
Findings of the Association for Computational Linguistics ACL 2024, pages 13256–13274
August 11-16, 2024 ©2024 Association for Computational Linguistics

CHAMP: A Competition-level Dataset for Fine-Grained Analyses of LLMs’
Mathematical Reasoning Capabilities

Yujun Mao
Boston University
amao@bu.edu

Yoon Kim
MIT CSAIL

yoonkim@mit.edu

https://yujunmao1.github.io/CHAMP/

Yilun Zhou
Salesforce Research

yilun.zhou@salesforce.com

Abstract

Recent large language models (LLMs) have
shown indications of mathematical reasoning
ability on challenging competition-level prob-
lems, especially with self-generated verbal-
izations of intermediate reasoning steps (i.e.,
chain-of-thought prompting). However, cur-
rent evaluations mainly focus on the end-to-
end final answer correctness, and it is unclear
whether LLMs can make use of helpful side
information such as problem-specific hints. In
this paper, we propose a challenging bench-
mark dataset for enabling such analyses. The
Concept and Hint-Annotated Math Problems
(CHAMP) consists of high school math com-
petition problems, annotated with concepts,
or general math facts, and hints, or problem-
specific tricks. These annotations allow us to
explore the effects of additional information,
such as relevant hints, misleading concepts,
or related problems. This benchmark is dif-
ficult, with the best model only scoring 58.1%
in standard settings. With concepts and hints,
performance sometimes improves, indicating
that some models can make use of such side
information. Furthermore, we annotate model-
generated solutions for their correctness. Using
this corpus, we find that models often arrive at
the correct final answer through wrong reason-
ing steps. In addition, we test whether models
are able to verify these solutions, and find that
most models struggle.

1 Introduction

Recent large language models (LLMs) have demon-
strated impressive performance on many tasks that
previously required specialized models or were
thought to be out of reach of conventional neu-
ral networks. One such capability is mathematical
reasoning: LLMs can often solve simple math prob-
lems and make reasonable attempts at challenging,
competition-level problems. In addition to model
scaling (Kaplan et al., 2020), there are two key fac-
tors behind the progress: sophisticated prompting

Math
Problem

Concept

Hint

× 270
× 540

🅐

🅑

🅒

🅓

Problem Solving with
External Information

Solution Verification

Figure 1: Overview of our dataset and experiment con-
tribution. A : We collect 270 challenging, high-school
math competition problems (e.g., Find all positive in-
teger solutions to the equation x3 + 3 = 4y(y + 1)).
For each problem, we write the relevant and helpful
Concepts (e.g., a3 ± b3 = (a+ b)(a2 ± ab+ b2)), and
Hints (e.g, Express x3 as the product of two factors
involving y). B : In our experiments, to investigate a
model’s ability to understand and use the additional C
& H information, we design 17 prompts to evaluate ten
models: GPT-3.5 / 4 / 4 Turbo, PaLM 2 Medium, Llama
2 7B / 70B, Llama 3 8B / 70B, Mistral 7B and Mix-
tral 8x22B. C : For each problem, we manually judge
two model-generated solutions on their correctness, and
further annotate the first wrong step of the reasoning
(red highlights), if present. D : This corpus thus serves
as a novel dataset for benchmarking and evaluating the
solution verification ability of LLMs.

methods such as chain-of-thought (Wei et al., 2022;
Kojima et al., 2022) and self-consistency (Wang
et al., 2022), which provide useful heuristics for
generating and selecting better reasoning paths;
and access to calculators or code interpreters which
offloads some of the symbolic computation to ex-
ternal tools (Gao et al., 2023; Zhou et al., 2023).
However, a direction which remains less explored
is how external concepts and hints impact LLMs’
reasoning abilities. This is difficult to address with
existing datasets which typically only contain prob-
lem statements and their solutions, and do not pro-

13256

https://yujunmao1.github.io/CHAMP/

vide annotated concepts or hints that would be help-
ful for the problem at hand.

To enable such analyses, we introduce the Con-
cept and Hint-Annotated Math Problems (CHAMP)
dataset, which consists of 270 diverse high school
competition-level math problems (Fig. 1). In addi-
tion to problem statements and full solutions, we
annotate each problem with two key pieces of in-
formation: concepts and hints. Concepts are gen-
eral math theorems or formulas, while hints are
problem-specific tricks or strategies. The design of
CHAMP enables previously under-explored eval-
uations of multi-step reasoning abilities of LLMs.
For example, can LLMs make use of these con-
cepts and hints? How should these be provided to
the LLM? Could a model infer useful information
from studying sample problems using the same
concepts? What happens if the model is provided
with irrelevant/misleading concepts?

Using this dataset, we design 17 different
prompts, and evaluate various proprietary and open-
source models including GPT-3.5 / 4 / 4 Turbo
(OpenAI, 2023), PaLM 2 Medium (Anil et al.,
2023)1, Llama 2 7B / 70B (Touvron et al., 2023),
Llama 3 8B / 70B (AI, 2024), Mistral 7B (Jiang
et al., 2023) and Mixtral 8x22B (Team, 2024).
While we observe a diverse range of behaviors
across different models and prompts, we find the
accuracy of the best setting to be 67.0% only (mea-
sured by the final answer correctness, ignoring any
possible errors in intermediate reasoning steps),
and gains from the additional concept and hint in-
formation vary across models. The results indicate
a large room for improvement with competition-
level math for LLMs, and moreover highlight the
utility of CHAMP for developing and benchmark-
ing future models.

For each problem, we further analyze solutions
generated by these models by manually annotating
the first wrong step in the reasoning process, such
as an arithmetic error or question misunderstand-
ing, or validating that the solution is fully correct.
This annotation serves two purposes. First, it con-
cretely identifies how much the final answer accu-
racy (which is the predominant practice for math
problem evaluations) over-estimates a model’s abil-
ity to generate fully correct solutions: indeed, we
find that in many instances, a model gets the answer
“right” despite generating wrong reasoning steps,

1The API access for PaLM 2 Large was not publicly avail-
able at the time of experiments.

indicating that these models are potentially relying
on shortcut heuristics. Second, we can evaluate the
verification ability of any model, i.e., how well it
can reason about a given solution and identify any
errors, where we find that most models struggle.
The above evaluations suggest key deficiencies in
current LLMs and highlight the value of these an-
notations as an additional benchmarking resource.

In summary, we evaluate four model capabilities
using our dataset: generating correct final answer,
generating correct full solution, using the contex-
tual C & H information, and verifying a given so-
lution. Our findings uncover new strengths and
limitations of current models, and give directions
for future work on improving them.

2 Background and Related Work

Math datasets and benchmarks. Large lan-
guage models have seen significant improvement
in understanding and solving math problems, with
GPT-4 (OpenAI, 2023) being able to tackle most
math problems that require grade-level knowledge
and direct applications of formulas, even for prob-
lems with diverse formats and wordings (Cobbe
et al., 2021). Nonetheless, they still struggle with
competition-level problems, such as those found
in the MATH dataset (Hendrycks et al., 2021).
Competition-level problems—for which applica-
tions of formulas are not straightforward—are
therefore the focus of our CHAMP dataset.

A key distinction of CHAMP compared to other
math datasets is the information associated with
each problem. In addition to the problem text and
its solution—which are common components of
such datasets—we annotate relevant concepts and
hints and further label them on each solution step,
with problems relating to each other via common
math concepts (e.g., Fermat’s little theorem). In
this way, CHAMP enables fine-grained evaluations
of mathematical problem solving abilities of LLMs
that are not possible with other datasets, for ex-
ample allowing for different types of additional
information to be made available in the context
through prompting.

We observe that many techniques seek to im-
prove an LLM’s mathematical reasoning ability,
such as encouraging chain-of-thought generation
(Wei et al., 2022), selecting a final result from multi-
ple sampled outputs (Wang et al., 2022), and using
external tools such as a calculator or Python in-
terpreter (Gao et al., 2023) to eliminate arithmetic

13257

errors. These directions can be combined with our
experimental setup.

Solution verification ability of LLMs. Another
distinguishing factor of our dataset is the first
wrong step annotations on model solutions, which
enables more fine-grained model analyses and,
more importantly, evaluations of how well mod-
els can verify a given answer.

There have been recent attempts at crafting such
datasets. For example, Lightman et al. (2023) col-
lected PRM800K, containing 800K steps of 75K
solutions to 12K problems in the MATH dataset
(Hendrycks et al., 2021), with each step labeled as
correct, incorrect or neutral. Chen et al. (2023) cu-
rated FELM, a factuality benchmark, including an-
notations of solutions to 208 GSM8K (Cobbe et al.,
2021) and 194 MATH problems. Compared to
CHAMP, where annotations are made exclusively
by the paper authors, both PRM800K and FELM
are labeled via crowdsourcing. Moreover, solutions
in PRM800K are selected to maximally confuse a
reward model being developed in the project, while
FELM uses only GPT-3.5 as the solution generator.
In contrast, our 540 annotated solutions are gener-
ated by a mix of GPT-3.5, 4, 4 Turbo and PaLM 2
Medium, each with varying capabilities.

Roles of contexts. Our dataset and experiments
are similar in spirit to works that explore how well
LLMs understand different contexts, which have
yielded surprising findings. For example, mod-
els can be insensitive to label correctness (Min
et al., 2022) but sensitive to label distribution (Zhao
et al., 2021) and exemplar ordering (Lu et al., 2021).
McKenzie et al. (2023) find that larger LLMs resist
absorbing context information inconsistent with
world knowledge acquired during training (e.g., re-
defining π = 432). Similarly, Wu et al. (2023) find
that LLMs perform worse in atypical setups for
common tasks (e.g., base-9 integer addition). With
CHAMP, we can explore how different information
supplied in various ways affect LLMs’ behavior.

3 The CHAMP Dataset

This section describes the dataset structure and con-
struction. Due to the high level of math expertise
required, the dataset curation is carried out exclu-
sively by the paper authors.

Problems. We select problems from the book
Problem-Solving Strategies by Engel (2008), a clas-
sic piece of material for high-school math com-

Problem ID: P_Inequality_36
Problem: For non-negative a, b, c, d, what is the smallest
value of

√
(a+ c)(b+ d)−

√
ab−

√
cd− 1?

Concepts and Hints:
H1. Compare

√
(a+ c)(b+ d) with

√
ab+

√
cd by squar-

ing both terms.
C1. (x± y)2 = x2 ± 2xy + y2.
C2. For non-negative x, y, we have (x+ y) ≥ 2

√
xy and

(x+ y)/2 ≥ √
xy, with equality if and only if x = y.

C3. For non-negative x, y,
√
x ≥ √

y if and only if x ≥ y.

Answer: −1
Solution Step:
1. We have

√
(a+ c)(b+ d)

2
= (a + c)(b + d) = ab +

ad+ bc+ cd. [H1]
2. We have (

√
ab+

√
cd)2 = ab+ cd+2

√
abcd. [H1, C1]

3. Thus,
√
(a+ c)(b+ d)

2 − (
√
ab+

√
cd)2 = ad+ bc−

2
√
abcd, which is non-negative because ad + bc ≥

2
√
abcd. [H1, C2]

4. Thus,
√
(a+ c)(b+ d)

2 ≥ sqrt(ab) +
√
(cd)

2
.

5. Since a, b, c, d are all non-negative, we have√
(a+ c)(b+ d) ≥

√
ab+

√
cd. [C3]

6. So the smallest value of
√
(a+ c)(b+ d)−

√
ab−

√
cd−

1 is −1, achieved when a = b = c = d.

Table 1: A sample from the CHAMP dataset, which
shows the problem (top), the concepts and hints (mid-
dle), and the full solution (bottom).

petitions. All problems require specific tricks
or creative strategies, rather than routine knowl-
edge applications. We require problems to have
final check-able answers for easy evaluation, and
thus rewrite proof problems where possible (e.g.,
“Prove f(x) ≥ 1 for x ≥ 0” is transformed to
“What is the smallest value of f(x) for x ≥ 0”). A
total of 270 problems span five categories: num-
ber theory (80), polynomial (50), sequence (50),
inequality (50) and combinatorics (40). We make
some adaptations to lessen the impact of “trivial
limitations” of LLMs, such as weakness in precise
arithmetics. See App. A for further details.

For each problem, we manually verify and write
out the full detailed step-wise solution in natural
language, as the solution manual often skips steps
and occasionally contains typographical errors. We
also provide an explicit final answer that can be
checked against.

Concepts and hints. We additionally annotate
relevant concepts and hints, which provide helpful
information to solve a problem. For the purposes
of this paper, we define concepts to mean general
math knowledge, such as an equation or a theorem,
for example, “x2 − y2 = (x+ y)(x− y)”. We de-

13258

0 50 100
Words Per Problem Statment

0.000

0.005

0.010

0.015

0.020

0.025

0.030

Fr
ac

tio
n

Mean: 20.16

5 10 15
Steps Per Problem Solution

0.00

0.05

0.10

0.15

Mean: 6.02

0 20 40
Words Per Solution Step

0.00

0.01

0.02

0.03

0.04

0.05

0.06
Mean: 10.91

0 2 4 6
Concepts Per Problem

0.0

0.1

0.2

0.3

0.4

Mean: 1.41

0 2 4 6
Hints Per Problem

0.0

0.1

0.2

0.3

0.4

Mean: 1.69

Figure 2: The distribution of dataset statistics in CHAMP. Problems in CHAMP require a nontrivial number of
reasoning steps (6.0 on average). Each problem is linked to an average of 1.4 concepts and 1.7 hints.

fine hints, on the other hand, to be problem-specific
tricks or strategies, such as “Add 1 to both sides.”
(to prepare for further simplification). These con-
cepts and hints are also labeled to the relevant solu-
tion steps in the ground truth solution.

Each concept is additionally annotated with
three metadata fields: the category, such as “num-
ber theory” or “polynomial”; the name, such as
“difference of squares formula” for the concept
x2 − y2 = (x + y)(x − y); and the parent con-
cept, which is a general form of the concept. For
example, both (x + y)2 = x2 + 2xy + y2 and
(x + y)3 = x3 + 3x2y + 3xy2 + y3 have the par-
ent concept of the binomial theorem, which states
(x+ y)n =

∑n
k=0

(
n
k

)
x(n−k)yk. While every con-

cept is assigned a category, not all concepts have
names or parent concepts. One CHAMP problem
with its solution and concept & hint annotation is
shown in Tab. 1; additional examples are given in
Tab. 10 of App. B.

First wrong step (FWS) annotations. For every
problem, we further analyze the LLM-generated
solutions to identify mistakes in reasoning steps.
Specifically, we randomly assign a “generator
model,” one of GPT-3.5, GPT-4, GPT-4 Turbo and
PaLM 2 M, to each problem, stratified by the prob-
lem’s category (i.e., number theory, polynomial,
etc.), and collect the model-generated solutions
for two prompts: one with the problem statement
only (the “No C + w/o H” prompt in Tab. 2 of
Sec. 4.2) and another with the problem statement
supplemented by the list of relevant concepts and
hints (the “Direct + w/H” in Tab. 2 of Sec. 4.2).
We assess whether the full solution (including the
reasoning steps) is correct, and if not, annotate the
occurrence of the first wrong step (FWS) as a span
in the text. The FWS refers to an objective mistake,
such as an arithmetic error or question misunder-
standing, and does not contain subjective assess-
ments, such as a seemingly implausible strategy to
the problem.

Dataset statistics. We collect 270 problems, 54
concepts, 330 hints and 540 FWS annotations. Ev-
ery problem has at least 1 concept or hint, with an
average of 1.4 concepts and 1.7 hints, and an aver-
age of 6.0 solution steps. Each problem statement
has an average of 20.2 words, and each solution
step 10.9 words. Fig. 2 plots the distribution his-
tograms of these statistics.

4 Experiment 1: Problem Solving

4.1 Experimental Setup

We evaluate ten models: GPT-3.5 Turbo (16k
context version), GPT-4, GPT-4 Turbo, PaLM 2
Medium, Llama 2 7B, Llama 2 70B, Llama 3 8B,
Llama 3 70B, Mistral 7B and Mixtral 8x22B (exact
model versions in Tab. 2). We set temperature to 0
for all experiments, and allow at least 1024 tokens
to be generated for each model depending on the
specific context window size, which is more than
enough to output the correct reasoning, with unfin-
ished generations treated as incorrect. Inference
for proprietary models is done via the respective
API, and that for open-source models is done via
the together.ai API.

Baseline. Sometimes models can output correct
final answers with incorrect reasoning, especially
when those answer values appear often in the train-
ing corpus. To contextualize the final answer ac-
curacy metrics, we construct the majority guess
baseline as follows. For each of the four answer
types in our dataset—numeric answers (e.g., 0), ex-
pression answers (e.g., n), yes/no answers (e.g., no)
and enumeration answers (e.g., x = 1 or x = −2)—
the baseline guesses the most frequently appearing
answer values in the ground truth. This baseline
accuracy is 33.0%. See Tab. 11 of App. B for more
details.

Automatic evaluation. As is the case with many
generation tasks, the correct final answer can be
expressed in multiple ways: “no solution” is equiv-

13259

together.ai

Standard Evaluations CHAMP-Enabled Evaluations (7 Ways to Provide Concepts With or Without Hints)
Model 0-Shot 5-Shot 1/3 Soln 2/3 Soln 1. No C 2. Direct 3. Root 4. Name 5. Example 6. Problem 7. Misleading

GPT-3.5
28.5 34.8 33.7 40.7

w/o H 28.5 28.5 28.1 33.0 30.4 30.0 27.8
gpt-3.5-turbo-16k-0613 w/ H 31.9 33.0 33.0 31.9 31.9 34.4 31.5

GPT-4
41.9 38.1 53.7 65.6

w/o H 41.9 43.0 42.6 40.0 42.2 43.7 39.3
gpt-4-0613 w/ H 51.9 53.0 49.6 49.3 52.2 51.1 48.9

GPT-4 Turbo
58.1 53.0 61.5 67.0

w/o H 58.1 57.0 55.6 51.1 55.9 55.2 51.9
gpt-4-1106-preview w/ H 62.2 65.9 64.8 63.0 63.3 64.4 55.6

PaLM 2 Medium
14.1 17.4 15.9 23.3

w/o H 14.1 15.6 15.6 14.1 17.0 16.7 19.3
chat-bison-001 w/ H 14.4 15.2 15.2 18.1 16.7 20.7 19.3

Llama 2 7B
8.5 9.6 7.4 10.7

w/o H 8.5 7.8 8.1 6.7 9.3 10.0 9.3
Llama-2-7b-chat-hf w/ H 9.6 7.4 9.3 7.4 10.0 11.1 8.9

Llama 2 70B
11.9 13.0 14.8 21.5

w/o H 11.9 13.3 11.1 14.1 13.7 13.3 12.6
Llama-2-70b-chat-hf w/ H 15.6 15.6 15.9 15.9 16.7 15.6 16.3

Llama 3 8B
20.7 22.2 25.2 35.9

w/o H 21.1 23.0 24.1 24.8 20.0 24.8 20.7
Meta-Llama-3-8B-Instruct w/ H 23.7 25.6 25.6 29.3 26.3 25.9 21.5

Llama 3 70B
37.8 35.9 47.0 59.6

w/o H 37.8 40.0 37.0 40.0 38.1 37.0 35.6
Meta-Llama-3-70B-Instruct w/ H 47.0 49.6 48.9 47.4 50.0 48.9 42.2

Mistral 7B
20.7 16.3 18.1 24.8

w/o H 20.7 20.4 20.0 20.7 19.3 19.6 18.1
Mistral-7B-Instruct-v0.3 w/ H 18.1 19.3 17.0 20.0 18.9 22.2 16.7

Mixtral 8x22B
36.7 36.7 47.0 60.7

w/o H 36.7 38.1 39.3 32.6 34.1 38.5 32.2
Mixtral-8x22B-Instruct-v0.1 w/ H 47.4 48.5 49.6 47.0 46.3 50.0 45.2

Majority Guess Baseline: 33.0

Table 2: Final answer accuracy (in percentage) with the different prompt settings.

alent to “none”, “unsolvable” is equivalent to “im-
possible to solve”, etc. Therefore a simple criteria-
based exact or sub-string match to a manually con-
structed set of valid answers is prone to false neg-
atives. We thus propose to use GPT-4 as an au-
tomatic grader, and use a three-stage procedure
for the solution generation and evaluation. First,
we prompt the model for its step-by-step solution.
Then, we ask the model to produce a one-sentence
summarization of its answer. Finally, we use GPT-
4 to grade the answer summary, given the ground
truth final answer, which essentially checks for se-
mantic equivalence between the two. The prompts
are listed in Tab. 12 and 13 of App. C.

To assess the validity of this automatic evalua-
tion procedure, we manually checked 500 exam-
ples for (1) whether the one-sentence summariza-
tion was correct and (2) whether GPT-4 was able
to correctly grade the summarized solution given
the ground truth final answer. While not perfect,
we found GPT-4 to be quite good at this, with the
accuracies on both tasks being ≥ 97%.

4.2 Model Analyses

Our experiments are aimed at evaluating four differ-
ent aspects: raw model performance, effectiveness
of different ways to provide concepts, relative im-
portance of concepts and hints, and impact of irrel-
evant (i.e., misleading) concepts. The quantitative
results are summarized in Tab. 2.

Model performance. We first study the model
performance with both zero-shot (Kojima et al.,
2022) and few-shot (Wei et al., 2022) chain-of-
thought prompting. Following the experiments by
(Hendrycks et al., 2021), we also study models’
performance when given partial solution (1/3 and
2/3 of solution steps) under the zero-shot setup.
The prompts are listed in Tab. 14-16 of App. C.

The blue cells of Tab. 2 summarize these re-
sults, with some full model-generated solutions
presented in Tab. 22 and 23 of App. D. Generally,
larger and more recent models perform better than
their smaller and earlier versions, and partial so-
lutions are mostly helpful in guiding the model to
correct solutions, largely consistent with the find-
ings by Hendrycks et al. (2021). Overall, the best
performing models, GPT-4 and GPT-4 Turbo, are
still proprietary ones and there is a gap to close for
(even the latest) open-source models. In addition,
five-shot prompting is often not beneficial, suggest-
ing that such instruction-tuned models, especially
high-performing ones, may not need in-context ex-
emplars to activate the “problem-solving mode,” as
long as the instruction is sufficiently clear.

Concept provision method. As concepts are
general facts or formulas in math, they are likely
already learned by the model during pre-training.
However, different ways to provide the knowledge
in the context may affect how well the model can
understand and use it. We designed six concept
provision approaches, each in two versions where

13260

the hint is withheld or provided, corresponding to
the light green cells and dark green cells of Tab. 2:

1. Prompt with no concepts (No C).
2. Directly provide the concept in the prompt (Di-

rect).
3. Provide the root concept up the parent-child

chain (i.e., most general form) in the prompt
(Root).

4. Ask the model to retrieve the concept by
its name in a separate round of conversation
(Name).

5. Ask the model to provide an example for the
concept in a separate round of conversation (Ex-
ample).

6. Provide a sample problem that uses the concept
and its step-by-step solution (Problem).

The specific prompts are listed in Tab. 17-21 of
App. C. The best performing concept provision
method for each model with and without hints is
bolded. No single method performs the best across
the board. Furthermore, concepts may sometimes
even be detrimental, potentially because they con-
tradict with the model’s “initial planned approach.”

Importance of hints. Compared to concepts,
hints are arguably more valuable as they often re-
quire creativity from the test-takers. The perfor-
mance contrast without and with the hint under
each prompt are shown by the light green rows
vs. dark green rows of Tab. 2. While provid-
ing hints helps, the performance increase is cor-
related with the model’s “base capability”: GPT-4,
4 Turbo, Llama 3 70B and Mixtral 8x22B, which
have the best zero-shot accuracy, are able to score
10% higher on average with hints, while the accu-
racy increase is much less notable for other models.

Impact of misleading concepts. How well could
a model deal with misleading concepts? In this ex-
periment, for each useful concept, we replace it
with a random one of the same category (to en-
sure maximal confusion) but not on the path to
its root concept (to avoid accidentally providing
useful information).2 The results are summarized
in the orange cells of Tab. 2. Compared to the
“No C” setup, misleading concepts have different
impacts on different models: while most of the
models show slight drop of accuracy with mislead-
ing concepts, GPT-4 Turbo suffers the most, with

2We do not experiment with misleading hints, as they
would appear nonsensical due to problem-specificity.

Problem Only Problem + C & H
Final Ans Full Soln Final Ans Full Soln

GPT-3.5 34.3% 6.0% 32.8% 16.4%
GPT-4 54.4% 17.6% 52.9% 33.8%

GPT-4 T 56.7% 22.4% 68.7% 44.8%
PaLM 2 M 19.1% 1.5% 14.7% 0.0%

Table 3: Final answer vs. full solution accuracy for four
models under two prompts.

over 10% relative decrease of accuracy compared
with the “No C” setup. On the other hand, PaLM 2
Medium and both Llama 2 models even show some
improvement, indicating that they are unlikely to
understand and act on provided (mis)information.

4.3 Full Solution Accuracy

The above analyses are based on an important as-
sumption: that the final answer accuracy is a faith-
ful reflection of the model’s mathematical ability.
However, focusing on final answer alone could in-
flate the models’ performance as incorrect reason-
ing could lead to correct final answers, especially
for questions with yes/no answers (see examples
in Tab. 22 and 23 of App. D). As a result, we pro-
ceed to examine the full solutions generated by four
models: GPT-3.5, GPT-4, GPT-4 Turbo and PaLM
2 Medium, based on the first wrong step (FWS)
annotation.

Tab. 3 displays the final answer accuracy (FAA)
and full solution accuracy (FSA) of model outputs
from the 0-shot problem-only prompt and the prob-
lem + concept & hint list prompt.3 Full solution
accuracy (FSA) is significantly lower than final
answer accuracy (FAA), suggesting that the latter
is indeed an inflated measurement of the models’
true reasoning ability. As an extreme case, PaLM 2
M produces only one fully correct solution out of
136 attempts on 68 problems, despite still achiev-
ing 14.7% FAA. Given that almost all benchmarks
(e.g. Cobbe et al., 2021; Hendrycks et al., 2021)
are based on FAA, true model performance may
not be as high as previous benchmarking results
suggest. Nonetheless, performance of the GPT
models increases under both prompts, regardless of
the evaluation metrics of FSA or FAA, suggesting
that FAA could likely be a proxy for FSA.

For all GPT models, providing the C & H list sig-
nificantly helps with FSA, even when FAA stays at
a similar level (among the respective problem sub-

3Note that the FAA statistics in Tab. 3 are based on model-
generated solutions of 25% sampled problems for each model,
and hence different from those in Tab. 2.

13261

You need to grade a student's answer to a math

problem and determine if it contains any objective

error, including but not limited to mistakes in logical

deductions, algebraic manipulations, arithmetic

calculations or question understanding. You should not

make any subjective judgment, such as marking a

strategy that seems unsuccessful as incorrect, unless

you have objective evidence of an error. For your

convenience, a reference solution is also given.

However, the student answer could differ from it

significantly but still be correct, by, for example, using a

different strategy.

Feel free to think step by step through the student

answer. On the last line, write "Judgment: ", followed

by your judgment, in one of two cases:

1. If you think that the answer is wrong, copy the

sentence containing the first error (i.e.: "Judgment:

<verbatim sentence containing the first error>").

2. If you think that the solution is fully correct, write

"No mistake" as your judgment (i.e.: "Judgment: No

mistake").

Question Statement:

(“No C + w/o H” or “Direct + w/ H” Prompt)

Reference Solution:

(Ground Truth Step-by-Step Solution)

Student Answer:

(Solution Under Judgment)

🅑

🅐

🅐

🅒

Figure 3: The prompt for model verification evaluation.
Text in black is given as the default, and we experiment
with several variations. A : we choose to give or with-
hold the reference solution in the prompt, where the
blue italic texts are not provided in the latter case. B :
we evaluate model solutions for two prompts – problem
only and problem with concept and hint list. C : the cor-
responding solution is given as the “Student Answer”.

set). By comparison, PaLM 2 M could not benefit
from additional information. These results imply
the necessity for the finer-grained evaluations as
we test LLMs on more challenging benchmarks.

5 Experiment 2: Solution Verification

The first wrong step (FWS) annotation allows for
evaluating whether LLMs can read a solution to
a problem and verify its correctness, which is a
much more difficult task than comparing the final
answer against the ground-truth answer. In this
set of experiments, we study how well LLMs can
judge model-generated solutions, as well as the
(error-free) ground truth solution.

5.1 Experimental Setup

As noted in Sec. 3, the FWS dataset is obtained by
(1) randomly assigning a model (out of GPT-3.5,
GPT-4, GPT-4 Turbo and PaLM 2 M) to each prob-
lem and collecting its solutions for two prompts—

Problem Only (i.e., “No C + w/o H” in Tab. 2) and
Problem + C & H (i.e., “Direct + w/H” in Tab. 2)—
and then (2) manually annotating the first wrong
step in each solution (or label it to be fully correct
if there are no wrong steps). We first evaluate the
ten models on each annotated solution, using the
prompt shown in Fig. 3. Two variants are explored:
one where the reference solution is not given (by
removing all blue italic texts) and the other where
the reference solution is given (by using the com-
plete prompt). This prompt both allows the model
to engage in chain-of-thought reasoning and more-
over enables easy parsing of the output, via the line
starting with “Judgment:”.

5.2 Results

Output judgment type. We first study the judg-
ment types from models (regardless of judgment
correctness), with three categories: has-FWS,
where the model identifies a FWS, no-mistake,
where the model outputs “Judgment: No mistake”,
and invalid, where the sentence following “Judg-
ment:” is not in the solution or this line is not
found.

Tab. 4 lists the count breakdown for each of the
three judgment types, in that respective order. Com-
pared to the ground truth distribution, only GPT-4
and 4 Turbo behave reasonably, with other models
either producing a large number of invalid judg-
ments (e.g., Llama 2 7B and Mistral 7B), or failing
to identify mistakes in most solutions (e.g., PaLM
2 Medium and Llama 2 70B). The results indicate
that despite the ability to get correct final answers
on challenging math problems, most models lack
strong verification abilities or even present diffi-
culty understanding and following the verification
task prompt. For more detailed analyses, we fo-
cus on GPT-4 and 4 Turbo, which produce few
invalid answers and best resemble the ground truth
judgement patterns.

Judgment correctness analysis. For syntacti-
cally valid judgements (has-FWS and no-mistake),
we evaluate their outputs in more depth. For each
of the verifier model of GPT-4 and 4 Turbo, we
consider 4 setups by varying two factors: the Prob-
lem Only or Problem + C & H prompt, and with or
without reference solution. Tab. 5 shows the counts
of different model vs. ground truth judgments.

We compute sensitivity and specificity to quan-
tify the two verifiers’ FWS identification accuracy.
Recall that true-positive (TP) is the case where the

13262

Problem Only Problem + C & H
w/o Ref Soln w/ Ref Soln w/o Ref Soln w/ Ref Soln

GPT-3.5 6 | 228 | 36 5 | 170 | 95 2 | 243 | 25 1 | 186 | 83
GPT-4 180 | 86 | 4 178 | 87 | 5 171 | 94 | 5 177 | 87 | 6

GPT-4 T 203 | 56 | 11 200 | 55 | 15 205 | 49 | 16 193 | 67 | 10
PaLM 2 M 0 | 233 | 37 0 | 225 | 45 0 | 221 | 49 0 | 236 | 34

Llama 2 7B 124 | 20 | 126 106 | 54 | 110 149 | 11 | 110 130 | 27 | 113
Llama 2 70B 0 | 264 | 6 0 | 255 | 15 0 | 264 | 6 0 | 266 | 4

Llama 3 8B 3 | 252 | 15 13 | 249 | 8 3 | 252 | 15 18 | 241 | 11
Llama 3 70B 93 | 128 | 49 46 | 199 | 25 69 | 138 | 63 47 | 197 | 26

Mistral 7B 0 | 73 | 197 0 | 13 | 257 0 | 65 | 205 0 | 17 | 253
Mixtral 8x22B 57 | 123 | 90 40 | 182 | 48 70 | 136 | 64 29 | 200 | 41

Ground truth 238 | 32 | 0 206 | 64 | 0

Table 4: Count breakdown of judgment types produced
by each model. In each cell, the three numbers represent
the number of has-FWS, no-mistake and invalid judg-
ments. Each triplet sums up to 270, the total number of
problems (and annotated solutions for the prompt). The
ground truth statistics are shown on the last line.

Setup Model vs. Ground Truth Judgment

V
er

ifi
er

C
&

H

R
ef

So
ln

early TP late spur. miss TN

G
PT

-4

✗ ✗ 33 61 76 10 64 22
✗ ✓ 31 66 78 3 58 29
✓ ✗ 33 50 69 19 49 45
✓ ✓ 33 73 66 7 30 57

G
PT

-4
T ✗ ✗ 33 71 86 13 37 19

✗ ✓ 37 77 80 6 29 26
✓ ✗ 31 54 87 33 19 30
✓ ✓ 29 69 81 14 18 49

Table 5: Detailed analysis of FWS identification. “Veri-
fier” is the model under evaluation. A cross mark under
“C & H” uses the Problem Only (“No C + w/o H”)
prompt and its solution, and a check mark uses the Prob-
lem + C & H (“Direct + w/ H”) prompt. A cross mark
under “Ref Soln” withholds the reference solution, and
a check mark reveals it. For the six judgment types, red
highlighting marks the ground truth (GT) FWS span, a
green check mark means that the full solution is error-
free, and yellow crosses mark the verifier’s identification
(VI), if present. The six judgments are: early (where VI
is before GT), TP (true positive, where VI overlaps with
GT), late (where VI is after GP), spurious (where GT is
error-free but the verifier makes an identification), miss
(where verifier misses a GT FWS) and TN (true negative,
where model makes a correct judgment of error-free).
Green and red cell background colors indicates correct
and incorrect judgments, respectively. The number in
each cell counts the specific model judgments under the
prompt. Invalid responses are excluded.

model correctly identifies the ground truth FWS
(with any overlapping) in a wrong solution, and
true-negative (TN) is the case where the model cor-
rectly reports a no-mistake judgment for an error-
free solution. Sensitivity is defined as the fraction
of TP among all wrong solutions, and specificity as

Sensitivity Specificity
Prompt Verifier w/o Ref w/ Ref w/o Ref w/ Ref

Prob
Only

GPT-4 16.3 19.9 71.0 90.3
GPT-4 T 21.6 28.1 58.1 80.6

Prob +
C & H

GPT-4 18.1 32.6 70.3 89.1
GPT-4 T 28.1 33.8 47.6 77.8

Table 6: Sensitivity and specificity for different verifiers
and experimental setups.

the fraction of TN among all error-free solutions.
The former measures the verifiers’ ability of accu-
rately locating a FWS, while the latter measures
that of recognizing correct solutions.

Tab. 6 shows these statistics. This table, and the
raw counts in Tab. 5, reveal two trends. First, giving
the verifier access to reference solutions (i.e., itali-
cizing) helps its performance, as evidenced by the
increase in both sensitivity and specificity. Second,
GPT-4 has lower sensitivity but higher specificity
than GPT-4 Turbo (in bold), meaning that it is less
capable of identifying FWSs, but also less prone to
hallucinating errors in error-free solutions.

Verification of reference solutions. Finally, we
evaluate whether models can verify the reference
ground-truth solution (pretending it to be the stu-
dent answer). Here the correct response is always
“no-mistake”. The results are summarized in Tab. 7.
The best verifier models in the last experiment,
GPT-4 and GPT-4 Turbo, make the most number
of wrong “has-FWS” identifications. GPT-4 Turbo
performs better than GPT-4 but still hallucinates a
mistake on more than half solutions. Many mod-
els other than GPT-4 and GPT-4 Turbo ostensibly
perform well on this task. However, this is due to
their inability to identify any FWS (c.f., Tab. 4),

Judgment Has-FWS No-Mistake Invalid

GPT-3.5 4 186 80
GPT-4 190 79 1

GPT-4 T 161 102 7
PaLM 2 M 0 187 83

Llama 2 7B 76 123 71
Llama 2 70B 2 235 15

Llama 3 8B 30 222 18
Llama 3 70B 38 223 9

Mistral 7B 0 4 266
Mixtral 8x22B 97 139 74

Table 7: Model verification of (error-free) reference
solutions. Only “No-Mistake” judgments are correct.

13263

as shown in the previous experiment. These re-
sults collectively indicate that solution verification
is beyond the current capabilities of many LLMs.

6 Discussion

This paper presents CHAMP, the Concept and Hint-
Annotated Math Problems dataset, along with an-
notations of logical correctness of model-generated
solutions to each problem. The unique construc-
tion of CHAMP enables previously under-explored
studies regarding context-related reasoning abili-
ties as well as verification abilities of LLMs.

We investigate the mathematical reasoning abil-
ities of 10 proprietary and open-source LLMs of
various sizes and release dates through CHAMP.
Even the best models are far from perfect, and
many models are unable to incorporate useful con-
cepts and problem-specific hints. Even when the
final answer accuracy is high, a closer inspection of
the reasoning steps reveals that many models may
be accidentally arriving at the correct answer.

Furthermore, all models struggle at solution ver-
ification, indicating that these models often gener-
ate but do not understand their solutions, similar
to some of the findings of recent work (West et al.,
2023; Qiu et al., 2023). These results advocate for
a more fine-grained and multi-faceted investigation
of LLMs’ mathematical reasoning capabilities.

7 Limitations

While CHAMP reveals intriguing behaviors of dif-
ferent models, there are several limitations. For
one, we relied on extensive manual annotation for
high-quality labeling, and hence the dataset cur-
rently contains only 270 problems. There is also
the risk of dataset contamination; i.e., the models
we evaluate may have been trained on the original
versions of the problems from CHAMP. However,
to mitigate this we rewrote the problems to fit the
design of the dataset, minimizing the impact of
memorization. Finally, while we rely on automatic
evaluation for final answer accuracy to enable scal-
able evaluation, this may not be perfect. Our man-
ual grading results suggest, though, that GPT-4’s
automatic grading has a high accuracy of 97%.

Acknowledgments

We thank the reviewers for their suggestions. This
study was supported in part by funds from MIT-
IBM Watson AI.

References
Meta AI. 2024. Introducing meta llama 3: The most

capable openly available llm to date. https://ai.
meta.com/blog/meta-llama-3.

Rohan Anil, Andrew M Dai, Orhan Firat, Melvin John-
son, Dmitry Lepikhin, Alexandre Passos, Siamak
Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng
Chen, et al. 2023. Palm 2 technical report. arXiv
preprint arXiv:2305.10403.

Shiqi Chen, Yiran Zhao, Jinghan Zhang, I Chern, Siyang
Gao, Pengfei Liu, Junxian He, et al. 2023. Felm:
Benchmarking factuality evaluation of large language
models. arXiv preprint arXiv:2310.00741.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

Arthur Engel. 2008. Problem-solving strategies.
Springer Science & Business Media.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon,
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra-
ham Neubig. 2023. Pal: Program-aided language
models. In International Conference on Machine
Learning, pages 10764–10799. PMLR.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and Ja-
cob Steinhardt. 2021. Measuring mathematical prob-
lem solving with the math dataset. arXiv preprint
arXiv:2103.03874.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, et al. 2023. Mistral
7b. arXiv preprint arXiv:2310.06825.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling laws for neural language models. arXiv
preprint arXiv:2001.08361.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. Advances
in neural information processing systems, 35:22199–
22213.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri
Edwards, Bowen Baker, Teddy Lee, Jan Leike,
John Schulman, Ilya Sutskever, and Karl Cobbe.
2023. Let’s verify step by step. arXiv preprint
arXiv:2305.20050.

13264

https://ai.meta.com/blog/meta-llama-3
https://ai.meta.com/blog/meta-llama-3

Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel,
and Pontus Stenetorp. 2021. Fantastically ordered
prompts and where to find them: Overcoming
few-shot prompt order sensitivity. arXiv preprint
arXiv:2104.08786.

Ian R McKenzie, Alexander Lyzhov, Michael Pieler,
Alicia Parrish, Aaron Mueller, Ameya Prabhu, Euan
McLean, Aaron Kirtland, Alexis Ross, Alisa Liu,
et al. 2023. Inverse scaling: When bigger isn’t better.
arXiv preprint arXiv:2306.09479.

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe,
Mike Lewis, Hannaneh Hajishirzi, and Luke Zettle-
moyer. 2022. Rethinking the role of demonstra-
tions: What makes in-context learning work? arXiv
preprint arXiv:2202.12837.

OpenAI. 2023. Gpt-4 technical report. ArXiv.

Linlu Qiu, Liwei Jiang, Ximing Lu, Melanie Sclar,
Valentina Pyatkin, Chandra Bhagavatula, Bailin
Wang, Yoon Kim, Yejin Choi, Nouha Dziri, et al.
2023. Phenomenal yet puzzling: Testing in-
ductive reasoning capabilities of language mod-
els with hypothesis refinement. arXiv preprint
arXiv:2310.08559.

Mistral AI Team. 2024. Cheaper, better, faster, stronger.
https://mistral.ai/news/mixtral-8x22b/.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le,
Ed Chi, Sharan Narang, Aakanksha Chowdhery, and
Denny Zhou. 2022. Self-consistency improves chain
of thought reasoning in language models. arXiv
preprint arXiv:2203.11171.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits
reasoning in large language models. Advances in
Neural Information Processing Systems, 35:24824–
24837.

Peter West, Ximing Lu, Nouha Dziri, Faeze Brahman,
Linjie Li, Jena D Hwang, Liwei Jiang, Jillian Fisher,
Abhilasha Ravichander, Khyathi Chandu, et al. 2023.
The generative ai paradox:" what it can create, it may
not understand". arXiv preprint arXiv:2311.00059.

Zhaofeng Wu, Linlu Qiu, Alexis Ross, Ekin Akyürek,
Boyuan Chen, Bailin Wang, Najoung Kim, Jacob An-
dreas, and Yoon Kim. 2023. Reasoning or reciting?
exploring the capabilities and limitations of language
models through counterfactual tasks. arXiv preprint
arXiv:2307.02477.

Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and
Sameer Singh. 2021. Calibrate before use: Im-
proving few-shot performance of language models.
In International Conference on Machine Learning,
pages 12697–12706. PMLR.

Aojun Zhou, Ke Wang, Zimu Lu, Weikang Shi, Sichun
Luo, Zipeng Qin, Shaoqing Lu, Anya Jia, Linqi
Song, Mingjie Zhan, et al. 2023. Solving challenging
math word problems using gpt-4 code interpreter
with code-based self-verification. arXiv preprint
arXiv:2308.07921.

13265

https://mistral.ai/news/mixtral-8x22b/

A Problem Collection and Annotation Considerations

A.1 Number Theory

A notable feature of number theory problems is that most of them are proof problems. We manage to
convert most of them into problems asking for an answer, with examples listed in Table 8. In addition,
there are some questions which require non-trivial factorization. Since LLMs are often bad at arithmetics
above 100, we provide them directly as hints, such as 1971 = 27× 73.

Before After

Prove that n4+4n can never be a prime number for integer n > 1. For how many integers n in {1, 2, ..., 99} is n4 + 4n a prime
number? (Answer: 1)

Prove that x2 + y2 + z2 = 2xyz has no positive integer solutions. Find all positive integer solutions to the equation x2 + y2 + z2 =
2xyz. (Answer: No positive integer solutions)

Prove that 323 | 20n + 16n − 3n − 1 for even n. What are possible values of 20n+16n−3n−1 mod 323 for even
n? (Answer: 0 is the only possible value)

Table 8: Conversion of proof problems into those with check-able answers.

A.2 Polynomial

Some polynomial problems require factorization or root finding involving nontrivial arithmetics, similar to
number theory problems. To reduce errors in this process, we provide the relevant arithmetic calculation
as hints, such as 264 = 6× 44 when factoring v2 − 50v + 264 = (v − 6)(v − 44).

In addition, there are several polynomial division and remainder problems, for which we provide the
concrete definition as a concept (although all models could easily retrieve and explain this definition with
a straightforward query of “What is polynomial division and remainder?”):

When a polynomial f(x) is divided by a polynomial g(x), the quotient q(x) and the remainder
r(x) are polynomials such that f(x) = g(x)q(x) + r(x) and the remainder r(x) has degree
less than that of g(x).

A.3 Sequence

A common type of problems in sequence is to find its limit. However, a prerequisite is to prove that the
limit exists. Thus, we frame such questions explicitly, using wording such as “Determine if the limit
exists, and if so, find its value.” We also annotate these questions with concepts stating the theorem that
establish the existence of the limit, most commonly the monotone convergence theorem:

A sequence that is monotonic and bounded has a limit. Specifically, a sequence that is mono-
tonically increasing and bounded from above, or monotonically decreasing and bounded from
below, has a limit.

In addition, a common strategy is induction, which shows that a property holds for all an by showing
that it holds for an if it holds for all of a1, ..., an−1. Because the instantiation of the strategy, especially
the property to show, is problem-specific, we provide it as a hint, rather than a concept.

A.4 Inequality

Just like with the category of number theory problems, many problems in inequality are written as proofs
of inequality identity. We manage to convert them into questions requiring numerical answers with
approaches such as asking for the extremum (i.e., maximum or minimum depending on the original
inequality) value (while making sure that the value can indeed be attained by some variable value
assignment). Some sample conversions are listed in Tab. 9.

13266

Before After

Prove that, for a, b, c > 0, 3
√
abc ≤

√
(ab+ bc+ ca)/3? For positive a, b, c, what is the smallest value of√

ab+ bc+ ac/ 3
√
abc? (Answer:

√
3)

If n > 1, proof that 1/(n+ 1) + 1/(n+ 2)...+ 1/(2n) > 1/2. For how many values of n in {101, ..., 1000} is 1/(n+1)+1/(n+
2) + ...+ 1/(2n) > 1/2? (Answer: 900)

The product of three positive reals is 1. Their sum is greater
than the sum of their reciprocals. Prove that exactly one of these
numbers is > 1.

The product of three positive real numbers is 1, and their sum is
greater than the sum of their reciprocals. How many of them can
be greater than 1? (Answer: 1)

Table 9: Conversion of inequality proof problems into those requiring answers.

A.5 Combinatorics
Most combinatorics problems describe real-world scenarios. Where applicable, we provide any unmen-
tioned commonsense knowledge (e.g., “On a chess board, two rooks are placed peacefully if they are not
on the same row or column.”) before the problem (e.g., “For an n× n chess board, find the number of
ways that n rooks can be placed peacefully (i.e., any two are placed peacefully), as an expression of n.”).

In addition, many combinatorics problems ask for the number of ways in a setup size n (e.g., the
number of ways that n horses can finish in a race with the possibility of ties), and it is solved in the
following manner:

1. Find a recurrence relationship to express P (n) in terms of P (n − 1) and P (n − 2) (and possibly
more terms), where P (n) is the quantity asked in the question.

2. Find the initial values P (1), P (2) (and possibly more terms).

3. Set up a characteristic equation (which is a polynomial) and find its root.

4. Use the roots to express P (n) as a function of n.

The key difficulty is the root-finding part, so instead of asking for the general expression of P (n) in terms
of n, we ask for a specific value, such as P (7), which could be worked out by repeatedly applying the
recurrence relationship from the initial values. We also make sure that the asked P (n) value is relatively
small, usually less than 200, to minimize the chance of arithmetic errors.

13267

B Dataset Details

Tab. 10 shows one problem from each category, with problem, concepts and hints on the left column, and
solution on the right column.

Number Theory (Problem ID: P_Number-Theory_1)

Problem: Are there integer solutions to the equation (x2−1)(y2−1)+1985 =
z2?

Concepts and Hints:
H1. Consider the equation modulo 9.
C1. For integer x, x2 mod 9 can take values of 0, 1, 4 and 7.
C2. (a+b) mod m = ((a mod m)+(b mod m) mod m).(a−b) mod m =

((a mod m) − (b mod m) mod m).ab mod m = ((a mod m)(b mod
m) mod m).ak mod m = ((a mod m)k mod m).

H2. 1985 mod 9 = 5.

Answer: No

Solution Steps [Concepts and Hints Used]:
1. If the equation has a solution, we have (x2 − 1)(y2 − 1) = z2 − 1985.
2. Since u2 mod 9 ∈ {0, 1, 4, 7}, we have u2 − 1 mod 9 ∈ {0, 3, 6, 8} and

(x2 − 1)(y2 − 1) mod 9 ∈ {0, 1, 3, 6}. [H1, C1, C2]
3. However, since 1985 mod 9 = 5, z2− 1985 mod 9 ∈ {2, 4, 5, 8}. [H1, H2,

C2]
4. Since there is no overlapping values, we conclude that the equation has no

solution.

Polynomial (Problem ID: P_Polynomial_1)

Problem: What is the remainder of nxn+1−(n+1)xn+1 divided by (x−1)2?

Concepts and Hints:
C1. When a polynomial f(x) is divided by a polynomial g(x), the quotient q(x)

and the remainder r(x) are polynomials such that f(x) = g(x)q(x)+r(x)
and the remainder r(x) has degree less than that of g(x).

H1. Let f(x) = nxn+1 − (n+ 1)xn + 1 and study f(1) and f ′(1).

Answer: 0

Solution Steps [Concepts and Hints Used]:
1. We have f(x) = (x − 1)2 ∗ q(x) + r(x) where r(x) is a polynomial of

degree at most 1 (i.e., r(x) = ax+ b). [C1]
2. Thus, f(1) = 0 = r(1). [H1]
3. We have f ′(x) = 2(x − 1) ∗ q(x) + (x − 1)2 ∗ q(x) + r′(x), sof ′(1) =

r′(1) = 0. [H1]
4. Since r(x) has the form of ax+ b, we have a+ b = 0, a = 0, so b = 0.
5. Thus, r(x) = 0 is the remainder.

Sequence (Problem ID: P_Sequence_2)

Problem: Let {xn}, {yn}, {zn} be three sequences with positive initial terms
x1, y1, z1, defined as xn+1 = yn+1/zn, yn+1 = zn+1/xn, zn+1 = xn+1/yn.
Let wn be the maximum value of xn, yn, zn. For different values of x1, y1, z1,
do we have w200 always greater than 20, always smaller than 20, or sometimes
greater and sometimes smaller than 20?

Concepts and Hints:
H1. Let an = xn + yn + zn.
H2. Derive a lower bound on a2.
C1. For positive x, x+ 1/x ≥ 2, with equality if and only if x = 1.
H3. Compare an with 18n for all n.
C2. (x± y)2 = x2 ± 2xy + y2.
C3. For real numbers a1, ..., an and b1, ..., bn, (a1b1 + ... + anbn)

2 ≤ (a21 +
...+ a2n)(b

2
1 + ...+ b2n).

Answer: Always greater than 20

Solution Steps [Concepts and Hints Used]:
1. Let an = xn + yn + zn. [H1]
2. We have a22 = (x1 + 1/x1 + y1 + 1/y1 + z1 + 1/z1)

2 ≥ (2 + 2 + 2)2 =
36 = 2 · 18. [H2, C1]

3. If a2n ≥ 18n, then we have a2n+1 = (xn+1/xn+yn+1/yn+zn+1/zn)
2 ≥

a2n + 2(xn + yn + zn)(1/xn + 1/yn + 1/zn) ≥ a2n + 2 ∗ 9 ≥ 18n+ 18 =
18(n+ 1). [H3, C2, C3]

4. So we have a2n ≥ 18n. [H3]
5. Thus, a2200 ≥ 18·200 = 3600, which means that a200 = x200+y200+z200 ≥

60.
6. So one of x200, y200, z200 must be at least 20.
7. Thus, w200 cannot be smaller than 20.

Inequality (Problem ID: P_Inequality_2)

Problem: For positive a, b, what is the smallest value of (a2 + b2)/(a+ b)2?

Concepts and Hints:
C1. For non-negative x, y, we have (x+ y)/2 ≤

√
(x2 + y2)/2, with equality

if and only if x = y.

Answer: 1/2

Solution Steps [Concepts and Hints Used]:
1. Since (a+ b)/2 ≤

√
(a2 + b2)/2, we have (a+ b)2/4 ≤ (a2+ b2)/2. [C1]

2. This means that (a2 + b2)/(a+ b)2 ≥ 1/2.
3. So the smallest value is 1/2, achieved at a = b.

Combinatorics (Problem ID: P_Combinatorics_1)

Problem: Let a string consist of digit 1, 2, 3. How many such strings of length
6 have adjacent digit differing by less than or equal to 1?

Concepts and Hints:
H1. Let xn, yn, zn be the number of length-n strings that end with digit 1, 2, 3

respectively.
H2. What are x1, y1, z1?
H3. By appending a digit to the existing string, derive the formula for xn+1,

yn+1, zn+1 from xn, yn, zn.
C1. If there are n actions, with pi ways to perform the i-th action, and no two

actions can be performed at the same time, then there are p1+p2+ ...+pn
ways to perform the action in total.

Answer: 239

Solution Steps [Concepts and Hints Used]:
1. Let xn, yn, zn be the number of length-n strings that end with digit 1, 2, 3

respectively. [H1]
2. Thus, we have x1 = y1 = z1 = 1. [H2]
3. For a string ending with 1, we can append 1 and 2; for a string ending with

2, we can append 1, 2 and 3; for a string ending with 3, we can append 2 and
3. [H3]

4. Thus, we have xn+1 = xn+ yn, yn+1 = xn+ yn+ zn, andzn+1 = yn+ zn.
[H3, C1]

5. Starting from (1, 1, 1), we have the sequence of (xn, yn, zn) to be (1, 1, 1),
(2, 3, 2), (5, 7, 5), (12, 17, 12), (29, 41, 29), (70, 99, 70).

6. Thus, in total, there are x6 + y6 + z6 = 70 + 99 + 70 = 239 such strings.

Table 10: One example problem per category from the dataset. The left column presents the problem, along with
relevant concepts and hints. The right column gives the solution, both the final answer and the full step-wise solution
with concept and hint labels.

13268

Table 11 presents a breakdown of problems by answer formats and the corresponding baseline answer
design. This baseline simulates the best performance of a dummy model that has no math reasoning
ability but can answer the question in a semantically sensible manner (e.g., answering Yes or No to a
question asking for a Boolean answer).

Answer Format # Probs Example Baseline Answer

Boolean 42 Is 4545 + 5454 a prime number? No

Numeric 162 In how many ways can 4 horses go through the finish (with
possibility of ties)?

0

Expression 45 Among all sequences of positive integer numbers have sum
n, for integer k < n− 1, how many times does the number
k appear, as an expression of n and k?

Sum of all variables (i.e.,
n+ k for the example)

Enumeration 21 Find all integer solutions to the equation 15x2 − 7y2 = 9. None

Table 11: The construction of baseline answers based on four answer formats.

C Full Prompt Texts

This section lists all the prompts used in the experiments. Texts of normal fonts are provided literally.
Parenthesized italic (texts) are provided to the model, and parenthesized bold (texts) are model outputs.

Tab. 12 shows the main prompt setup for the model’s problem solving capability evaluation. The final
answer summary is evaluated by GPT-4 with the prompt listed in Tab. 13. We include “Partially correct”
as one grading verdict for the model to use in ambiguous situations (e.g., the solver model finds one of
two solutions to the equation) but treat it as incorrect for accuracy calculation (e.g., in Tab. 2).

Role Message

System You are an expert on mathematics.

User (One or more rounds of user-solver conversation that end in the solver generating the full solution as the message of
the last round. The specific conversation contents are presented in Tab. 14-21.)Solver

User Now, summarize the answer above in one sentence, without any intermediate steps or explanations.

Solver (Model-generated final answer summary)

Table 12: Prompt for eliciting full solution and final answer summary from the model under evaluation (i.e., solver).

Role Message

System You are a math teacher and need to grade student’s homework. For each question, you need to determine the correctness
of the student answer, given the reference answer. You only need to judge the correctness of the final answer, and
should not consider any reasoning or explanations given in the answer. Note that if the student gives an obviously
equivalent solution to the reference answer (e.g., 1.5 vs 3/2 or a2 − b2 vs (a+ b)(a− b)), the answer should be judged
as correct. Your decision should be one of “Correct”, “Incorrect” or “Partially correct”. There is no need to explain
your decision.

User The question is:
(Problem statement)
The reference answer is:
(Ground truth final answer from the dataset)
The student answer is:
(Model-generated final answer summary)
Is the student answer correct, incorrect, or partially correct?

GPT-4 (Grading verdict)

Table 13: Prompt for grading the solver’s final answer summary using GPT-4.

13269

Tab. 14-16 present the prompts for evaluating models under current practices, including zero-shot,
few-shot (5-shot) and zero-shot with partial solution. These conversations are to be swapped into the
orange cell of Tab. 12. Note that in the few-shot prompt of tab. 15, only the last round is actually generated
by the model. The “solver output” in the earlier rounds are directly fed to the model as the context
(pretending to be earlier model generations).

Role Message

User Solve the following problem. Make sure to show your work before giving the final answer.
(Problem statement)

Solver (Model-generated full solution)

Table 14: Zero-shot prompt.

Role Message

User Solve the following problem. Make sure to show your work before giving the final answer.
(Statement of sample problem 1)

Solver (Ground truth solution steps for problem 1)

User Solve the following problem. Make sure to show your work before giving the final answer.
(Statement of sample problem 2)

Solver (Ground truth solution steps for problem 2)

User Solve the following problem. Make sure to show your work before giving the final answer.
(Statement of sample problem 3)

Solver (Ground truth solution steps for problem 3)

User Solve the following problem. Make sure to show your work before giving the final answer.
(Statement of sample problem 4)

Solver (Ground truth solution steps for problem 4)

User Solve the following problem. Make sure to show your work before giving the final answer.
(Statement of sample problem 5)

Solver (Ground truth solution steps for problem 5)

User Solve the following problem. Make sure to show your work before giving the final answer.
(Problem statement)

Solver (Model-generated full solution)

Table 15: Few-shot prompt.

Role Message

User Solve the following problem. Make sure to show your work before giving the final answer.
(Problem statement)
Below is a partial solution to the problem that may be helpful:
(List of steps revealed in the partial solution)

Solver (Model-generated full solution)

Table 16: Zero-shot prompt with partial solution provided.

13270

Tab. 17-21 presents the prompts for different concept provision methods covered in Tab. 2. The light
green texts and dark green texts are used for the w/o H and w/ H prompts respectively, consistent with the
color-coding of Tab. 2. Any corner cases are discussed in table captions.

Role Message

User Solve the following problem. Make sure to show your work before giving the final answer.
(Problem statement)

You may find the following information useful:
(List of all hints.)

Solver (Model-generated full solution)

Table 17: The “No C” concept provision prompt (i.e. not providing any concept). The w/o H version (and w H
version when the problem does not have any hint) is the same as the zero-shot prompt of Tab. 14.

Role Message

User Solve the following problem. Make sure to show your work before giving the final answer.
(Problem statement)

You may find the following information useful:
(List of relevant concepts.) / (List of relevant concepts and hints.)

Solver (Model-generated full solution)

Table 18: The “Direct” concept provision prompt (also used for “Root” and “Misleading” with respective concepts).
If there are no concepts in the w/o H version, then the last paragraph is removed entirely and the prompt reduces to
the zero-shot prompt of Tab. 14.

Role Message

User Please explain the following concept: (name of concept 1, skip this round if unnamed).

Solver (Model-generated concept explanation)

User Please explain the following concept: (name of concept 2, skip this round if unnamed).

Solver (Model-generated concept explanation)

(One round of conversation for each named concept)

User Please explain the following concept: (name of concept n, skip this round if unnamed).

Solver (Model-generated concept explanation)

User Solve the following problem. Make sure to show your work before giving the final answer.
(Problem statement)

Besides the concepts above, you may also find the following information useful:
(List of remaining unnamed concepts.) / (List of remaining unnamed concepts and all hints.)

Solver (Model-generated full solution)

Table 19: The “Name” concept provision prompt. If there are no unnamed concepts (and hints), i.e., an empty list,
then the sentence “Besides the concepts above...” is replaced with “You may find the above concepts helpful.”, and
the prompt is terminated.

13271

Role Message

User Please give an example that applies the following concept:
(Text of concept 1).

Solver (Model-generated example)

User Please give an example that applies the following concept:
(Text of concept 2).

Solver (Model-generated example)

(One round of conversation for each concept)

User Please give an example that applies the following concept:
(Text of concept n).

Solver (Model-generated concept explanation)

User Solve the following problem. Make sure to show your work before giving the final answer.
(Problem statement)

You may find the above concepts helpful.
Besides the concepts above, you may also find the following information useful:
(List of all hints.)

Solver (Model-generated full solution)

Table 20: The “Example” concept provision prompt. If there are no hints, then we use the w/o H version.

Role Message

User First, study the following problems and their solutions as they may contain helpful information.
(Sample problem that uses concept 1 and its step-wise solution)
(Sample problem that uses concept 2 and its step-wise solution)
(...)
(Sample problem that uses concept n and its step-wise solution)

With what you have learned, solve the following problem. Make sure to show your work before giving the
final answer.
(Problem statement)

In addition, you may also find the following information helpful:
(List of all hints.)

Solver (Model-generated full solution)

Table 21: The “Problem” concept provision prompt. If there are no hints, then the colored text is omitted.

13272

D Model-Generated Solutions and First Wrong Step Annotations

Tab. 22 and 23 show one solution generated by each model. The final answer (FA) correctness and full
solution (FS) correctness are separately noted. When the FS is incorrect (regardless of the FA correctness),
the first wrong step (FWS) is highlighted in red, which consists the FWS corpus annotation.

Solution Author: GPT-3.5 Final Answer: Correct Full Solution: Incorrect

Problem ID: P_Inequality_10
Problem: For x, y, z > 0, what is the smallest value of x2/y2 + y2/z2 + z2/x2 − (y/x+ z/y + x/z)?
Answer: 0

Model-generated solution:
To find the smallest value of the expression, we can use the AM-GM inequality.
By AM-GM, we have:
x2/y2 + y2/z2 + z2/x2 ≥ 3

√
(x2/y2)(y2/z2)(z2/x2)

Simplifying the right side, we get:
3
√
(x2/y2)(y2/z2)(z2/x2) = 3

√
(x2y2z2)/(x2y2z2) = 3

√
1 = 3

Now, let’s consider the second term, −(y/x+ z/y + x/z).
By AM-GM, we have:
y/x+ z/y + x/z ≥ 3

√
(y/x)(z/y)(x/z)

Simplifying the right side, we get:
3
√
(y/x)(z/y)(x/z) = 3

√
(xyz)/(xyz) = 3

√
1 = 3

Therefore, the smallest value of the expression is:
3− 3 = 0
So, the smallest value of x2/y2 + y2/z2 + z2/x2 − (y/x+ z/y + x/z) is 0.

Solution Author: GPT-4 Final Answer: Correct Full Solution: Incorrect

Problem ID: P_Number-Theory_13
Problem: What is the smallest value of |36m − 5n| for positive integers m and n?
Answer: 11

Model-generated solution:
To find the smallest value of |36m − 5n| for positive integers m and n, we need to find the smallest values of m and n
such that 36m is as close as possible to 5n.
Let’s start with m = 1 and n = 1. We have:
|361 − 51| = |36− 5| = 31
If we increase m to 2, we get:
|362 − 51| = |1296− 5| = 1291
This is much larger, so increasing m is not a good strategy. Let’s try increasing n to 2:
|361 − 52| = |36− 25| = 11
This is smaller, so increasing n seems to be a good strategy. Let’s try n = 3:
|361 − 53| = |36− 125| = 89
This is larger again, so n = 2 seems to be the best choice. Let’s check m = 2 just to be sure:
|362 − 52| = |1296− 25| = 1271
This is much larger, so m = 1 and n = 2 is the best choice.
So, the smallest value of |36m − 5n| for positive integers m and n is 11.

Table 22: Sample solutions generated by different models and their correctness. If the full solution is not correct,
the first wrong step (FWS) is marked in red. Table continued in Tab. 23.

13273

Solution Author: GPT-4 T Final Answer: Correct Full Solution: Correct

Problem ID: P_Combinatorics_40
Problem: Find the number of ways to fill a 2 x 11 rectangle with 2 x 1 tiles.
Answer: 144

Model-generated solution:
To solve this problem, we can use a recursive approach. Let’s denote the number of ways to fill a 2 x n rectangle with 2
x 1 tiles as f(n). We are looking to find f(11).
Let’s consider the first column of the 2 x 11 rectangle. We have two choices for placing the tiles:
1. We place two tiles
vertically in the first column. If we do this, we are left with a 2 x (11-1) = 2 x 10 rectangle to fill. The number of ways
to fill the rest of the rectangle is f(10).
2. We place one tile horizontally at the top of the first column. If we do this, we must also place another tile horizontally
below it to fill the first two columns. This leaves us with a 2 x (11-2) = 2 x 9 rectangle to fill. The number of ways to
fill the rest of the rectangle is f(9).
Therefore, we can express f(n) as a recursive function: f(n) = f(n− 1) + f(n− 2)
We also need to establish the base cases. For a 2 x 1 rectangle, there is only one way to fill it (vertically), so f(1) = 1.
For a 2 x 2 rectangle, there are two ways to fill it (either two vertical tiles or two horizontal tiles), so f(2) = 2.
Now we can compute f(11) using the recursive formula:
f(1) = 1
f(2) = 2
f(3) = f(2) + f(1) = 2 + 1 = 3
f(4) = f(3) + f(2) = 3 + 2 = 5
f(5) = f(4) + f(3) = 5 + 3 = 8
f(6) = f(5) + f(4) = 8 + 5 = 13
f(7) = f(6) + f(5) = 13 + 8 = 21
f(8) = f(7) + f(6) = 21 + 13 = 34
f(9) = f(8) + f(7) = 34 + 21 = 55
f(10) = f(9) + f(8) = 55 + 34 = 89
f(11) = f(10) + f(9) = 89 + 55 = 144
So, there are 144 ways to fill a 2 x 11 rectangle with 2 x 1 tiles.

Solution Author: PaLM 2 M Final Answer: Incorrect Full Solution: Incorrect

Problem ID: P_Polynomial_11
Problem: If x1, x2 are the two roots of the polynomial x2 − 6x+ 1, for how many integer n in {61, 62, ..., 120} does
xn1 + xn2 divided by 5 give a remainder of 4?
Answer: 10

Model-generated solution:
The two roots of the polynomial x2 − 6x+ 1 are x1 =

3+
√
5

2 and x2 =
3−

√
5

2 .
We can write xn1 + xn2 as follows:

xn1 + xn2 =
(
3+

√
5

2

)n
+
(
3−

√
5

2

)n

We can factor the expression in the parentheses as follows:(
3+

√
5

2

)n
+
(
3−

√
5

2

)n
=

(
3+

√
5+3−

√
5

2

)n
+
(
3+

√
5(3−

√
5)

2

)n

Simplifying, we get:
xn1 + xn2 =

(
6
2

)n
+
(
−2

√
5

2

)n

We can then write xn1 + xn2 as follows:
xn1 + xn2 = 3n − 2n

√
5
n

We know that 3n is always divisible by 5, since 3 is a factor of 5. We also know that
√
5 is an irrational number, so√

5
n

is never divisible by 5. Therefore, xn1 + xn2 is never divisible by 5.
In the range 61 ≤ n ≤ 120, there are 60 integers. Since xn1 + xn2 is never divisible by 5, there are 0 integers in this
range for which xn1 + xn2 divided by 5 gives a remainder of 4.
Therefore, the answer is 0 .

Table 23: Sample solutions generated by different models and their correctness. If the full solution is not correct,
the first wrong step (FWS) is marked in red. Table continued from Tab. 22.

13274

