the precision of information
extraction. Additionally, we contribute a novel
English-language dataset for American legal cases,
meticulously validated by legal professionals, ad-
dressing the scarcity in legal analysis datasets and
setting new benchmarks in legal informatics. Fu-
ture work will explore extending this model to other
domains, such as medical and consultancy, leverag-
ing its capabilities for broader application.

Limitations

In our study, we explored the potential of Large
Language Models (LLMs) to improve legal as-
sistance through active engagement with clients,
prompting for case-specific details. However, our
findings underscore several limitations: the PURL
algorithm’s effectiveness is confined to the crimi-
nal cases domain due to its reliance on a special-
ized knowledge graph, which is not only resource-
intensive to create but also limits cross-domain ap-
plicability. Moreover, our evaluation was restricted
to English language cases, overlooking the model’s
performance in diverse linguistic contexts-a critical
consideration for global legal system applicability.
Furthermore, the model demands significant com-
putational and human annotation resources, with
its operational speed lagging behind that of existing
large models, potentially hindering its practicality
in time-sensitive settings. These challenges un-
derscore the need for future research to focus on
optimizing computational efficiency, broadening
linguistic and domain applicability, and reducing
resource dependencies, aiming to enhance the prac-
ticality and accessibility of LLMs in legal assis-
tance across a wider range of contexts.
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A Appendix

A.1 node attention
Given a masked case description embedding hi and
its corresponding subgraph node embeddings Hi.
We conduct node embedding as following:

eij = σ
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)
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Zi =
∑

j∈Hi

αijhij (7)

where σ denotes Relu activation function, [., .] rep-
resents embedding concatenation. Furthermore, we
concatenate the Zi with each fact node embedding
Hj

i , and pass through a MLP to obtain output prob-
ability as:

P
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j
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(8)

A.2 Prompt details
A.2.1 Case type classification
"Please select the most appropriate category from
the following options: Contract Law, Criminal Law,
Property Law, Intellectual Property Law, Busi-
ness Law, Tax Law, Estate and Trust Law, Fam-
ily Law, Administrative Law, Civil Law, Tort Law,
Bankruptcy Law, Environmental Law. Provide the
category name that best fits the case described be-
low."

A.2.2 IRAC summarization
"Based on the case description, please generate le-
gal case IRAC (Issue, Rule, Analysis, Conclusion)
in following pattern:
**Issue:**
Identifying the legal question or questions that need
to be addressed in the legal case.
**Rule:**

Stating the applicable legal rules, statutes, regula-
tions, or case law that pertain to the identified issue.
**Analysis:**
Applying the relevant legal rules to the facts or cir-
cumstances of the case. This involves explaining
how the rules should be interpreted and applied.
**Conclusion:**
Summarizing the court judgement to the legal is-
sue."

A.2.3 Fact-Rule graph extraction
"I’m developing a project to analyze legal cases
deeply by distilling case texts into concise formats
for graphical representation. Help me extract key
facts influencing court decisions, the applicable
rules, and the relationships between them without
considering the decision’s outcome. Facts should
be generalized (e.g., "Contract", "Damages") and
rules brief (e.g., "Civil Law", "Contract Law").
Edges should either show a fact’s dependency on
another fact ("Depends On") or its compliance with
or violation of a rule ("Complies With"/"Violates").
Provide three Python lists for networkx: facts, rules,
and edges, with edges formatted as (’Fact’, ’Rule’,
’relation’: ’Relation Type’). Ensure edges accu-
rately reflect the connections without adding non-
existent links. Respond in English with only the
lists in a single Python chunk, without extra text or
explanation."

A.2.4 Case reconstruction
"I have a detailed description of a legal case, in-
cluding the Issue, Rule, and Analysis of the case. I
would like you to help me rewrite this case’s IRA,
but please disregard the specific aspects that I will
mention below."

A.2.5 LLM reading comprehension
Question generation:
"I will provide a conclusion of a legal case, please
generate 10 unique questions and corresponding an-
swers based on the conclusion information. Please
do not give me explanation of the question, greet-
ing words and any annotation words, just give me
generated questions."

Scoring:
"I will provide a conclusion of a legal case, and 10
unique questions and golden answers, please use
the given conclusion to answer the 10 questions, if
the conclusion can correctly answer one question,
it will get one score, the maximum score is 10,
please tell me the final score of the conclusion:"
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A.3 Comparison between PU and PN

To verify the effectiveness of our positive-unlabel
module, we conducted a comparative experiment
between the PU (Positive-Unlabeled) approach and
the PN (Positive-Negative) approach. In the PN
setting, all unlabeled candidate nodes are treated
as negative. The results of the experiment are pre-
sented in Table 6. The accuracy, recall, precision,
F1, F2, and AUC scores for PU are significantly
higher than those for PN.

Table 6: Positive-Unalbeled vs Positive-Negative

Model Acc. Rec. Pre. F1 F2 AUC

PN 65.4 54.9 78.8 42.3 51.1 90.9
PU 87.3 86.1 86.8 86.4 86.3 92.8

A.4 CVG dataset generation algorithm

Algorithm 2 CVG Dataset Generation via LLM
Input: Legal cases set X
Output: CVG dataset {D,C,D,Q, F, Ĝ,G′, G, G}
1: Initialize D,C,D,Q, F, Ĝ,G′, G,G are all as empty

lists
2: for i = 1, 2, . . . , |X| do
3: Gi = LLMextract(Xi)
4: Di , Ci = LLMsummarize(Xi)
5: Qi = LLMgenerate(Ci)

6: Gi = Masked(Gi)

7: Di = LLMreconstruct(Di)
8: D ← D +Di C ← C + Ci

D ← Di +Di Q← Q+Qi

Ĝ← Ĝ+Gi Gi ← G+Gi

9: end for
10: G = Merge(Ĝ)
11: for i = 1, 2, . . . , |X| do
12: G′

i = GN-hop(Gi)
13: Fi = Extract(G′

i)
14: G′ ← G′ +G′

i F ← F + Fi

15: end for
16: Human_Check {D,C,D,Q, F, Ĝ,G′, G,G}
17: Return LLM-Generated CVG dataset
{D,C,D,Q, F, Ĝ,G′, G,G}

A.5 Domain PU model training

Algorithm 3 Train_Domain_PU
Input: Training cases fact descriptions set D; N-hop sub-

graphs set G′; positive class priors set π; training epochs
E; step size η; discount factor γ

Output: Domain_pu model parameters θ
1: Randomly initialize θ
2: Let A be an external SGD-like stochastic optimization

algorithm such as Adam (reference)
3: for e = 1, 2, . . . , E do
4: for i = 1, 2, . . . , |D| do
5: hi = Roberta(Di)
6: Hi = DiGCN(G′

i)
7: Denote positive instances in Hi as xi

p, unlabeled
instances in Hi as xi

u

8: if R̂−
u

(
g; xi

u

)
− πpR̂

−
p

(
g; xi

p

)
≥ 0 then

9: Set gradient∇θR̂pu

(
g; xi

p, x
i
u

)
10: Update θ by A with current step size η
11: else
12: Set gradient∇θ(πpR̂

−
p

(
g; xi

p

)
− R̂−

u

(
g; xi

u

)
)

13: Update θ by A with discounted step size γη
14: end if
15: end for
16: end for
17: Return Domain_pu model with updated parameters θ
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Figure 5: Reliability result
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Figure 6: Satisfaction result

Figure 7: Preference result
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