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Abstract
As a crucial task in the task-oriented dialogue
systems, spoken language understanding (SLU)
has garnered increasing attention. However, er-
rors from automatic speech recognition (ASR)
often hinder the performance of understanding.
To tackle this problem, we propose MoE-SLU,
an ASR-Robust SLU framework based on the
mixture-of-experts technique. Specifically, we
first introduce three strategies to generate addi-
tional transcripts from clean transcripts. Then,
we employ the mixture-of-experts technique to
weigh the representations of the generated tran-
scripts, ASR transcripts, and the corresponding
clean manual transcripts. Additionally, we also
regularize the weighted average of predictions
and the predictions of ASR transcripts by mini-
mizing the Jensen-Shannon Divergence (JSD)
between these two output distributions. Experi-
ment results on three benchmark SLU datasets
demonstrate that our MoE-SLU achieves state-
of-the-art performance. Further model analysis
also verifies the superiority of our method.

1 Introduction

Spoken Language Understanding (SLU) is a fun-
damental task in recent task-oriented dialogue sys-
tems, aimed at capturing the comprehensive seman-
tics of human speech. It plays an important role in
personal assistants like Amazon’s Alexa, Apple’s
Siri, and Microsoft’s Cortana (Young et al., 2013;
Cheng et al., 2023b; Zhuang et al., 2024). SLU fo-
cuses on two typical subtasks: intent detection and
slot filling (Tur and De Mori, 2011; Cheng et al.,
2024). Intent detection can be regarded as a seman-
tic classification task (Xu et al., 2021), aiming to
predict the user’s intent (Chen et al., 2022b; Zhou
et al., 2022). Slot filling could be approached as a
sequence labeling task, where the goal is to predict
the slot for each token (Zhou et al., 2021; Zhu et al.,
2024; Zhao et al., 2024; Song et al., 2024).

† Equal contribution.
* Corresponding author.

In the realm of SLU, there are two common ap-
proaches: pipeline methods and end-to-end meth-
ods. Pipeline methods involve the cascaded combi-
nation of automatic speech recognition (ASR) and
natural language understanding (NLU). The ASR
system transcribes acoustic input into text, which
is then fed into the NLU component to tackle the
specific task. On the other hand, end-to-end SLU
methods directly generate predicted results without
explicit separation of ASR and NLU (Huang et al.,
2022; Seo et al., 2022; Dong et al., 2023c).

When it comes to pipeline SLU methods, they
provide the advantage of seamless integration of
external datasets and the utilization of pre-trained
language models. However, they are prone to error
propagation, where mistakes from the ASR system
could adversely affect the accuracy of subsequent
NLU processing. As a result, enhancing the ASR
robustness of the SLU model becomes crucial.

An effective approach to mitigate the detrimen-
tal impact of errors arising from ASR is to learn
error-robust representations for SLU. D’Haro and
Banchs (2016) proposes a phrase-based machine
translation system trained with the words and pho-
netic encoding to automatically correct the ASR re-
sults. Mani et al. (2020) proposes a machine trans-
lation model that learns a mapping from the out-
of-domain ASR errors to in-domain terms found
in corresponding reference files. Leng et al. (2021)
utilizes edit distance-based alignments between the
encoder and decoder to perform ASR error correc-
tion. Dutta et al. (2022) bootstraps the BART-based
sequence-to-sequence model and leverages several
phonetically grounded fine-tuning strategies to en-
hance the correction of errors in ASR predictions.

In this paper, we propose MoE-SLU, an ASR-
Robust SLU framework based on the mixture-of-
experts technique to make better use of the clean
manual transcripts and the ASR transcripts. We pro-
pose three strategies to generate more transcripts
from clean transcripts, which could simulate more

14868



kinds of errors in real scenarios. Then we utilize the
mixture-of-experts method to weighted average the
representations of generated transcripts, ASR tran-
scripts, and the associated clean manual transcripts.
By learning the weights of different transcripts in
mixture-of-experts, the clean manual and ASR tran-
scripts are handled differently. Both the weighted
average of representations and the representations
of ASR transcripts are used to calculate the cross
entropy with the corresponding labels. In addition,
we also regularize these two predictions via mini-
mizing Jensen-Shannon Divergence (JSD) between
the two output distributions. Experimental results
demonstrate that our MoE-SLU outperforms previ-
ous ASR-Robust SLU models, and model analysis
also verifies the advantages of our method. To sum
up, the contributions of our work are three-fold:

• We propose an ASR-Robust SLU framework
MoE-SLU, which uses the mixture-of-experts
technique to make better use of the ASR tran-
scripts and the clean manual transcripts.

• Experiments on three public SLU datasets dis-
play that MoE-SLU achieves new state-of-the-
art performance, surpassing previous works.

• Model analysis further verifies that MoE-SLU
can indeed improve ASR robustness more ef-
fectively than previous works.

2 Related Work

ASR-Robust Spoken Language Understanding
SLU aims to understand the user’s current goal via
constructing semantic frames (Cheng et al., 2023c;
Dong et al., 2022, 2023a). Since SLU usually faces
the challenge of error propagation from the ASR
system, there are increasing attempts being made
to enhance ASR robustness in SLU. Various tradi-
tional methods have been proposed to solve SLU,
including support vector machine (SVM) and recur-
rent neural network (RNN) (Haffner et al., 2003).
Xu and Sarikaya (2013b) attempts to leverage log-
linear models to achieve intent detection.

Recently, many classification approaches based
on the neural network such as convolutional neural
networks (CNN) (Xu and Sarikaya, 2013a; Ravuri
and Stolcke, 2015) have been investigated. For in-
stance, Xia et al. (2018) leverages a capsule-based
neural network with self-attention for SLU. With
the recent remarkable performance demonstrated
by pre-trained models across different tasks (Zhu
et al., 2023a,b; Feng et al., 2023; Wu et al., 2024;
Huang et al., 2024b; Shen et al., 2024; Chen et al.,

2024), researchers began to explore the application
of BERT-based pre-trained models (Devlin et al.,
2019) in the field of SLU. Huang et al. (2022) ap-
plies LAS (Chan et al., 2016) and BART (Lewis
et al., 2020) as the pre-trained models and proposes
a multi-task learning framework termed MTL-SLT.
In this work, we utilize RoBERTa (Liu et al., 2019)
and Data2vec (Baevski et al., 2022) to acquire in-
variant representations between clean manual tran-
scripts and erroneous ASR transcripts.

Mixture-of-Experts Mixture-of-Experts is pro-
posed by Jacobs et al. (1991); Jordan and Jacobs
(1994), which allows for the processing of differ-
ent examples utilizing independent expert modules
and has been adopted in different domains. Hochre-
iter and Schmidhuber (1997) utilizes mixture-of-
experts to construct the large-scale language mod-
els. With the development of attention (Cao et al.,
2021; Zhu et al., 2022; Zhuang et al., 2022; Li et al.,
2022a; Xin et al., 2022, 2023b; Xin and Zou, 2023;
Yin et al., 2023; Xin et al., 2023a), researchers be-
gan to use mixture-of-experts to feed-forward net-
works to enhance the performance of Transformers.
Shazeer et al. (2017) uses mixture-of-experts in se-
quence learning. He et al. (2018); Cho et al. (2019)
uses mixture-of-experts in the generation tasks, and
Peng et al. (2020) leverages mixture-of-experts to
improve the performance of the translation models.
In addition, Zhang and Feng (2021) proposes the
mixture-of-experts wait-k policy to build a univer-
sal simultaneous machine translation method capa-
ble of delivering the high-quality translations with
arbitrary latency. In our study, we apply mixture-
of-experts technique to weighted average the rep-
resentations of the generated transcripts, the ASR
transcripts, and the associated clean manual tran-
scripts, which allows the model to leverage the dif-
ference between the clean manual transcripts and
the corresponding ASR transcripts more efficiently.

3 Method

In this section, we first propose three strategies to
generate additional transcripts from the clean tran-
scripts (§3.1). Then, we begin to introduce our pro-
posed ASR-Robust SLU framework MoE-SLU, in-
cluding a self-supervised contrastive learning mod-
ule in pre-training (§3.2) and a mixture-of-experts
module in fine-tuning (§3.3). Finally, we introduce
the training objective during the pre-training stage
and the fine-tuning stage (§3.4).
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Figure 1: The illustration of the proposed strategies.

3.1 Proposed Data Augmentation Strategies
To capture a wider range of the linguistic variations
and noise patterns in the real-world environments,
we propose three strategies to generate some addi-
tional transcripts from the clean transcripts, thereby
increasing the diversity of training data. The pro-
posed strategies include repetition, deletion, and
swap. Specific schematic illustrations of each op-
eration are depicted in Figure 1 for better clarity.
Since the changes brought about by these strategies
are minor, they usually do not alter the underlying
semantics of the original ASR transcripts. More-
over, in general, there are certain keywords in the
transcript which play a crucial role in determining
the intent. With the utilization of these three strate-
gies, the ability of the SLU model to capture these
keywords can be further improved.

Repetition Strategy As illustrated in the upper
part of Figure 1, the repetition strategy involves ran-
domly duplicating certain words in original ASR
transcripts. In real environments, it is common for
certain words to be repeated in the original speech.
The corresponding intent label remains unchanged
and the slots corresponding to the repeated words
are added to the original slot labels. By incorporat-
ing the strategy into the data generation process, we
can generate more transcripts that closely resemble
the real-life scenarios to enhance the ability.

Deletion Strategy As illustrated in the middle
part of Figure 1, similar to the repetition strategy,
we can also delete some words which are relatively
unimportant to generate some new transcripts. To

achieve this, we utilize CoreNLP1(Manning et al.,
2014) to extract non-nouns from the original tran-
scripts. Subsequently, we randomly delete some of
these non-nouns to generate new transcripts. The
corresponding intent label also remains unchanged
and the slots of the deleted words are deleted.

Swap Strategy As illustrated in the lower part of
Figure 1, we also propose a swap strategy that ran-
domly swaps two words in the original transcript to
obtain the new transcript. The corresponding intent
label remains unchanged and the slots of swapped
words are swapped accordingly.

3.2 Self-supervised Contrastive Learning

Following previous works (Chang and Chen, 2022),
we employ self-supervised contrastive learning dur-
ing pre-training to develop sentence representations
that are robust against to misrecognition and capa-
ble of handling the ASR errors. For a fair compari-
son, we utilize a pre-trained RoBERTa model (Liu
et al., 2019) and Data2vec (Baevski et al., 2022).
This continuous training process enables the SLU
model to learn from the rich patterns and structures
present in the input spoken language.

The mini-batch of input data is denoted as B =
(xp, xq), where xp represents a clean manual tran-
script and xq represents its associated ASR tran-
script. We first apply the proposed three strategies
to generate additional transcripts from xp. Then,
we employ the pre-trained model and use the last
layer representation of the special token [CLS] to
obtain the corresponding representation h. By do-
ing so, the model can capture the contextual infor-
mation and encode it to meaningful representation.

We leverage the self-supervised contrastive loss
Lsc (Gao et al., 2021) to adjust sentence represen-
tations. Lsc encourages similar representations for
semantically related pairs of transcripts while push-
ing apart the representations of the unrelated pairs.
This process could improve the ability of the model
to capture underlying semantic information in the
transcripts and promote the robustness against ASR
errors (Wang and Isola, 2020):

Lsc = −
∑

(h,h+)∈P
log

es(h,h
+)/τsc

∑
h′ ̸=h e

s(h,h′)/τsc

= −EP

[
s(h, h+)/τsc

]
+ E

[
log

(∑

h′ ̸=h

es(h,h
′)/τsc

)]

(1)

1https://stanfordnlp.github.io/CoreNLP
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Figure 2: The illustration of the fine-tuning stage. We use the proposed strategies (§3.1) to generate more transcripts
from clean manual transcripts and adopt mixture-of-experts (MoE) (§3.3) to weighted average the representations
by pre-trained model (PLM) of generated transcripts, ASR transcripts, and the associated clean manual transcripts.

where P denotes the positive pairs, τsc denotes the
temperature hyper-parameter to adjust the scale of
the cosine similarity function s(·, ·). Positive pairs
could be divided into the following three categories.
The first category is ASR transcripts and associated
clean manual transcripts, the second category is the
ASR transcripts and the associated generated tran-
scripts, and the third category is the clean manual
transcripts and the associated generated transcripts.
The negative pairs are all the remaining transcripts
in the same batch, including ASR transcripts, clean
manual transcripts, and the generated transcripts.

3.3 Mixture-of-Experts

As shown in Figure 2, to leverage the different char-
acteristics of the clean manual transcripts and ASR
transcripts more effectively, we design a mixture-
of-experts module in fine-tuning. For a transcript
xi = (xi1, x

i
2, . . . , x

i
m), we concatenate these rep-

resentations obtained by the pre-trained model and
feed the concatenation to a multi-layer perceptron
(MLP) to predict the confidence score βi:

βi = tanh([hi;hi1; . . . ;h
i
m]Wi + bi) (2)

where Wi and bi are the parameters of MLP, hi de-
notes the representation of the special token [CLS],
hi1, . . . , h

i
m denote the representations of the origi-

nal tokens, [·] denotes the concatenation operation.
For the input clean manual transcript x1 and its

associated ASR transcript x2, we employ repetition,
deletion, and swap strategies to obtain x3, x4, and
x5, respectively. We consider them as five experts
and then apply a softmax function to calculate the
weight Gi of the i-th expert:

Gi = softmax(βi) (3)

Then, we utilize x1, x2, x3, x4, and x5 as inputs
to the model and calculate the weighted average of

their predictions, denoted as ŷ:

ŷ =
5∑

i=1

Gi · F(xi) (4)

where F(·) denotes the corresponding predictions
of the SLU model. Through utilizing this approach,
the SLU model can assign different weights to the
generated transcripts, manual transcripts, and ASR
transcripts, effectively incorporating their respec-
tive strengths within the overall system.

3.4 Training Objective

Pre-training Motivated by recent success of pre-
trained models (Cao et al., 2022; Li et al., 2022b,
2023; Jin et al., 2023; Dong et al., 2023b; Yang
et al., 2024; Huang et al., 2024a), we proceed with
training the masked language model (MLM) during
the pre-training stage. Following Chang and Chen
(2022), the training loss Lpt is the weighted sum
of self-supervised contrastive learning loss Lsc and
an MLM loss Lmlm as follows:

Lpt = λLsc + (1− λ) · Lmlm (5)

where λ is the coefficient balancing the two tasks.

Fine-tuning Following E et al. (2019); Chen et al.
(2022a), the intent detection objective is:

L1
I = −

N∑

i=1

yIi log y
2,I
i (6)

L2
I = −

N∑

i=1

yIi log ŷi
I (7)

where yIi denotes the intent label, y2,Ii is the pre-
diction of the original ASR transcript, ŷiI denotes
the weighted average of the intent predictions, N
denotes the batch size, and n denotes the number
of the tokens in the utterance.
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For slot filling, we follow Dong et al. (2023c) to
perform it in the sequence generation style, and the
slot filling objective is as follows:

L1
S = −

N∑

i=1

n∑

j=1

yj,Si log y2,j,Si (8)

L2
S = −

N∑

i=1

n∑

j=1

yj,Si log ŷi
j,S (9)

where yj,Si denotes the slot label, y2,j,Si denotes the
prediction of the original ASR transcript, and ŷi

j,S

denotes the weighted average of slot predictions.
We also regularize the weighted average of the

predictions and the predictions of ASR transcripts
by minimizing JSD between output distributions:

LI
JSD =

N∑

i=1

JSD(y2,Ii , ŷi
I) (10)

LS
JSD =

N∑

i=1

n∑

j=1

JSD(y2,j,Si , ŷi
j,S) (11)

The final fine-tuning loss Lft is as follows:

Lft = L1
I + L2

I + L1
S + L2

S + γ(LI
JSD + LS

JSD)
(12)

where γ is the coefficient weight.

4 Experiments

4.1 Datasets and Metrics
Following previous works (Chang and Chen, 2022),
all the experiments are conducted on three widely-
used benchmark datasets, including SLURP, ATIS,
and TREC62. Table 1 presents the statistical infor-
mation of the three datasets.

Dataset #Class Avg. Length Train Test

SLURP 18× 46 6.93 50,628 10,992
ATIS 22 11.14 4,978 893
TREC6 6 8.89 5,452 500

Table 1: The statistics of all datasets. The test set of
SLURP is sub-sampled.

SLURP is a challenging SLU dataset, which en-
compasses diverse domains, speakers, and record-
ing settings. Each intent in SLURP is represented

2The SLURP dataset can be accessed at https://gith
ub.com/MiuLab/SpokenCSE, while the ATIS and TREC6
datasets can be accessed at https://github.com/Observe
ai-Research/Phoneme-BERT.

as a (scenario, action) pair, and the evaluation met-
ric for SLURP is joint accuracy, which considers
a prediction correct only if both the scenario and
action are accurately predicted. The corresponding
ASR transcripts are obtained using the Google Web
API3. ATIS and TREC6 are two additional SLU
datasets for flight reservation and question classifi-
cation tasks, respectively. For these two datasets,
the data synthesis involves a text-to-speech (TTS)
model followed by ASR transcription.

4.2 Baselines

We compare our MoE-SLU with six pipeline SLU
baselines, including RoBERTa (Liu et al., 2019),
Phoneme-BERT (Sundararaman et al., 2021), Sim-
CSE (Gao et al., 2021), and SpokenCSE (Chang
and Chen, 2022), and MCLF (Huang et al., 2023),
and ML-LMCL (Cheng et al., 2023a), and five end-
to-end SLU baselines, including MTL-SLT (Huang
et al., 2022), Speech-Brain (Ravanelli et al., 2021),
CTI (Seo et al., 2022), HuBERT SLU (Wang et al.,
2021), CIF-PT (Dong et al., 2023c). For a fair com-
parison, we report the results of MoE-SLU using
RoBERTa (Liu et al., 2019) and Data2vec (Baevski
et al., 2022) as the pre-trained models. The perfor-
mance of recent large language models including
ChatGPT4(OpenAI, 2023) and SpeechGPT (Zhang
et al., 2023) are also reported for comparison.

4.3 Implementation Details

During all the experiments, the model is pre-trained
for 10k steps on each dataset utilizing a batch size
128. To avoid overfitting, the model is fine-tuned
for up to 10 epochs with the batch size 256. Early
stop is employed if the loss on dev set does not
decrease for 3 epochs. For the SLURP dataset, two
separate classification heads are trained for the sce-
nario and the action, sharing the same embeddings.
For all the hyper-parameters, we conduct several
experiments and choose the values which perform
best. The mask ratio of the MLM task is set to 0.15,
τsc is set to 0.2, λ is set to 0.4, and γ is set to 2.
During both pre-training and fine-tuning, we utilize
the Adam optimizer (Kingma and Ba, 2015) with
β1 = 0.9, β2 = 0.98, and 4k warm-up updates to
optimize the parameters. The whole training pro-
cess typically lasts a few hours. All the experiments
are conducted on an Nvidia Tesla-A100 GPU.

3https://cloud.google.com/speech-to-text
4https://chat.openai.com
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Model Backbone
SLURP ATIS TREC6

Slot Intent Slot Intent Slot Intent

Pipeline SLU Models

RoBERTa (Liu et al., 2019) RoBERTa 74.55♣ 84.42 91.22♣ 94.86 74.82♣ 84.54
Phoneme-BERT (Sundararaman et al., 2021) RoBERTa 74.52♣ 84.16 92.24♣ 95.14 76.33♣ 86.48
SimCSE (Gao et al., 2021) RoBERTa 74.59♣ 84.88 91.87♣ 94.32 75.44♣ 85.46
SpokenCSE (Chang and Chen, 2022) RoBERTa 74.63♣ 85.64 92.81♣ 95.58 76.97♣ 86.82
MCLF (Huang et al., 2023) RoBERTa 74.89♣ 85.39 92.31♣ 95.22 77.31♣ 87.00
ML-LMCL (Cheng et al., 2023a) RoBETRa 78.28♣ 89.16 94.18♣ 97.21 77.59♣ 89.96

End-to-End SLU Models

MTL-SLT (Huang et al., 2022) LAS + BART 74.49 83.10 93.65 97.13 - -
Speech-Brain (Ravanelli et al., 2021) wav2vec 2.0 74.62 85.34 - - - -
CTI (Seo et al., 2022) wav2vec 2.0 + RoBERTa 74.66 86.92 - - - -
HuBERT SLU (Wang et al., 2021) HuBERT 78.92 89.38 - - - -
CIF-PT (Dong et al., 2023c) Conformer 78.67 89.60 - - - -
CIF-PT (Dong et al., 2023c) Data2vec 81.63 91.32 - - - -

Large Language Models

ChatGPT (OpenAI, 2023) 62.83 73.96 81.16 84.13 67.56 73.68
SpeechGPT (Zhang et al., 2023) 61.56 72.84 79.28 83.21 66.12 71.34

Ours

MoE-SLU RoBERTa 79.25† 89.92† 94.59† 97.73† 79.23† 90.43†
MoE-SLU Data2vec 82.71† 92.45† 94.92† 98.26† 79.67† 91.82†

Table 2: Results of slot filling and intent detection on three datasets. ‘†’ denotes MoE-SLU obtains statistically
significant improvements over baselines with p < 0.01. ‘♣’ and ‘-’ indicate that the results are not available in the
original papers and ‘♣’ indicates that the results are obtained based on our implementation.

4.4 Main Results

The performance comparison between MoE-SLU
and baselines is presented in Table 2. Based on the
results, we have the following observations:

(1) When RoBERTa is selected as the pre-trained
model, our MoE-SLU outperforms all the baselines
except CIF-PT which applies Data2vec as the pre-
trained model. Besides, when Data2vec is used as
the pre-trained model, the performance of our MoE-
SLU further boosts and surpasses all the baselines.
This improvement can be attributed to the proposed
strategies and the use of different weights assigned
to generated transcripts, ASR transcripts, and clean
manual transcripts. These distinct weights could en-
able the effective leveraging of the unique strengths
of different types of transcript.

(2) We adopt the evaluation method introduced
by He and Garner (2023) to assess the performance
of ChatGPT and SpeechGPT using ASR transcripts,
where the model is presented with 20 examples and
prompted to accommodate for ASR errors. From
the results, we can obviously observe that there is
a performance gap of approximately 20% between
these models and MoE-SLU on the SLURP dataset.
This performance degradation can also be observed

in other datasets. This discrepancy highlights the
challenges that language models might encounter
when it comes to comprehending spoken language
in the presence of noise. Therefore, enhancing the
robustness of LLMs to ASR input errors remains a
highly valuable area of exploration.

4.5 Analysis

In this section, several analytical experiments are
conducted. To maintain the fair comparison, we re-
port the performance of MoE-SLU with RoBERTa
as the pre-trained model unless stated otherwise.

4.5.1 Ablation Study
To provide evidence for the advantages of our MoE-
SLU model from multiple perspectives, we conduct
a set of ablation experiments on MoE-SLU. The
experiment results are shown in Table 3.

Effectiveness of the Proposed Strategies. One
of the core contributions of MoE-SLU is the pro-
posed three strategies, which enlarges the training
set. To evaluate the effectiveness of the three strate-
gies, we conduct three ablation experiments where
each strategy is individually removed. We denote
the processed results without each strategy as “w/o
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Model
SLURP ATIS TREC6

Slot Intent Slot Intent Slot Intent

MoE-SLU 79.25 89.92 94.59 97.73 79.23 90.43

w/o Repetition Strategy 78.71 (↓0.54) 89.29 (↓0.63) 94.18 (↓0.41) 97.21 (↓0.52) 79.01 (↓0.22) 90.07 (↓0.36)
w/o Deletion Strategy 78.52 (↓0.73) 89.09 (↓0.83) 93.91 (↓0.68) 96.99 (↓0.74) 78.78 (↓0.45) 89.92 (↓0.51)
w/o Swap Strategy 78.84 (↓0.41) 89.37 (↓0.55) 94.27 (↓0.32) 97.27 (↓0.46) 79.07 (↓0.16) 90.15 (↓0.29)
w/o MoE 77.99 (↓1.26) 88.24 (↓1.68) 93.37 (↓1.22) 96.35 (↓1.38) 78.07 (↓1.16) 89.11 (↓1.32)
w/o MoE + batch size↑ 78.03 (↓1.22) 88.26 (↓1.66) 93.43 (↓1.16) 96.41 (↓1.32) 78.11 (↓1.12) 89.16 (↓1.27)
w/o JSD 78.51 (↓0.74) 89.11 (↓0.81) 93.96 (↓0.63) 97.02 (↓0.71) 78.78 (↓0.45) 89.94 (↓0.49)

Table 3: Results of the ablation experiments when RoBERTa is selected as the pre-trained model.

Repetition Strategy”, “w/o Deletion Strategy”, and
“w/o Swap Strategy” in Table 3, respectively. When
any of the strategies is removed, we observe a sig-
nificant decrease. These results verify that the pro-
posed strategies can make a positive contribution to
ASR-Robust SLU. The reason is that these strate-
gies simulate more types of noise in the real-world
environments and improve the ability of the model
to capture the keywords, thereby indirectly enhanc-
ing the positive effects of mixture-of-experts.

Effectiveness of Mixture-of-Experts. Another
core contribution of our MoE-SLU is the utiliza-
tion of the mixture-of-experts approach, which is
designed to effectively leverage the different tran-
scripts. To validate the effectiveness of mixture-of-
experts, we conduct an ablation experiment where
we remove L2

I , L2
S , LI

JSD, and LS
JSD in Eq.12, de-

noted as “w/o MoE” in Table 3. We could also find
the obvious performance degradation. We believe
the reason is that through learning the weights in
mixture-of-experts, the model can benefit from the
distinctive strengths of different transcripts.

Contrastive learning benefits from a larger batch
size as it provides more negative examples to facil-
itate convergence (Chen et al., 2020). To delve into
whether the proposed mixture-of-experts approach,
rather than the indirectly increased batch sizes, is
responsible for the improvements, we double the
original batch size after not utilizing mixture-of-
experts, denoted as “w/o MoE + batch size↑” in
Table 3. The results show that these improvements
are indeed attributed to the proposed mixture-of-
experts approach rather than the boosted batch size.

Effectiveness of JSD. To verify the effectiveness
of JSD, we also remove LI

JSD and LS
JSD in Eq.12

and denoted it as w/o JSD in Table 3. The results
demonstrate that the accuracy drops by 0.81, 0.71,
and 0.49 in intent and 0.74, 0.63, and 0.45 in slot

on the three datasets, respectively, providing the ev-
idence that JSD further enhances the performance.
We suggest that the reason is that JSD serves as
a regularization mechanism that further promotes
the leveraging of the strengths inherent in different
transcripts and helps to prevent overfitting during
the entire training process.

4.5.2 Weight Analysis
We also report the learned weights of x1, x2, x3, x4,
and x5 in Eq. 4 on these three datasets. It is evident
that the transcripts after the deletion strategy carry
significant weight on all the datasets, aligning with
the findings mentioned in Sec. 4.5.1. Furthermore,
the transcripts after applying the repetition strategy
and the swap strategy retain certain weights, pro-
viding further validation of the effectiveness of our
proposed three data augmentation strategies.

Dataset G1 G2 G3 G4 G5

SLURP 0.13 0.18 0.21 0.31 0.17
ATIS 0.15 0.17 0.22 0.33 0.13
TREC6 0.14 0.17 0.23 0.34 0.12

Table 4: The learned weights in Eq. 4 on three datasets.

4.5.3 Visualization
To gain a deeper understanding of the impact and
contributions of the mixture-of-experts method, we
provide a visualization example on SLURP dataset
in Figure 3 based on Principal Component Analy-
sis (PCA) (Abdi and Williams, 2010). In our MoE-
SLU approach, the representations of clean manual
transcripts, transcripts after applying the proposed
strategies, and their corresponding ASR transcripts
are closely aligned, showcasing the robustness of
our method in handling ASR errors. However, in
the case of the previous best method, ML-LMCL,
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tell me this song

launch the rooster teeth podcast

launch rooster teeth podcast

reschedule meeting

(a) ML-LMCL (b) MoE-SLU

meeting reschedule
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Augment

Manualtell me this song

launch the rooster teeth podcast

reschedule meeting

reschedule

tell me the song

ASR

tell me this this song
tell me the song

rooster teeth podcast rooster teeth podcast

launch rooster teeth podcast
reschedule

Figure 3: Visualization of representations of clean man-
ual transcripts, transcripts after applying proposed strate-
gies, and ASR transcripts. Circles, squares, and trian-
gles in the same color indicate the corresponding tran-
scriptions are associated.

although the representations of clean manual tran-
scripts and the corresponding ASR transcripts are
also relatively close, they are distant from the as-
sociated transcripts after using the proposed strate-
gies, which further supports that our MoE-SLU can
effectively capture and utilize the unique informa-
tion provided by different transcripts, resulting in
the improved performance in aligning and compre-
hending the spoken language.

4.5.4 Performance at Different Noise Levels
To better investigate the impact of different noise
levels, we separate the test set of SLURP dataset
into eight groups based on their WER and demon-
strate the intent accuracy in Figure 4. We choose a
previous ASR-Robust SLU model ML-LMCL and
an SLU model MISCA (Pham et al., 2023) which is
not specially designed for improving ASR robust-
ness. We can obviously observe that MISCA is sig-
nificantly influenced by ASR errors, which proves
the necessity of developing the ASR-Robust SLU
frameworks. Compared to ML-LMCL, MoE-SLU
indeed improves ASR Robustness more effectively,
which further verifies the superiority of our method.
We believe the reason is that our method leverages
different strengths of each type of transcript.

5 Conclusion

In this paper, we propose a new ASR-Robust SLU
framework MoE-SLU. We design three strategies
to simulate more kinds of errors in the real environ-
ment and apply mixture-of-experts to leverage the
different transcripts more effectively. Experiments
and analysis on three datasets show that our model
significantly outperforms previous models. Future
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Figure 4: Accuracy of MISCA, ML-LMCL, and MoE-
SLU at different levels of WER.

work will focus on exploring how to make better
use of the unique strengths of different transcripts.

Limitations

While MoE-SLU demonstrates substantial improve-
ments over existing ASR-Robust SLU models, it
is important to note that as previous works (Chang
and Chen, 2022), we currently still rely on the ASR
transcripts for pre-training and fine-tuning to align
with the target inference scenario. However, ASR
transcripts may not always be readily available due
to the constraints of ASR systems. Therefore, our
future research will aim to improve ASR robustness
without relying on any ASR transcripts throughout
the training and inference process.

Ethics Statement

We perform all experiments applying publicly avail-
able datasets that have been pre-processed for aca-
demic research purposes. As a result, these datasets
do not contain any information which could iden-
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tent. Though our framework could achieve state-of-
the-art performance, it is essential to acknowledge
that the results generated by our SLU framework
might not be entirely perfect. So it is advisable for
individuals not to depend solely on the generated re-
sults. In real-world applications, it is recommended
to be assisted by humans to ensure accuracy.
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