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Abstract

The programming skill is one crucial ability
for Large Language Models (LLMs), necessi-
tating a deep understanding of programming
languages (PLs) and their correlation with nat-
ural languages (NLs). We examine the impact
of pre-training data on code-focused LLMs’
performance by assessing the comment den-
sity as a measure of PL-NL alignment. Given
the scarcity of code-comment aligned data in
pre-training corpora, we introduce a novel data
augmentation method that generates comments
for existing code, coupled with a data filtering
strategy that filters out code data poorly cor-
related with natural language. We conducted
experiments on three code-focused LLMs and
observed consistent improvements in perfor-
mance on two widely-used programming skill
benchmarks. Notably, the model trained on the
augmented data outperformed both the model
used for generating comments and the model
further trained on the data without augmenta-
tion.

1 Introduction

The development of Large Language Models
(LLMs) has made remarkable strides across various
domains, including the field of code understanding
and generation. Works such as CodeGen (Nijkamp
et al., 2023), StarCoder (Li et al., 2023a), and Code
Llama (Rozière et al., 2023a) have achieved signif-
icant breakthroughs in the task of natural language
to code (NL2Code). Moreover, aligning natural
language descriptions with their corresponding ex-
ecution code to expand code-related training corpus
to further enhance the model’s coding capabilities
has become a research focus for scholars (Yin et al.,
2018; Ahmad et al., 2021; Wang et al., 2021b; Nee-
lakantan et al., 2022; Muennighoff et al., 2023;
Chai et al., 2023). Code Llama (Rozière et al.,
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Language #Chars of Comment #Chars Comment Density
C# 5.4B 30.8B 0.1764

C++ 6.6B 38.0B 0.1753
Go 3.0B 19.6B 0.1553

Java 12B 66.8B 0.1917
JavaScript 6.3B 46.9B 0.1352

PHP 5.1B 42.3B 0.1207
Python 9.6B 44.1B 0.2187
Ruby 0.9B 5.18B 0.1821
Rust 1.1B 6.44B 0.1641

TypeScript 2.4B 20.1B 0.1207
Average 5.3B 32.0B 0.1670

Table 1: Comment density across ten mainstream pro-
gramming languages in StarCoder (Li et al., 2023a).
#Chars of Comment indicates the number of non-white
characters of the code comment. #Chars is the total
number of non-white characters. In fact, high quality
repositories even have comment density exceeding 40%,
such as the case of mini redis1. This suggests that the ex-
isting code dataset indeed contains too few comments.

2023a), which is currently one of the most popular
code LLMs, also mentioned that 8% of their sample
data was sourced from natural language datasets
related to code. In fact, comments are the natural
language components that are inherently related
to code. Guo et al. (2022) had conducted ablation
experiments to demonstrate that training models on
code data with comments leads to improved ability.
Moreover, the textbook and exercise data proposed
by Gunasekar et al. (2023a), which is considered a
prior work in the field of code LLMs, can be con-
sidered a form of comment in a sense. However,
generating a large amount of such data using GPT
is infeasible due to cost considerations.

Considering that the alignment between natural
language and code has not yet been relatively ex-
plored, comments serve as a representative and cru-
cial bridge between the two. Therefore, the primary
objective of this work is to explore the significance
of comments. An intuitive supposition posits that
an augmentation in training corpus that aligns code

1https://github.com/tokio-rs/mini-redis
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Figure 1: Illustrates the workflow of our proposed self-augmentation method. Firstly, it enables LLMs to generate
comments for code through instruction tuning. Then, LLMs generate comments for existing code. The further
training is conducted on enriched code data with comments, aiming to achieve self-augmentation.

and natural language (comments) will invariably
enhance the model’s performance. To quantify this
alignment, we initially delineate “comment density”
as the ratio of the number of non-white characters
in comments to the total number of non-white char-
acters and then examine how different levels of
comment density impact downstream tasks.

As shown in Table 1, existing comments in code
are limited. This severely hinders our goal of im-
proving model performance and training efficiency
by increasing the amount of aligned corpus be-
tween code and natural language. Therefore, we
propose a novel method aimed at generating more
aligned data, which is characterized by utilizing
the powerful generation capabilities of LLMs to
generate comments for the original code data. To
accomplish this, we require a model capable of
understanding code and providing corresponding
comments. From this perspective, our method can
also be viewed as a form of specialized data dis-
tillation. While, unlike traditional data distillation
methods that rely on a teacher model, our approach
accomplishes knowledge distillation through self-
supervision. This represents the key distinction
between our method and existing data distillation
techniques. Table 2 provides detailed information
on existing works.

To ensure that the code remains unchanged dur-
ing LLMs generation and accelerate the genera-
tion process, we propose a constrained generation
approach that generates data on a line-by-line ba-

sis, thereby circumventing the procedure of LLMs
deleting, modifying the original code or producing
new code. Considering the need to exercise caution
in trusting the comments added by the model, we
introduce a discriminator in this study to filter out
extreme cases. The discriminator evaluates the gen-
erated comments and filters out samples that exhibit
significant differences from the original code. In
our experiments, we observe that utilizing LLMs
for comments generation not only enhances the
capabilities of the base model but also facilitates
self-augmentation. The overall framework of this
work is depicted in Figure 1

We highlight our contributions as follows:

• We discovered that the density of comments
in pre-training code significantly affects the
performance of LLM models in downstream
tasks, and based on this, we proposed a new
data augmentation method.

• We introduced a new inference method for
generating comments, forming an efficient
self-augmentation pipeline.

• Our method achieved substantial improve-
ments on Llama 2, Code Llama, and In-
ternLM2.

2 Related Work

2.1 Alignment between Code and Natural
Language

Yin et al. (2018) proposed the effective uti-
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Models SFT Pre-Training Natural Language Code Samples Tokens
phi-1(Gunasekar et al., 2023b) ✓ ✓ ✓ - 1B

WizardCoder(Luo et al., 2023a) ✓ ✓ 78K -
WaveCoder(Yu et al., 2023) ✓ ✓ 20K -

phi-1.5(Li et al., 2023b) ✓ ✓ - 20B
WizardLM(Xu et al., 2023) ✓ ✓ 250K -
Genie(Yehudai et al., 2024) ✓ ✓ 300K -

Self-Instruct(Wang et al., 2023) ✓ ✓ 82K -
Ours ✓ ✓ 6.5M 15.2B

Table 2: Existing data distillation methods rely on a teacher model to acquire knowledge, and are limited by the
amount of available data.

lization of highly correlated Natural Language-
Programming Language (NL-PL) pairs to enhance
the capabilities of code models in tasks such as
code retrieval, summarization, and generation. Ah-
mad et al. (2021) employed Denoising Pre-training
to establish semantic relationships between natu-
ral language and code, resulting in promising out-
comes. Similarly, Wang et al. (2021b) focused on
aligning natural language and code by incorporat-
ing NL2Code and Code2NL generation tasks into
the pre-training phase. Neelakantan et al. (2022)
achieved superior performance over CodeBERT in
the code retrieval task by employing contrastive
learning to align code and natural language. Muen-
nighoff et al. (2023) enhanced the code model’s
ability to generate code that follows natural lan-
guage by utilizing commit messages.

The significance of comments as a component
inherently related to code has also garnered con-
siderable interest in research. Feng et al. (2020)
employed the Masked Language Modeling (MLM)
task on code data with comments to train a pre-
trained model, yielding excellent results. Wang
et al. (2021a), on the other hand, utilized Con-
trastive Learning to align code with comments.
Furthermore, Guo et al. (2022) conducted ablation
experiments to demonstrate that training models on
code data with comments leads to improved out-
comes. In order to align natural language (NL) and
code, Christopoulou et al. (2022) conducted a two-
stage training specifically on the pairs of NL-code.
This approach resulted in a significant performance
improvement of approximately 70% compared to
the single-stage training. While PL-NL alignment
is of paramount importance, it is challenging to
obtain naturally aligned data at the scale required
for pre-training purposes.T herefore, we employ
LLMs to generate corresponding natural language
expressions based on the existing code.

2.2 Data Augmentation in the Field of Code
Code augmentation techniques can be categorized
into Rule-based Techniques and Model-based Tech-
niques. Rule-based methods often involve tech-
niques such as replacing variable names, renaming
method names, and inserting dead code to trans-
form code snippets. Some code transformations
also consider deeper structural information, such as
control-flow graphs (CFGs) and use-define chains
(UDCs) (Quiring et al., 2019). Model-based Tech-
niques commonly utilize pre-trained models to re-
place non-keywords in the original data (Song et al.,
2022). Another approach employed is similar to
Back-Translation, where code translation tasks are
augmented by translating between two program-
ming languages using natural language as an inter-
mediate language (Sennrich et al., 2016).

In addition, there are also several methods based
on Example Interpolation Techniques. For instance,
Dong et al. (2022) merged rule-based techniques
for source code models with mixup to blend the
representations of the original code snippet and
its transformed counterpart. Li et al. (2022) intro-
duces two novel interpolation techniques, namely
Binary Interpolation and Linear Extrapolation, for
source code models. Diverging from the aforemen-
tioned approach, we present a novel methodology
as the pioneering endeavor to enhance comments
by leveraging existing code.

2.3 Data Distillation in the Field of LLMs
In this work, our approach of data augmentation
through the utilization of LLMs can be regarded
as a form of data distillation. Such tasks typically
rely on two processes: generation and filtering. Un-
natural Instructions and Self-Instruct (Honovich
et al., 2023; Wang et al., 2023) have employed this
method in the creation of an instruction dataset.
While following the aforementioned two steps,
WizardLM and WizardCoder (Xu et al., 2023; Luo
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Language C# C++ Go Java JavaScript
Instruct Num 447 364 425 435 458

Language Python PHP Ruby Rust TypeScript
Instruct Num 495 449 466 391 462

Table 3: We constructed over 4000 instruction data from
a total of 10 mainstream code of StarCoder (Li et al.,
2023a).

et al., 2023a) utilized an Instruction Evolver to gen-
erate more diverse data. In fact, as the competency
of the Teacher model has advanced, numerous stud-
ies have gradually phased out the step of using a
discriminator to filter data (Gunasekar et al., 2023b;
Li et al., 2023b).

However, the data generated by these methods
all originates from the Teacher model, which of-
ten limits them to the knowledge of the Teacher.
To mitigate this limitation, GENIE (Yehudai et al.,
2024) proposes generating task-specific examples
from the content. Similarly, in WaveCode (Yu et al.,
2023), the code generation task involves generat-
ing instructions from code. Taking a step further,
our method completely liberates itself from the
constraints of a teacher model, enabling highly ef-
ficient generation of large-scale pre-training data.

3 Method

Indeed, generating comments for existing code by
using LLMs is not a simple task for us with two
principal challenges. Firstly, LLMs often struggle
to effectively follow the “add comments” instruc-
tion, resulting in code loss or insufficient comment
additions, especially for longer code files. Sec-
ondly, generating comments for large-scale pre-
training code data can be computationally expen-
sive, leading to significant training costs for the en-
tire model. Appendix A is a bad case where LLMs
fail to follow the instruction of “add comments”.

3.1 Instruction Tuning for Comment
Generation

In order to endow LLMs with the capacity to rig-
orously follow “add comments” instructions, we
deliberately constructed an Instruction dataset for
fine-tuning LLMs.

Instruction Dataset In this work, we selecte
over 4000 samples from the 10 distinguished
programming languages discussed in StarCoder
Datasets (Li et al., 2023a). These samples were
then augmented with corresponding comments us-
ing the GPT-4 model (OpenAI, 2023), resulting

Prompt: Please add detailed comments to the following code:
```python
from ..remote import RemoteModel
class NetworkDevicesGridRemote(RemoteModel):

properties = ("id",
"DeviceID",
"DeviceIPDotted",
"DeviceName",
"DeviceType",
)

```

Output: ```python\n<|EOT|>\n```

Figure 2: A code of such nature, which is uncompli-
cated and composed solely of a single class definition,
is deemed as low-quality training data. Consequently,
we designate the output of this instructional data as
<|EOT|>. This leads to the scenario where, upon fine-
tuning an LLM with this variety of instruction data,
the LLM gains the competency to discern such inferior
quality data.

in the creation of an extensive instruction dataset.
Following a meticulous manual screening process,
we refined the dataset, retaining a total of 4394
high-quality instruction data instances. Then, we
convert the prompt and code into Markdown for-
mat. Please find the sample of our instruction data
from Appendix B

To mitigate the risk of the model overfitting
to the specific characteristics of the instruction
data, we incorporated additional datasets: CodeAl-
paca (Chaudhary, 2023) and Evol-Instruct-Code-
80k (Luo et al., 2023b). To ensure the uniqueness
of our instructions, we meticulously removed any
instruction data with comments that overlapped
with the CodeAlpaca and Evol-Instruct-Code-80k
datasets. After creating instruction data, we use it
to finetune our base model: CodeLlama-7b (Roz-
ière et al., 2023a) and obtain a code comments
generator.

For a comprehensive overview of the language
distribution within our instruction dataset for com-
ment generation, please refer to Table 3

Implicit Filter Although the StarCoder (Li et al.,
2023a) dataset underwent certain filtering pro-
cesses, there are still some data instances that lack
training value (e.g., containing only module im-
ports, version specifications, or very simple class
definitions). To counteract this predicament, we
incorporated particular samples within the instruc-
tion datasets, wherein the output was designated
as “<|EOT|>” to signify that the model does not
deem the input code is worth adding comments.
This strategy is designed with the objective of en-
dowing the model with the capacity to recognize
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high-quality code data throughout the process of
comments generation. Figure 2 provides an exam-
ple of such a sample. Please refer to Appendix C
for more details.

3.2 NL-Aligned Code Data Generation
To ensure the preservation of the original code dur-
ing the comments generation process and to facili-
tate a degree of acceleration, we introduce a novel
method of constrained generation. Indeed, preser-
vation of the original code is crucial to avoid the
model generating illusory, repetitive code. Further
details and information regarding this aspect can
be found in the Appendix D

Constrained Generation In the task of generat-
ing comments for existing code, there is a notable
characteristic in the LLM’s decoding stage: the
generated content of the model can be easily sep-
arated into comments and code on a line-by-line
basis. Since the code is precisely the input given
to the model, we can directly skip the process of
generating code by the model.

More formally, let C = {Ci} represent the
code data for which comments are to be gener-
ated, where Ci denotes the i-th line of the code.
Let x = {prompt, C} be the input sequence, and
ylt be the t-th token generated by the LLM in the
l-th line. It is worth noting that this generation
process is performed on a line-by-line basis.

ylt ∼
{
P (y|x, y<l, yl<t) yl<t is comment,
Cj yl<t is code.

(1)

In fact, during the process of generating each
line of data of LLMs, it is possible to determine
whether a particular line is code or not by using
regular expressions with just a few initial tokens.

Please refer to Algorithm 1 for the pseudo code
and Figure 3 for an illustration of our method.

Explicit Filter To exclude exceedingly poor in-
stances in the comments generated by LLMs and
ensure the quality of generated comments, we in-
troduce two additional filtering rule:

• Excluding code data generated by LLMs that
does not adhere to the markdown format.

• Excluding code data generated by LLMs
where the discrepancy in length between the
generated code and the original code exceeds
100%.

Algorithm 1: Constrained Generation Al-
gorithm

Input :x: Input sequence
C = {C1, . . . , Cn}: List of code

Output :y: Generated sequence

1 y ← [] ; /* Initialize empty output sequence
*/

2 while true do
3 o← LLM(x, y) ; /* Generate next output

token using LLM */
4 if not gen_code (y, o) then
5 APPEND (y, o) ; /* If not generating

code, append token to output */
6 else
7 EXTEND (y, POP (C)) ; /* If generating

code, extend output with next code
constraint */

8 if stop (y) then
9 break ; /* Break loop if stopping

condition is met */

3.3 Self Augmentation

Upon executing the aforementioned two processes,
we will acquire a high-quality code dataset with
extensive comments. We can then proceed to con-
duct additional training to augment the capabili-
ties of our base model, resulting in a better code
LLM. This process engenders a self-augmentation
feedback loop. Subsequently, the better LLM will
serve as the base code LLM for the next iteration
of self-augmentation, to be performed repeatedly.
The overall process of our approach is illustrated
in Figure 1.

4 Experiments

We initially lay the foundation with empiri-
cal evidence on the Llama 2 model (Touvron
et al., 2023), illustrating that the fortification
of alignment between code and natural lan-
guage—particularly through the amplification of
comment density—profoundly influences down-
stream tasks. Subsequently, we apply our proposed
methodology to the Code Llama model (Rozière
et al., 2023b), underscoring its capacity not merely
to bolster weak baselines such as Llama 2, but also
to achieve self-augmentation on models like Code
Llama, distinguished by their exceptional perfor-
mance in code generation tasks. Moreover, we have
substantiated through the InternLM2 (Team, 2023)
which is the most recent state-of-the-art LLm in
the field. that the PL-NL alignment data, gener-
ated by CodeLLama, retains its efficacy for other
models. All models were validated on the Hu-
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Figure 3: Illustration of the constrained generation algorithm. During the generation process, the code will be
directly copied into the output until it encounters the marker indicating the beginning of a comment (#, ”’ or """ for
Python). The commented portion is generated by the code comment generator until the end of the comment (\n, ”’
or """, correspondingly).

manEval (Cobbe et al., 2021) and MBPP (Austin
et al., 2021) datasets.

4.1 Dataset

As an initial step, we selected to utilize the Python
data from StarCoder (Li et al., 2023a) as our exper-
imental validation dataset, henceforth referred to as
SP (StarCoder Python) to circumvent any potential
confusion. Leveraging the instruct data formulated
in the preceding section, we enacted instruct tuning
on the CodeLlama-7b model, thereby equipping it
with the capability to generate comments for code.
This model was subsequently employed to append
comments to the SP dataset.

Owing to the existence of code data in StarCoder,
characterized by an excessive number of tokens, the
procedure of incorporating comments frequently
surpasses the model’s maximum sequence length.
Consequently, we opted to exclude this subset of
data from the comment addition process, preserv-
ing it for subsequent datasets.

Within our approach, we integrated both implicit
and explicit filters to ensure the integrity of the
code data and the generated comments. As a result,
a considerable proportion of data was unable to
pass through the implicit filter (model outputting
<|EOT|>) or the explicit filter during the comment
generation process. We adopted two distinct strate-
gies to address this situation:

• Discarding the data that failed to traverse
the implicit or explicit filter, culminating
in a superior-quality dataset labeled Com-
mentPack / Remove (CP/Remove, remove
<|EOT|> samples in comment-packed python
data).

Dataset #Samples Comment Density (%) #Tokens
StarCoder Python 12.8M 21.87 20.8B

StarCoder Python / Remove 6.54M 23.08 13.1B
StarCoder Python / Absent 12.8M 0.0 16.7B

CommentPack / Restore 12.8M 32.59 21.5B
CommentPack / Remove 6.54M 38.23 15.2B

Table 4: Number of samples, comment density and
number of tokens of the corresponding code datasets.

• Substituting the model’s output with the origi-
nal code data for instances that were unable to
pass through either filter, leading to a lower-
quality dataset (maintaining the same scale as
the original dataset), designated as the Com-
mentPack / Restore (CP/Restore, substitute
raw StarCoder data for <|EOT|> samples in
comment-packed python dataset) dataset.

Moreover, to streamline comparisons with the
CP/Remove dataset, we gathered the corresponding
original data for these instances, thereby construct-
ing the StarCoder Python / Remove (SP/Remove,
remove <|EOT|> samples in original python dataset
of StarCoder) dataset.

In addition, to validate the importance of com-
ments in the code dataset, we utilized regular ex-
pressions to eliminate all comments from the SP
dataset, thus creating a pure code dataset. This
dataset solely consists of code samples without
any accompanying comments, named StarCoder
Python / Absent (SP/Absent, means the absence
of comments in the python dataset of StarCoder)
Table 4 provides a detailed overview of the datasets
mentioned.

4.2 Training Details
Further Training Our optimizer is AdamW
(Loshchilov and Hutter, 2019) with β1 and β2 value
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MODEL DATA
HumanEval MBPP

pass@1 pass@5 pass@10 pass@1 pass@5 pass@10

Llama2-7b

- 12.25 19.75 23.73 20.81 29.10 37.75
SP/Absent 16.46 27.87 34.22 19.00 40.10 48.16
SP 17.07 31.09 39.06 20.40 52.45 50.90
CP/restore 23.17 31.79 38.84 29.20 41.20 49.34

CodeLlama-7b

- 31.10 45.75 56.81 42.80 56.50 64.82
SP 32.32 43.70 53.41 45.00 58.03 65.41
SP/Remove 33.54 46.87 57.33 44.80 57.68 65.23
CP/Restore 32.32 47.81 57.27 44.20 57.10 64.97
CP/Remove 39.02 51.89 61.50 43.00 56.70 64.97

InternLM2-7b-base
- 32.32 49.64 60.13 41.40 54.06 62.23
SP 35.98 49.82 59.57 43.00 56.24 64.18
CP/Remove 40.20 50.90 60.78 43.00 56.87 64.99

InternLM2-7b
- 43.29 56.31 67.64 44.00 57.72 63.10
SP 42.70 59.67 70.72 42.60 61.61 67.18
CP/Remove 49.39 58.04 68.27 47.80 64.89 71.12

Table 5: Experiment results of further pre-training. "-" indicates the origin model without tuning. Almost all of the
base models achieved leading performance on dataset SC/Remove, especially in the results of Pass@1.

of 0.9 and 0.95. We use a cosine scheduler with 250
warm-up steps, and set the final learning rate to be
1/10 of the peak learning rate. We use a batch size
of 4M tokens which are presented as sequences of
4,096 tokens for Llama 2, 16384 tokens for Code
Llama and InternLM 2. 40B tokens in total. We set
the initial learning rate to 1e−5 for Llama 2, 3e−6

for Code Llama and InternLM2.

Instruction Training To further assess the per-
formance of our model, we conducted instruction
tuning using the dataset proposed by Alchemist-
Coder(Song et al., 2024). The training was per-
formed with a batch size of 512K tokens, organized
as sequences of 8192 tokens. We employed a learn-
ing rate of 1e−5 and trained the model for 2 epochs
on a cluster consisting of 32 NVIDIA A100-80GB
GPUs.

4.3 Data Distillation

Table 5 shows the experimental results conducted
on the Llama2-7b model. The results clearly
demonstrate that as the comment density increases
(with a comment density of 0 for “SP/Absent”
and a density of 38.23% for “CP/Remove”), the
model’s performance exhibits significant improve-
ments transitioning from 16.46 to 23.17 on Hu-
manEval dataset, 19.00 to 29.20 on MBPP dataset.

From Figure 6(a), it is clear that when train-
ing with the same number of tokens, data with

a higher comment ratio achieves better results in
downstream tasks. This result indicates that, un-
der the same amount of data, a higher comment
density makes it easier to learn the code, improves
the alignment between natural language and code,
and is more beneficial for code generation-oriented
downstream tasks

4.4 Self-Augmentation
Firstly, Table 5 provides a comprehensive overview
of the results obtained from Further Training of
Code Llama on the SP and CP/Restore datasets.
The analysis reveals that merely replacing the fil-
tered data, removed by explicit and implicit fil-
ters, with the original data does not significantly
improve the model’s performance on downstream
tasks. However, when the filtered data is com-
pletely removed (as observed in Code Llama’s re-
sults on SP and SP/Remove), a certain degree of
improvement can be observed on the HumanEval
evaluation set. Although this improvement may not
be substantial, it still underscores the necessity of
the filters. Similar conclusions can be drawn from
the comparison of Code Llama’s further training
results on CP/Restore and CP/Remove datasets.

For the same filtered data, the addition of more
comprehensive comments leads to significant per-
formance gains on HumanEval after further train-
ing (as evident from Code Llama’s results on
CP/Remove and CP/Restore). However, it should
be acknowledged that the structure of MBPP’s data
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Figure 4: HumanEval performance variation with respect to the number of training tokens.

MODEL DATA HumanEval MBPP
CodeLlama-7b - 63.40 53.20
CodeLlama-7b SP 66.46 55.80
CodeLlama-7b CP/Remove 65.85 58.60

Table 6: Experiment Pass@1 result in HumanEval and
MBPP of Instruction Fine-tuning."-" indicates the origin
model without tuning.

and the way we incorporate data into the code dif-
fer significantly, and we did not achieve substantial
improvements during the further training phase on
MBPP. Nevertheless, we discovered that this does
not imply a lack of substantial performance en-
hancement for the model. In fact, as show in Table
6, when Code Llama undergoes instruction tuning
after further pre-training on SP and CP/Remove
datasets, it further enhances the model’s adaptabil-
ity to the MBPP dataset, resulting in a notewor-
thy improvement of 5.4% pass@1 on CP/Remove.
Please refer to the Appendix E for the results of
Pass@5 and Pass@10.

Furthermore, the comment generated by our ap-
proach on Code Llama remain effective for other
models as well (as demonstrated by the comparison
with further training results on SP and CP/Remove
of InternLM2, where Code Llama’s comments
yield a significant improvement of 6% pass@1
on HumanEval for the InternLM2-7b-base model,
6.6% pass@1 on HUmanEval, 5.2% pass@1 on
MBPP for the InternLM2-7b model).

Lastly, Figure 6(b) demonstrates that the data
quality of SP/Remove surpasses that of SP. Further-
more, after incorporating comments into SP/Re-
move (CP/Remove), there is a significant quali-
tative improvement in the dataset’s quality. This
leap in data quality can be observed if we acknowl-
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Figure 5: Heat map of speedup ratio across different
combinations of instance numbers and batch sizes.

edge the close correlation between data quality and
downstream tasks, under the assumption that the
base model remains consistent.

4.5 Constrained Generation

We have implemented the Constraint Generation
method on LMDeploy2 and demonstrated its effec-
tiveness in accelerating decoding under different
experimental. Despite LMDeploy already incor-
porating various acceleration techniques such as
page attention, our method exhibits notable speed
improvements.

As evident from Figure 5, the results indicate
that our method achieves the most significant accel-
eration when the batch size and instance number
are relatively small. Even when the GPU is oper-

2https://github.com/InternLM/lmdeploy
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Figure 6: Heat map of data quality. Level_0 means orig-
inal data is better, Level_1 indicates a comparable level
of quality, Level_2 signifies data with added comments
is better

ating at maximum capacity (e.g., batch_size=128,
instance_num=128), our method still provides a
certain degree of speed enhancement.

4.6 Quality Control for Pre-training Data
To illustrates quality of the pre-training data, we
introduce a new set of experiments to demonstrate
the quality of comments generated by the model.

Comparing Data Quality Before and After
Adding Comments : Randomly selecting 200
code data instances that originally had no com-
ments, we conducted manual annotation to com-
pare the readability of the code data and the accu-
racy of the added comments after applying the "add
comments" process.

Comparing Data Quality Before and After mod-
ifying Comments : Randomly selecting 200
code data instances that originally had comments,
we conducted manual annotation to compare the
readability of the code data and the accuracy of
the added comments after applying the "add com-
ments" process.

Figure 6 demonstrate that the quality control
methods proposed in our paper are indeed effec-
tive. They can even improve code quality to some
extent.

5 Conclusion

In this paper, we propose a novel method of code
data augmentation that generates comments for ex-
isting code. We validate its effectiveness on three
different LLMs. This signifies a novel paradigm
shift towards self-augmentation for code LLMs,
thereby illuminating the latent potential for LLMs
to self-evolve and enhance.

6 Limitation

In this paper, although we have successfully elimi-
nated the reliance on data distillation with a teacher
model, it is important to note that performing data
augmentation on the pre-training dataset still incurs
considerable GPU overhead. Additionally, using
"<|EOT|>" as the model’s output in the implicit
filter stage may not align well with the behavioral
patterns typically exhibited by a language model.
It might be more beneficial to consider using natu-
ral language instead. Furthermore, during the next
iteration of self-augmentation, we observed only
marginal improvements, which is why these results
were not reported in the main experiments. Fur-
ther exploration and investigation are needed in this
regard.
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1 Prompt: Please add detailed comments to
the following code

2 ‘‘‘python
3 # https ://www.hackerrank.com/challenges/

save -the -prisoner
4
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5 # this is too slow
6

7

8 def save(n, sweets , s):
9 sweets -= 1

10 while sweets: # while we have candy
11 if s == n: # if we reach the

end , reset
12 s = 0
13 else:
14 s += 1 # increase the id
15 sweets -= 1
16 return s
17

18

19 t = int(input().strip())
20 for a0 in range(t):
21 n, m, s = input().strip().split(’ ’)
22 n, m, s = [int(n), int(m), int(s)]
23

24 print(save(n, m, s))
25

26 ‘‘‘
27 Model Output:
28 ‘‘‘python
29 # This code is designed to solve the "

Save the Prisoner" problem on
HackerRank.

30 # The problem is as follows:
31

32 # There are N prisoners standing in a
circle waiting to be executed. The
executions occur around a circular
table , and each execution takes
exactly one minute. The executions
are carried out starting from the
prisoner at position 1 and moving
clockwise until the last prisoner is
executed. The executions are

carried out such that each prisoner
is guaranteed to be executed.

33

34 # Given N, the total number of prisoners
, M, the number of executions per
hour , and S, the position of the
prisoner to be executed next , find
the position of the prisoner to be
executed in the Nth hour.

35

36 # The provided code is an implementation
of a solution to this problem. It

uses a while loop to simulate the
executions of the prisoners ,
decrementing the number of remaining
sweets with each execution.

37

38 # The code first decrements the number
of remaining sweets by 1. Then , it
checks if there are any remaining
sweets. If there are , it continues
the loop.

39

40 # If the prisoner to be executed next (S
) is equal to N, it means that the
circle has returned to the beginning
, so it resets S to 0. Otherwise , it
increments S by 1 to move to the

next position.
41

42 # Finally , it returns the value of S,
which represents the position of the
prisoner to be executed in the Nth

hour.
43

44 # This code is too slow because it does
not take into account the fact that
the executions occur around a
circular table , which means that the
order of executions may not be in a
strict linear sequence.

45 # A more efficient solution would be to
consider the fact that each
execution takes exactly one minute ,
and the circle returns to the
beginning after M executions per
hour.

46 # This would allow the code to predict
the position of the prisoner to be
executed in each hour , and thus find
the position of the prisoner to be

executed in the Nth hour.
47 ‘‘‘

Listing 1: a bad case where LLMs fail to follow the
instruction of “add comments”.

B A Sample of Instuctions Data

1 Prompt: Please add detailed comments to
the following code

2 ‘‘‘python
3 import sys
4 import os
5 import glob
6

7 if len(sys.argv) != 2:
8 print("Error: wrong format .\ nUsage:

python find_class.py [class_name]"
)

9 sys.exit (0)
10

11 searching_class_name = sys.argv [1]
12

13 def find_class(class_name):
14 file_list = glob.glob(’*.txt’)
15 file_list.sort()
16 # iterate through the text files
17 file_found = False
18 for txt_file in file_list:
19 # open txt file lines to a list
20 with open(txt_file) as f:
21 content = f.readlines ()
22 # remove whitespace characters like

‘\n‘ at the end of each line
23 content = [x.strip() for x in

content]
24 # go through each line of eache file
25 for line in content:
26 class_name = line.split()[0]
27 if class_name ==

searching_class_name:
28 print(" " + txt_file)
29 file_found = True
30 break
31 if not file_found:
32 print(" No file found with that

class")
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33

34 print("Ground -Truth folder:")
35 os.chdir("../ground -truth")
36 find_class(searching_class_name)
37 print("\nPredicted folder:")
38 os.chdir("../ predicted")
39 find_class(searching_class_name)
40

41 ‘‘‘
42 Model Output:
43 ‘‘‘python
44 # import necessary libraries
45 import sys
46 import os
47 import glob
48

49 # check if the command line arguments
are valid

50 if len(sys.argv) != 2:
51 print("Error: wrong format .\ nUsage:

python find_class.py [class_name
]")

52 sys.exit (0)
53

54 # get the class name from the command
line arguments

55 searching_class_name = sys.argv [1]
56

57

58 # function to find the class in the text
files

59 def find_class(class_name):
60 # get all text files in the current

directory
61 file_list = glob.glob("*.txt")
62 file_list.sort()
63 # flag to check if the class is

found in any file
64 file_found = False
65 # iterate through the text files
66 for txt_file in file_list:
67 # open txt file lines to a list
68 with open(txt_file) as f:
69 content = f.readlines ()
70 # remove whitespace characters

like ‘\n‘ at the end of each
line

71 content = [x.strip() for x in
content]

72 # go through each line of each
file

73 for line in content:
74 class_name = line.split()[0]
75 # if the class name matches

the input class name
76 if class_name ==

searching_class_name:
77 print(" " + txt_file)
78 file_found = True
79 break
80 # if the class is not found in any

file
81 if not file_found:
82 print(" No file found with that

class")
83

84

85 # find the class in the ground -truth
folder

86 print("Ground -Truth folder:")

87 os.chdir("../ ground -truth")
88 find_class(searching_class_name)
89

90 # find the class in the predicted folder
91 print("\nPredicted folder:")
92 os.chdir("../ predicted")
93 find_class(searching_class_name)
94

95 ‘‘‘

Listing 2: a sample of our instuctions data.

C Details of the Implicit Filter

The output of instruction data with the following
types will be set as “<|EOT|>”:

• The code of the instruction data consists solely
of comments.

• The code of the instruction data only contains
package imports.

• The code of the instruction data only consists
of simple class definitions.

• The code of the instruction data only contains
variable definitions without any operations.

• The code of the instruction data does not have
a function body.

• The code of the instruction data has a function
body that is too simple and contains only a
few operations.

• The code of the instruction data only consists
of a large number of configuration definitions.

D Bad Cases of Original Generation

1 Prompt: Please add detailed comments to
the following code

2 ‘‘‘python
3 import functools
4 import logging
5

6

7 @functools.lru_cache
8 def component_logger(name: str):
9 return logging.getLogger(name)

10

11 ‘‘‘
12 Model Output:
13 ‘‘‘python
14 import functools
15 import logging
16

17

18 # Decorator to cache the results of the
function , using the function
arguments as the cache key
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19 # This will make the function faster by
returning the cached result when the
same inputs are provided

20 @functools.lru_cache
21 def component_logger(name: str):
22 # This function is responsible for

creating a logger object for a
given component

23 # The logger object is used to log
messages for a specific
component

24

25 # Get the logger for the given
component name

26 # The logger is a singleton object
that can be used to log messages
for a specific component

27 # The ’name’ parameter is used to
identify the component for which
the logger is being created

28 logger = logging.getLogger(name)
29

30 # Set the log level to INFO
31 # This is the default log level in

Python logging module , which
means that only log messages of
level INFO or higher will be
displayed

32 logger.setLevel(logging.INFO)
33

34 # Create a file handler to log
messages to a file

35 # This handler will write log
messages to a file named ’
component_name.log’

36 # The log messages will be written
in the ’INFO’ level

37 file_handler = logging.FileHandler(f
"{name}.log")

38 file_handler.setLevel(logging.INFO)
39

40 # Create a formatter for the file
handler

41 # The formatter will format the log
messages in a specific format

42 formatter = logging.Formatter("%(
asctime)s - %( levelname)s - %(
message)s")

43 file_handler.setFormatter(formatter)
44

45 # Add the file handler to the logger
46 # The file handler will be used to

write log messages to the file
47 logger.addHandler(file_handler)
48

49 # Return the logger object
50 # This logger object can be used to

log messages for the specified
component

51 return logger
52

53 ‘‘‘

Listing 3: a bad case where an LLM generates an
illusion using the original generation approach.

1 Prompt: Please add detailed comments to
the following code:

2 ‘‘‘python
3 #!/usr/bin/env python3

4

5 from mylib.genetackdb2 import Org ,
FSGene

6

7 class ChelOrg(Org):
8 def __init__(self , gtdb , db_id):
9 super ().__init__(gtdb , db_id)

10 self.load_prm(prm_str =[
11 ’chel_genotype_LMS ’,
12 ’chel_genotype_NHDI ’,
13 ’chel_genotype_NTS_HDI ’
14 ])
15

16 def get_true_M_chelatase_fsgene_ids(
self):

17 return [d[’id’] for d in self.
gtdb.exec_sql_ar(

18 ’’’select distinct fs.id
from seqs s, fsgenes fs

19 where s.org_id =%s and fs.
seq_id=s.id and fs.
fs_type <> 0

20 ’’’, self.id)]
21

22 class ChelFSGene(FSGene):
23 def __init__(self , gtdb , db_id):
24 super ().__init__(gtdb , db_id)
25 self.load_prm(prm_str =[’

chel_gene ’, ’chel_subunit ’])
26 ‘‘‘
27 Model Output :
28 ‘‘‘python
29 # This code defines two classes: ChelOrg

and ChelFSGene.
30 # ChelOrg is a subclass of Org from the

mylib.genetackdb2 module.
31 # ChelFSGene is a subclass of FSGene

from the same module.
32

33 # The following line is a shebang that
tells the system to use the
specified interpreter to run the
script.

34 # In this case , it’s telling the system
to use Python 3 to run the script.

35 # This is a Unix convention and doesn’t
apply to Windows systems.

36 # If the script is run on a Windows
system , it will likely ignore this
line.

37 #!/usr/bin/env python3
38

39 # The next line imports the Org and
FSGene classes from the mylib.
genetackdb2 module.

40 # These classes are likely used to
interact with a database or perform
other operations related to genetics
.

41 from mylib.genetackdb2 import Org ,
FSGene

42

43 # The following class definition is for
the ChelOrg class.

44 # It is a subclass of Org , which means
it inherits all of the methods and
properties of Org.

45 class ChelOrg(Org):
46 # The __init__ method is a special

method in Python that is
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automatically called when an
object is created.

47 # It is used to initialize the
object with any necessary
parameters or values.

48 def __init__(self , gtdb , db_id):
49 # The super().__init__ call is a

way to call the __init__
method of the parent class (
Org) from the child class (
ChelOrg).

50 # This allows the child class to
inherit any functionality

from the parent class.
51 super().__init__(gtdb , db_id)
52 # The load_prm method is likely

used to load or set up any
parameters needed by the
class.

53 # The prm_str parameter is a
list of strings that specify
the parameters to load.

54 self.load_prm(prm_str =[
55 ’chel_genotype_LMS ’,
56 ’chel_genotype_NHDI ’,
57 ’chel_genotype_NTS_HDI ’
58 ])
59

60 # This method returns a list of true
M chelatase FSGene ids.

61 # The method likely retrieves these
ids from the database or
performs some other operation.

62 def get_true_M_chelatase_fsgene_ids(
self):

63 # The exec_sql_ar method is
likely used to execute a SQL
query against the database.

64 # The query is a string that
selects distinct FSGene ids
from the database.

65 # The ’%s’ placeholder is used
to substitute the org_id
with the current org_id of
the object.

66 return [d[’id’] for d in self.
gtdb.exec_sql_ar(

67 ’’’select distinct fs.id
from seqs s, fsgenes fs

68 where s.org_id =%s and fs.
seq_id=s.id and fs.
fs_type <> 0

69 ’’’, self.id)]
70

71 # The following class definition is for
the ChelFSGene class.

72 # It is a subclass of FSGene , which
means it inherits all of the methods
and properties of FSGene.

73 class ChelFSGene(FSGene):
74 # The __init__ method is a special

method in Python that is
automatically called when an
object is created.

75 # It is used to initialize the
object with any necessary
parameters or values.

76 def __init__(self , gtdb , db_id):
77 # The super().__init__ call is a

way to call the __init__

method of the parent class (
FSGene) from the child class
(ChelFSGene).

78 # This allows the child class to
inherit any functionality

from the parent class.
79 super ().__init__(gtdb , db_id)
80 # The load_prm method is likely

used to load or set up any
parameters needed by the
class.

81 # The prm_str parameter is a
list of strings that specify
the parameters to load.

82 self.load_prm(prm_str =[’
chel_gene ’, ’chel_subunit ’])

83

84 # The code above defines two classes:
ChelOrg and ChelFSGene.

85 # ChelOrg is a subclass of Org from the
mylib.genetackdb2 module.

86 # ChelFSGene is a subclass of FSGene
from the same module.

87

88 # The following line is a shebang that
tells the system to use the
specified interpreter to run the
script.

89 # In this case , it’s telling the system
to use Python 3 to run the script.

90 # This is a Unix convention and doesn’t
apply to Windows systems.

91 # If the script is run on a Windows
system , it will likely ignore this
line.

92 #!/usr/bin/env python3
93

94 # The next line imports the Org and
FSGene classes from the mylib.
genetackdb2 module.

95 # These classes are likely used to
interact with a database or perform
other operations related to genetics
.

96 from mylib.genetackdb2 import Org ,
FSGene

97

98 # The following class definition is for
the ChelOrg class.

99 # It is a subclass of Org , which means
it inherits all of the methods and
properties of Org.

100 class ChelOrg(Org):
101 # The __init__ method is a special

method in Python that is
automatically called when an
object is created.

102 # It is used to initialize the
object with any necessary
parameters or values.

103 def __init__(self , gtdb , db_id):
104 # The super().__init__ call is a

way to call the __init__
method of the parent class (
Org) from the child class (
ChelOrg).

105 # This allows the child class to
inherit any functionality

from the parent class.
106 super ().__init__(gtdb , db_id)
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107 # The load_prm method is likely
used to load or set up any
parameters needed by the
class.

108 # The prm_str parameter is a
list of strings that specify
the parameters to load.

109 self.load_prm(prm_str =[
110 ’chel_genotype_LMS ’,
111 ’chel_genotype_NHDI ’,
112 ’chel_genotype_NTS_HDI
113 ’])
114

115 # This method returns a list of true
M chelatase FSGene ids.

116 # The method likely retrieves these
ids from the database or
performs some other operation.

117 def get_true_M_chelatase_fsgene_ids(
self):

118 # The exec_sql_ar method is
likely used to execute a SQL
query against the database.

119 # The query is a string that
selects distinct FSGene ids
from the database.

120 # The ’%s’ placeholder is used
to substitute the org_id
with the current org_id of
the object.

121 return [d[’id’] for d in self.
gtdb.exec_sql_ar(

122 ’’’select distinct fs.id
from seqs s, fsgenes fs

123 where s.org_id =%s and fs.
seq_id=s.id and fs.
fs_type <> 0

124 ’’’, self.id)]
125

126 # The following class definition is for
the ChelFSGene class.

127 # It is a subclass of FSGene , which
means it inherits all of the methods
and properties of FSGene.

128 class ChelFSGene(FSGene):
129 # The __init__ method is a special

method in Python that is
automatically called when an
object is created.

130 # It is used to initialize the
object with any necessary
parameters or values.

131 def __init__(self , gtdb , db_id):
132 # The super().__init__ call is a

way to call the __init__
method of the parent class (
FSGene) from the child class
(ChelFSGene).

133 # This allows the child class to
inherit any functionality

from the parent class.
134 super().__init__(gtdb , db_id)
135 # The load_prm method is likely

used to load or set up any
parameters needed by the
class.

136 # The prm_str parameter is a
list of strings that specify
the parameters to load.

137 self.load_prm(prm_str =[’

chel_gene ’, ’chel_subunit ’])
138 ‘‘‘

Listing 4: a bad case example of LLMs generating
duplicate data. using the original generation approach.

E Experiment Result of Instruction
Fine-Tuning

Table 7 presents the complete results of instruction
fine-tuning on the Humaneval and MBPP datasets
for Pass@1 to Pass@10

F Ethics Statement

We use OpenAI GPT to generate part of the train-
ing data. The terms of use can be accessed from
OpenAI’s official website3.

We use CodeAlpaca and Evol-Instruct-Code-80k
datasets for instruction tuning. They are distributed
under CC-By-NC 4.0 license. You can get a copy
of the licenses from their GitHub repositories4.

We perform experiments using StarCoder as the
validation dataset. The StarCoder dataset is dis-
tributed under Terms of Use for The Stack5.

We employ Code Llama to generate comment.
According to Code Llama’s license6, you will not
use the Llama Materials or any output or results
of the Llama Materials to improve any other large
language model (excluding Llama 2 or derivative
works thereof).

The experiments are performed on Llama 2,
Code Llama and InternLM2. Their weights are
distributed under their corresponding licenses7.

Out of ethical considerations, we will release the
CommentPack datasets and the further pre-trained
model checkpoints only for research purpose under
any relevant licenses.

3https://openai.com/policies/terms-of-use
4https://github.com/sahil280114/codealpaca/

blob/master/DATA_LICENSE https://github.com/
nlpxucan/WizardLM/blob/main/WizardCoder/DATA_
LICENSE

5https://hf-mirror.com/datasets/bigcode/
the-stack#terms-of-use-for-the-stack

6https://github.com/facebookresearch/
codellama/blob/main/LICENSE

7https://github.com/facebookresearch/
llama/blob/main/LICENSE https://github.
com/facebookresearch/codellama/blob/main/
LICENSE https://github.com/InternLM/InternLM#
license
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Model DATA
HumanEval MBPP

pass@1 pass@5 pass@10 pass@1 pass@5 passs@10
CodeLlama-7b - 63.40 81.11 86.29 53.20 65.14 71.21
CodeLlama-7b SP 66.46 80.91 86.46 55.80 65.60 71.25
CodeLlama-7b CP/Remove 65.85 80.7 86.27 58.60 65.00 71.14

Table 7: Experiment results of instruction fine-tuning. Lines of DATA marked as "-" indicate the reported values of
the origin model.
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