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Abstract

Large language models (LLMs) are capable
of performing conditional sequence generation
tasks, such as translation or summarization,
through instruction fine-tuning. The fine-tuning
data is generally a sequential concatenation of
a specific task instruction, an input sentence,
and the corresponding response. Considering
the locality of self-attention modeling in LLMs,
these models face the risk of instruction forget-
ting when generating responses for long input
sentences. To mitigate this issue, we propose
to enhance the instruction-following capabil-
ity of LLMs by relocating the position of task
instructions after the input sentences. Theoret-
ical analysis suggests that our straightforward
method can alter the model’s learning focus,
thereby emphasizing the training of instruction-
following capabilities. Concurrently, experi-
mental results demonstrate that our approach
consistently outperforms traditional settings
across various model scales (1B / 7B / 13B)
and different sequence generation tasks (trans-
lation and summarization), without any addi-
tional data or annotation costs. Notably, our
method significantly improves the zero-shot
performance on conditional sequence genera-
tion, e.g., up to 9.7 BLEU points on WMT
zero-shot translation tasks. Further analysis re-
veals that our method can substantially enhance
the model’s instruction-following ability by 1x
compared to the traditional approach.

1 Introduction

In recent years, there has been a rapid emergence of
large language models (LLMs) like ChatGPT and
GPT-41, which have shown promising performance
in various traditional natural language processing
tasks (Wang et al., 2023; Jiao et al., 2023b; Kasneci
et al., 2023; Hill-Yardin et al., 2023; Šlapeta, 2023;
Aydın and Karaarslan, 2023). Meanwhile, there
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Figure 1: Example data in Pre-Instruction and Post-
Instruction format. Different blocks represent textual
data from different fields, while the ‘+’ symbol signifies
the concatenation operation for the textual data. For
sequence generation tasks, the length of the input sen-
tence is generally much larger than the length of the task
instruction.

is also a growing interest in open source medium-
sized language models, such as the LLaMA model
with 13 billion parameters (Touvron et al., 2023)
and the BLOOMZ language model with 7.1 bil-
lion parameters (Muennighoff et al., 2022), to meet
research and hardware deployment requirements.

To align the outputs of language models with
human intentions and unlock their full potential,
InstructGPT (Ouyang et al., 2022) constructs a
small amount of instruction-following data for fine-
tuning LLMs and conducts reinforcement learn-
ing to align the model with human preferences.
This approach to instruction following has gained
widespread attention from both the academic and
industrial communities (Brooks et al., 2023; Chung
et al., 2022; Wei et al., 2022; Ahn et al., 2022; Wei
et al., 2021; Aher et al., 2023).

Generally, the instruction-following data con-
sists of three parts. Taking the machine translation
task as an example, these parts include a specific
task instruction (e.g., "Please translate the follow-
ing paragraph from English to French"), an input
sentence (the English sentence to be translated),
and the final response (the corresponding French
translation). Since most large language models are
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based on the decoder-only structure of the Trans-
former (Vaswani et al., 2017; Radford et al., 2019;
Brown et al., 2020), with a training objective of pre-
dicting the next token. Generally, these three parts
of the instruction-following data are sequentially
concatenated into a long nature sentence as the
training data for language models. Given that the
self-attention mechanism in Transformer decoders
tends to focus more on nearby words i.e., the local-
ity of self-attention modeling (Beltagy et al., 2020;
Kitaev et al., 2019; Voita et al., 2019), there is a
considerable risk of instruction forgetting when
predicting responses for long input sentences. For
example, when performing long text summariza-
tion tasks, the input sentence may contain thou-
sands of tokens. Consequently, the model may be
at risk of forgetting the initial task instruction when
predicting responses, leading to the generation of
responses that do not fully comply with the user’s
intent. In this paper, we refer to this risk as the
instruction forgetting issue.

To alleviate the above issue for LLMs during
instruction fine-tuning, we first observe that the
relative position of the input sentence and the task
instruction is crucial. Therefore, we propose a sim-
ple and straightforward solution, namely, placing
the task instruction at the end of the input sentence
(referred to as ‘Post-Ins’). In this way, when the
model predicts the final response, it naturally at-
tends to the nearest preceding sequence, which is
just the task instruction indicating what content
should be generated next. For comparison, we re-
fer to the data format in existing studies where the
task instruction is concatenated to the front of the
input sentence as Pre-Instruction (abbreviated as
‘Pre-Ins’).

To verify whether Post-Ins improves the
instruction-following ability of language models
and alleviates the instruction forgetting issue on
long sentences compared to Pre-Ins, we first ana-
lyze the conditional probability characteristics of
the models under both data formats with the tri-
nomial Bayes formula. Through appropriate as-
sumptions and formula derivations, we draw the
following conclusions: (1) Pre-Ins tends to model a
reverse conditional probability (e.g., reverse trans-
lation probability), emphasizing the coverage of
the input sentence while insufficiently modeling
the task instruction. (2) Post-Ins is more inclined to
model a conditional probability about the task in-
struction (e.g., predicting the task instruction given
inputs and outputs), emphasizing the modeling of

task instruction-following ability. In addition to the
theoretical analysis, we conduct extensive exper-
iments based on two widely used large language
models, LLaMA and BLOOMZ, with various pa-
rameter sizes ranging from 1.7 billion to 13 bil-
lion. We select two common sequence generation
tasks as specific downstream tasks, namely, ma-
chine translation and long text summarization. The
experimental results show that Post-Ins consistently
outperforms Pre-Ins across various settings without
using any additional supervised data. Furthermore,
due to the superior modeling ability of task instruc-
tion, Post-Ins exhibits stronger task instruction gen-
eralization capabilities, resulting in significant per-
formance gains in zero-shot translation tasks (e.g.,
up to a 9.7 BLEU score improvement). Further
analysis reveals that our method can substantially
enhance the model’s instruction-following ability
by 1x compared to the traditional approach, and
about 4x improvements on specific instructions.

Our contribution can be summarized as follows:
2

• We show that the position of task instruction is
a key factor to conduct instruction fine-tuning
with LLMs, and propose to relocate the task
instruction after the input sequence (i.e., Post-
Ins), which could significantly enhance the
instruction-following ability of LLMs by up
to 4x improvements.

• Both our theoretical and experimental analy-
ses demonstrate that Post-Ins pays more at-
tentions on the model’s instruction-following
capabilities, yielding consistent performance
improvements across two common sequence
generation tasks. (e.g., up to 9.7 BLEU and
3.5 ROUGE improvements on machine trans-
lation and text summarization respectively.)

2 Related Work

InstructGPT (Ouyang et al., 2022) is the first to
unveil the immense potential of instruction learn-
ing. Remarkably, an InstructGPT model with 1.3
billion parameters can outperform the 175B GPT-
3, despite having 100x fewer parameters. Then
Stanford releases the Alpaca instruction-following
dataset (Taori et al., 2023), which is constructed by
the self-instruction data generation pipline (Wang

2Codes and data are at https://github.com/Adaxry/
Post-Instruction
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Instruction:  
Translate the following sentences from [SRC] to [TGT].

Input:  
At the start of this week the WADA had already raised the issue 
of tampering and demanded that Russia reply to the 
accusations within three weeks. Russia is now faced with the 
RUSADA again being excluded and in the worst case being 
banned from the 2020 Olympic Games in Tokyo. 

Response:   
Zu Beginn dieser Woche hatte bereits die Wada Manipulationen 
in den Raum gestellt und Russland aufgefordert, binnen drei 
Wochen auf die Vorwürfe zu antworten. Russland droht nun die 
erneute Sperre der Rusada und im schlimmsten Fall auch der 
Ausschluss von den Olympischen Spielen 2020 in Tokio.

(a) Pre-Ins

Instruction:  
Translate the above sentences from [SRC] to [TGT].

Input:  
At the start of this week the WADA had already raised the issue 
of tampering and demanded that Russia reply to the 
accusations within three weeks. Russia is now faced with the 
RUSADA again being excluded and in the worst case being 
banned from the 2020 Olympic Games in Tokyo. 

Response:   
Zu Beginn dieser Woche hatte bereits die Wada Manipulationen 
in den Raum gestellt und Russland aufgefordert, binnen drei 
Wochen auf die Vorwürfe zu antworten. Russland droht nun die 
erneute Sperre der Rusada und im schlimmsten Fall auch der 
Ausschluss von den Olympischen Spielen 2020 in Tokio.

(b) Post-Ins

Figure 2: An example of Pre-Ins formatted data for the machine translation tasks. ‘[SRC]’ and ‘[TGT]’ refer to the
source and target language, which are respectively English and German in this example.

et al., 2022). In the field of machine translation, Par-
rot (Jiao et al., 2023a) builds contrastive and error-
guided instructions to align the translation results
of LLMs with humman preferences. Subsequently,
Zeng et al. (2023) further extends the error-guided
instructions with token-level Direct Preference Op-
timization (Rafailov et al., 2023). To better transfer
the capabilities of sequence generation of LLMs,
BayLing (Zhang et al., 2023b) proposes to con-
duct interactive translation task through instructing
fine-tuning. Although the aforementioned methods
have made considerable progress, we argue that the
Pre-Ins data format ultilized in existing studies face
the potential risk of instruction forgetting, what we
aims to address in this paper.

3 Approach

3.1 Definition
The standard instruction-following data format con-
sists of three components: a specific task instruc-
tion z, an input sentence x, and the corresponding
response y. Taking the machine translation task
as an example, z is a specific task instruction that
directs the model to translate from the source lan-
guage into the target language, while x and y are
respectively the source input sentence and target
translation. The z, x and y are sequentially concate-
nated into a long sequence, which is then fed into
the LLMs for training in a teacher-forcing mode3.
We provide a specific example in the Pre-ins format,
as shown in Figure 2a.

Considering the nature of sequence generation
tasks, the input part (z) often tends to be lengthy,

3Following existing studies (Taori et al., 2023; Jiao et al.,
2023a), the cross-entropy loss is calculated merely on y, while
x and z only participate in the forward encoding process.

such as translating an entire article or generating
a summary of a paragraph. After applying the
fine-grained tokenization, it can result in a long se-
quence of tokens for training. Generally, the main-
stream LLMs are based the decoder-only architec-
ture of Transformer, where the self-attention tends
to pay more attention on nearby tokens. Therefore,
in the case of long sequences as mentioned above,
there is a significant risk that the model may forget
the frontmost task instruction in the Pre-Ins data
format, yiedling responses that do not follow the
task instruction.

3.2 Preliminary Observations on Pre-Ins

To verify whether the Pre-Ins data format suffers
from the above issue of instruction forgetting on
long input sentences, we conduct preliminary ex-
periments on the machine translation task (detailed
experimental setups are at Section 4.1). We divide
the training data into multiple groups based on the
length range of the source text, ensuring that the to-
tal number of tokens in each group of training sam-
ples is approximately the same. Similarly, we also
select corresponding test sets for different length
ranges. Results on BLOOMZ are ploted in Table 1.
We measure the degree of completion on a spe-
cific translation task instruction. Specifically, we
ask the model to complete the task of "translating
a sentence into a translation in a zero-shot direc-
tion," and then use the language identification tool
lingua-py4to determine whether the model has cor-
rectly translated the current sentence into the target
language. The zero-shot directions we chose are
translation directions that the model has not seen
during the supervised fine-tuning phase, specifi-

4https://github.com/pemistahl/lingua-py
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Instruction len 1-30 len 31-60 len 61-90 len 91-120 len 121-150 len 150+

Pre-Instruction 11% 9% 8% 2% 2% 1%
Post-Instruction 33% 31% 27% 24% 20% 19%

Table 1: Accuracy of translation into the correct target language direction over different length invertals in our
preliminary experiments.

cally Chinese-to-Japanese, Chinese-to-Ukrainian,
English-to-Japanese, and English-to-Ukrainian. In
addition, we concatenate the source and target sides
of the above translation direction data to synthe-
size long sentence pairs. Since the above data has
contextual relationships, sentence-level concatena-
tion is coherent and meaningful. Under different
sentence lengths, we observe the completion of
the Pre-Instruction and Post-Instruction translation
tasks, i.e., the accuracy of correctly translating into
the target language is shown in Table 1.

Based on the above experimental results, it can
be seen that at different lengths, the task instruc-
tion completion rate of Post-Instruction is signifi-
cantly higher than that of Pre-Instruction, and the
performance decreases relatively gently with the
increments in sentence length, indicating that Post-
Instruction can alleviate the existing instruction-
forgetting problem of Pre-Instruction. Further-
more, the instruction-forgetting problem of Pre-
Instruction becomes more severe as the sentence
lengthens. For instance, when the average sentence
length exceeds 90, the accuracy drops from 8% to
2%. These observations indicate that the existing
Pre-Ins data format has limited ability to follow the
instructions, especially when the input sentence z
is long. Pre-Ins exhibits a risk of instruction forget-
ting, resulting in outputs that are not faithful to the
user’s intent.

3.3 Post-Instruction

To address the above issue of instruction forgetting,
we propose a simple and straightforward solution,
namely, relocating the task instruction z after the in-
put sentence x. As a result, the model can perceive
the specific task instructions more closely when
generating responses, regardless of the length of
the input sentence. We refer this data format as
Post-Instruction (Post-Ins), and provide a Post-Ins
formatted example in Figure 2b.

Formally, the Post-Ins format of data encour-
ages the LLMs to model the following conditional
probability p(y|x, z). Here, we can decompose the
above formula using the trinomial Bayes’ theorem

as follows:

p(y|x, z) = p(y) · p(x|y) · p(z|y, x)
p(x) · p(z|x) (1)

where p(inp|res) represents the probability of the
input given the response.

Given that the task instruction z is not involved
in the training loss, we can simply treat its predicted
probability p(z|x) as a constant, We and get the
following form:

p(y|x, z) ≈ p(y)︸︷︷︸
fluency

· p(z|y, x)︸ ︷︷ ︸
instruct

· p(x|y)/p(x)︸ ︷︷ ︸
irreducible

(2)

where p(y) denotes the modeling probability of the
target response, which guarantees the fluency of the
model in predicting the response. The irreducible
item represents the ratio of conditional probability
to unconditional probability. On the other hand,
p(z|y, x) represents the probability of the model
determining which task instruction is currently be-
ing executed given the input x and response y. This
can ensure that the model has a strong perception
of the requirements of the task instruction.

3.4 Post-Instruction versus Pre-Instruction

As a comparison, we have also conducted a simi-
lar theoretical analysis for Pre-Ins, and ultimately
obtain the following formula:

p(y|z, x) = p(y) · p(z|y) · p(x|y, z)
p(z) · p(x|z)

= p(y)︸︷︷︸
fluency

· p(x|y, z)︸ ︷︷ ︸
coverage

· 1/p(x/z)︸ ︷︷ ︸
irreducible

(3)

Similar to Post-Ins, Pre-Ins also includes a compo-
nent responsible for modeling the fluency of the re-
sponse, denoted as p(y). The key difference lies in
that the Pre-Ins emphasizes modeling the probabil-
ity of the input given the instruction and response,
namely, p(x|y, z), which is similar to modeling
the coverage in translation tasks (Tu et al., 2016).
Such modeling approach may be suitable for a sin-
gle task or a small number of tasks, as the model
can memorize these few task instructions through
supervised fine-tuning.
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However, LLMs inherently have strong funda-
mental capabilities that can naturally be applied
to various sequence generation tasks. When mod-
eling multiple sequence generation tasks simulta-
neously (such as multiple translation directions),
Pre-Ins may suffer from instruction forgetting and
produce low-quality responses that do not follow
instructions due to the lack of task instruction mod-
eling. In contrast, Post-Ins, with its preference
for directly modeling task instructions as shown in
Equation (2), can easily handle various sequence
generation tasks and has good transferability for
task instructions. We experimentally verify the
stronger instruction transferability of Post-Ins com-
pared to Pre-Ins in zero-shot translation tasks in
section 5.1. Furthermore, we analyze the model-
ing preferences of the two data formats from the
perspective of attention distribution and observe
that the observations are consistent with our above
theoretical analysis in section 5.3.

4 Experiments and Evaluations

4.1 Datasets
Alpaca. The Alpaca dataset, released by Stan-
ford (Taori et al., 2023), is widely used for the
instruction-following tasks. The data format fol-
lows the aforementioned Pre-Ins format, consisting
of three parts: instruction, input, and output. We
adjust the positions of the instruction and input,
yielding a Post-Ins formated Alpaca. We apply
this Post-Ins formatted Alpaca dataset on Post-Ins
experiments, while the other experiments are still
conducted on the original Alpaca dataset.

WMT Datasets. We use the WMT development
sets from 2017 to 2020 as high-quality translation
training data, following existing settings (Jiao et al.,
2023a; Zeng et al., 2023). For translation direc-
tions with multiple references, we duplicate the
source side and then match them with the corre-
sponding translations to form multiple translation
sentence pairs. Finally, we obtain a collection of
51k sentence pairs for instruction fine-tuning. To
facilitate comparison, we follow the settings of
existing methods (Jiao et al., 2023a; Zeng et al.,
2023) and fine-tune LLMs on data for three lan-
guages and four translation directions: Chinese-to-
English, English-to-Chinese, German-to-English,
and English-to-German. The test sets for these four
directions in WMT-2022 are used to evaluate trans-
lation performance, while the remaining directions,
such as French-to-German or Russian-to-English,

are used to evaluate the zero-shot performance of
the models. Furthermore, considering the simi-
larity in data distribution over years in the WMT
dataset (Barrault et al., 2020; Zeng et al., 2021), we
also conduct evaluation and validation on another
test set, namely the FLORES-200 benchmark.

Multidimensional Quality Metrics (MQM).
The MQM dataset is based on the outputs of top
systems from the WMT 2020 shared task, which
provides error analysis of above translations anno-
tated by professional translators. We follow the
preprocessing scripts of existing studies and finally
obtain a same sized training set with 99k exam-
ples (Jiao et al., 2023a; Zeng et al., 2023). In this
paper, MQM is only used for translation task.

CNN/DailyMail. The popular CNN/DailyMail
Dataset (See et al., 2017) is a collection of English-
language news articles, comprising slightly more
than 300k unique articles authored by journalists
from CNN and the Daily Mail. The average sen-
tence length of the source text of these data is ap-
proximately 665 words, or about a thousand to-
kens, which served as a widely used benchmark
for long text summarization (Tang et al., 2023;
Zhang et al., 2023a; Lin et al., 2023). We fol-
low the pre-processing and post-processing scripts
of existing studies (Qi et al., 2020). We use the
CNN/DailyMail dataset only for the text summa-
rization task and conduct the evaluation on the stan-
dard test set with 11,490 samples.

4.2 Evaluation

Inference Settings. For all tasks, we set the batch
size to 1 during inference to avoid the effect of
padding side (e.g, BLOOMZ applies left-padding
mode, while LLaMA uses right-padding mode
when batching the input data). As for the decod-
ing strategies, we apply the beam search for all
tasks, and set beam size to 4 for machine trans-
lation. While for the text summarization task, we
have to decrease the beam size to 2, as encoding the
long input sentences will consume a large portion
of GPU memory.

Metrics For the machine translation task, we use
SacreBLEU5 to calculate the BLEU scores. Given
the limitations of N-gram-based metrics to measure
semantic similarity, we also calculate the popular
neural-based metric, namely COMET226. We use

5https://github.com/mjpost/sacrebleu
6https://github.com/Unbabel/COMET

11656

 https://github.com/mjpost/sacrebleu
https://github.com/Unbabel/COMET


Systems #Params Instruction SacreBLEU COMET22
De ⇐⇒ En Zh ⇐⇒ En De ⇐⇒ En Zh ⇐⇒ En

WMT22 Winners
WMT22 Winners N/A N/A 33.70 38.40 33.50 54.30 85.46 88.09 81.12 87.84

BLOOMZ-based
Parrot (Jiao et al., 2023a) 7.1B Pre-Ins 24.96 20.56 22.72 34.58 78.09 73.62 79.00 83.54
TIM (Zeng et al., 2023) 7.1B Pre-Ins 24.31 20.63 23.42 37.20 77.65 74.16 79.50 84.89

BLOOMZ

1.7B Pre-Ins 21.01 15.51 20.31 33.35 72.63 61.63 77.44 82.56
1.7B Post-Ins 20.99 16.68 20.15 34.02 73.76 63.64 77.38 82.97
3.0B Pre-Ins 23.29 17.02 22.20 35.02 75.42 66.96 78.85 83.33
3.0B Post-Ins 23.70 18.24 22.21 35.62 76.12 68.64 78.70 83.77
7.1B Pre-Ins 24.37 19.77 22.98 36.64 78.45 73.77 79.54 84.72
7.1B Post-Ins 25.59 20.45 23.69 37.68 78.86 74.19 79.71 84.92

LLaMA-based
Parrot (Jiao et al., 2023a) 7.0B Pre-Ins 27.38 26.14 20.23 30.33 82.47 81.67 75.90 80.34
BayLing (2023b) * 7.0B Pre-Ins 28.16 25.66 20.31 38.19 83.19 82.18 77.48 84.43
TIM (Zeng et al., 2023) 7.0B Pre-Ins 27.91 25.02 19.33 30.07 82.80 82.56 75.46 80.03
BayLing (2023b) * 13.0B Pre-Ins 27.34 25.62 20.12 37.92 83.02 82.69 77.72 84.62
TIM (Zeng et al., 2023) 13.0B Pre-Ins 29.03 26.71 20.27 32.14 83.48 83.31 76.64 81.30

LLaMA

7.0B Pre-Ins 29.98 25.23 17.68 23.83 82.63 81.27 72.90 75.70
7.0B Post-Ins 30.41 26.50 21.69 30.50 83.62 82.32 76.60 80.66

13.0B Pre-Ins 30.92 28.51 21.95 32.55 84.03 83.14 77.02 81.16
13.0B Post-Ins 31.25 28.70 22.37 33.04 84.19 83.65 77.33 82.16

Table 2: SacreBLEU and COMET22 score(%) of different models with varying instruction modes on the WMT-2022
test sets. ‘De’, ‘En’ and ‘Zh’ are the language code of ‘German’, ‘English’ and "Chinese", respectively. The bolded
scores correspond to the best performance under the same or comparable settings for models with more than 7B
parameters. Results marked with ‘*’ indicate that they are not directly comparable with other results because of the
use of additional supervised data.

the paired bootstrap resampling methods (Koehn,
2004) to compute the statistical significance of
translation results. For the text summarization task,
we report the F1 scores of ROUGE-1, ROUGE-2,
and ROUGE-L following existing studies (Tang
et al., 2023; Qi et al., 2020).

5 Main Results and Analysis

In this section, we first list the detailed experimen-
tal results of both the machine translation and text
summarization tasks in Section 5.1 and Section 5.2.
Subsequently, we show the analysis of the distri-
butions of self-attention in Section 5.3, and human
evaluation results in Appendix A.

5.1 Results of Machine Translation

Supervised Translation. Table 2 presents exper-
imental results on WMT22. Our proposed method,
Post-Ins, consistently outperforms Pre-Ins in most
of translation directions over different model sizes
of BLOOMZ (from 1.7B to 7.1B). Specifically,
LLaMA-7B achieves a remarkable increase of
+6.67 BLEU and +4.96 in COMET22 in En⇒Zh
translation. Table 3 showcases the performance of

our method on the Flores-200 test set. Our Post-Ins
outperforms Pre-Ins in 13 out of 16 settings, with
maximum improvements reaching +7.20 BLEU
and +6.16 COMET22 score in En⇒Zh.

Zero-Shot Translation. Furthermore, we ob-
serve significant improvements in zero-shot trans-
lation in the post-ins mode. Table 4 reports the re-
sults of different instruction modes in the WMT22
zero-shot test set. In terms of BLOOMZ, there is
an impressive increase of +8.8 in De⇒Fr transla-
tion, with an average improvement of +1.4 BLEU.
For LLaMA-7B, an average improvement of +2.1
BLEU is achieved, and LLaMA-13B exhibits an
average improvement of +1.6 BLEU. Notably,
LLaMA-13B showcases the highest improvement
of +9.7 BLEU in De⇒Fr translation. Overall, the
consistent improvements of Post-Ins over Pre-Ins
indicate that Post-Ins exhibit stronger instruction
generalization capabilities, being able to generate
responses effectively even for task instructions it
has never encountered during fine-tuning.

11657



Systems #Params Instruction SacreBLEU COMET22
De ⇐⇒ En Zh ⇐⇒ En De ⇐⇒ En Zh ⇐⇒ En

TIM (Zeng et al., 2023) 7.0B Pre-Ins 39.15 29.31 22.30 28.43 88.19 85.05 83.32 80.55

LLaMA

7.0B Pre-Ins 38.86 29.51 18.10 21.69 88.05 84.57 80.69 75.07
7.0B Post-Ins 41.12 31.27 21.80 28.89 88.63 85.53 83.57 81.23

13.0B Pre-Ins 41.78 33.62 22.21 30.74 88.91 86.36 84.26 82.50
13.0B Post-Ins 42.23 34.12 22.62 31.37 89.02 86.75 84.38 82.83

Table 3: SacreBLEU and COMET22 score(%) of different models with varying instruction modes on the FLORES-
200 test sets. The bolded scores correspond to the best performance under the same or comparable settings.

Systems #Para. Ins. SacreBLEU
Cs ⇔ En De ⇔ Fr Ja ⇔ En Uk ⇔ En Ru ⇔ En Liv ⇔ En Average

BLOOMZ
7.0B Pre-Ins 6.0 4.3 15.6 23.0 11.0 2.5 11.0 1.9 21.7 5.8 3.0 3.5 9.1
7.0B Post-Ins 8.6 4.5 24.4 23.9 11.0 2.6 10.2 2.0 22.6 6.1 5.9 4.2 10.5

LLaMA

7.0B Pre-Ins 36.8 13.7 3.0 3.4 12.2 4.8 33.9 4.6 34.8 16.8 5.9 2.6 14.3
7.0B Post-Ins 36.8 17.4 3.2 8.8 12.8 7.3 34.6 11.7 35.2 18.9 6.0 3.3 16.4

13.0B Pre-Ins 39.5 19.7 4.9 27.5 13.9 3.4 36.8 17.2 37.6 21.1 5.5 2.9 19.1
13.0B Post-Ins 39.7 20.2 14.6 30.0 13.6 6.0 37.4 17.6 38.1 22.3 5.6 3.0 20.7

Table 4: SacreBLEU score(%) of different models with varying instruction modes on the WMT-2022 zero-shot test
sets. The bolded scores correspond to the best performance under the same or comparable settings. ‘Para.’ is short
for ‘Parameters’ and ‘Ins.’ stands for the data format for the instruction-following data. ‘CS’, ‘Uk’, ‘Ja’, ‘Ru’ and
’Liv’ are the language code for ‘Czech’, ‘Ukrainian’, ‘Japanese’, ‘Russian’ and ‘Livonian’, respectively.

#Params Instruction RG-1 RG-2 RG-L

BLOOMZ-based
3.0B Pre-Ins 35.41 16.33 25.81
3.0B Post-Ins 38.90 17.84 27.67
7.0B Pre-Ins 37.54 17.04 26.90
7.0B Post-Ins 38.61 17.64 27.49

LLaMA-based
7.0B Pre-Ins 37.55 17.17 26.30
7.0B Post-Ins 38.11 17.66 26.88

Table 5: F1 scores of ROUGE-1 / ROUGE-2 / ROUGE-
L on the test set of CNN/DailyMail. ‘RG’ is an abbrevi-
ation for ‘ROUGE’. The bolded scores correspond to
the best performance under the same settings.

5.2 Results of Text Summarization

To further validate whether Post-Ins can effectively
alleviate the issue of instruction forgetting, we per-
form experiments on tasks such as the long text
summarization task, where the average length of
input tokens is over 1,000. Table 5 presents the ex-
perimental results for the text summarization task
on CNN / DailyMail, where we report the F1 scores
of ROUGE-1, ROUGE-2, and ROUGE-L. It is ev-
ident that all models achieved significant perfor-
mance improvements of up to +3.49 in BLOOMZ-
3B when utilizing the Post-Ins approach. The su-
perior performance on the text summarization task
demonstrates the effectiveness of Post-Ins on han-

dling long inputs.

5.3 Distributions of Self-attention

Given that the distribution of self-attention can ex-
plain the behavior of the Transformer model to
some extent (Hao et al., 2021; Mahmood et al.,
2021; Dai et al., 2021; Braşoveanu and Andonie,
2020), we plot the heatmap of self-attention for
models trained with Pre-Ins and Post-Ins in Figure
3. We take BLOOMZ-7.1B as the base model and
conduct forward propagation on the training sam-
ples of machine translation to obtain the attention
scores. To mitigate the impact of fluctuations of
multi-head attention and various layers, we aver-
age the scores of all heads over different layers
to obtain the final score. We reach the following
observations:

• A greater concentration of attention scores is
observed at the beginning of sentences and
along the diagonal positions of the attention
matrix, which is consistent with existing con-
clusions (Liu et al., 2023).

• As shown in the lower right part of Figure 3b,
Post-Ins pays more attentions on the task in-
struction when generating the response, while
Pre-Ins mainly foucses on the source input
and pays weak attentions on instruction as
shown in the upper left part of Figure 3a.
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(a) Attention heatmap of Pre-Ins.
Source input

Instruction
Target Response

Source input Instruction Target Response

Focused attention
 on instruction

Focused attention
 on the first token

Word alignment via 
unsupervised learning

(b) Attention heatmap of Post-Ins.

Figure 3: The visualization analysis of self-attention for the instruction fine-tuned BLOOMZ-7.1B model, where
thicker lines indicate higher attention for the corresponding positions, while thinner lines indicate lower attention.

Figure 4: Number of different translation instructions
that are correctly executed by models.

• After instruction fine-tuning on the machine
translation data, models learn latent word
alignment information on both data formats.
That is, models tend to allocate more attention
to aligned parts of the source when generat-
ing responses word by word, which is similar
to the conclusions of the traditional encoder-
decoder structure in the field of machine trans-
lation (Bahdanau et al., 2014; Lample et al.,
2017).

In summary, through the visualization of the self-
attention heatmap, we observe that Post-Ins natu-
rally tends to emphasize the task instruction, which
is relatively overlooked in Pre-Ins. This finding is
consistent with the theoretical analysis and conclu-
sions presented earlier in Section 3.4.

5.4 Instruction-Following Evaluation

Inspired by IFEval (Zhou et al., 2023), We con-
struct a dataset to evaluate the model’s ability to
follow instructions. Specifically, we constructed
fine-grained translation instruction compliance data
based on the WMT-2022 Chinese-to-English and
English-to-Chinese test sets. This involves five
task instructions: (1) Please translate the following
sentence into Chinese (or English), requiring the
prefix of the translation to be [Prefix_Placeholder];
(2) Please translate the following sentence into
Chinese (or English), requiring the suffix of the
translation to be [Suffix_Placeholder]; (3) Please
translate the following sentence into Chinese (or
English), requiring the length of the translation to
be greater than or equal to [Len_Min_Placeholder]
and less than [Len_Max_Placeholder]; (4) Please
translate the following sentence into Chinese
(or English), requiring the translation to contain
[NE_Placeholder]; (5) Please translate the ollow-
ing sentence into [Language_Placeholder]. The
xxx_Placeholder in the above instructions will be
replaced with the corresponding content accord-
ing to the golden references and the correspond-
ing instruction requirements, with each type of
task instruction containing approximately 300 test
examples on average. For the last task instruc-
tion, [Language_Placeholder], we used the target
languages of two zero-shot translation directions,
namely Japanese and Ukrainian.

In terms of evaluation, for the first four task in-
structions, we can evaluate through simple rule
matching. As for the last task requiring a switch of
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target language, we judge whether the task instruc-
tion is correctly followed and executed by using the
language identification tool lingua-py. Each type
of instruction has 300 instances. We conduct exper-
iments based on LLaMA-7B, and list results in the
Figure 4. We observe that Post-Ins consistently out-
performs Pre-Ins in terms of instruction-following
ability, especially for switching target languages,
with about 4x improvement. Overall, Post-Ins im-
proves instruction-following ability by about 1x
over the traditional Pre-Ins.

6 Conclusion

This paper highlights the importance of task instruc-
tion positioning in the instruction fine-tuning pro-
cess of LLMs for conditional sequence generation
tasks. We propose a simple yet effective method,
Post-Ins, which relocates the task instruction af-
ter the input sequence to enhance the instruction-
following ability of LLMs. Our theoretical analysis
and experimental results demonstrate that Post-Ins
effectively shifts the model’s learning focus, lead-
ing to improved performance across various model
scales and different tasks, such as machine trans-
lation and long text summarization. Notably, our
method significantly boosts zero-shot performance
without additional data or annotation costs.

Limitation

The advantages of Post-Ins are likely to be more
pronounced with longer text data (such as para-
graph data), and we plan to explore its performance
on extended text in future work. The effectiveness
of Post-Ins on larger scale models also warrants
further investigation.
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A Human Analysis

We employ two linguistics professionals to eval-
uate the translation task from English to Chinese.
Specifically, the annotators are requested to judge
whether the model’s output faithfully follow to
the translation instructions and the source input.

If translation hallucinations occurred, i.e., the re-
sponse contains content that is not present in the
source sentence, or if the translation task is not
effectively executed, the label was marked as ‘0’;
otherwise, it is marked as ‘1’. The manual an-
notation results on 1,000 samples show that the
hallucination rate for Pre-Ins is 4.8%, while 1.7%
for Post-Ins. We also provide several examples
in Figure 5. In summary, Post-Ins can enhance
the model’s instruction-following capability and
effectively reduce the proportion of prediction hal-
lucinations.
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Connect your eReader to a 
power source by doing one of 
the following:

执⾏以下操作之⼀，将您的
电⼦阅读器连接到电源：

1. 将eReader连接⾄电源，打开电源开关，将eReader
放 置 在 电 源 附 近 。 \ n 2 . 将 电 源 线 的 ⼀ 端 连 接 
eReader，另⼀端连接电源，eReader会⾃动检测到电
源。将电源线的另⼀端插⼊eReader的电源插⼝。

执⾏以下操作之⼀：将电⼦阅
读器连接到电源上

-Ma in ta ins flex ib i l i t y o f 
movement in all working and 
pet dogs regardless of age, 
size and level of exercise.

-保持所有⼯作⽝和宠物⽝
的运动灵活性，⽆论其年
龄、体型和运动⽔平如何。

-能够根据不同年龄、不同⼤⼩、不同运动⽔平的⼯作
和宠物狗进⾏运动量调整。\n-运动量⾜够⼤，保证所
有年龄、⼤⼩和运动⽔平⼯作及宠物狗的灵活性。

- ⽆论年龄⼤⼩、体型⼤⼩、
运动⽔平⾼低，都能保持灵活
的动作。

Pictures come in a sturdy 
carded envelope in the box 
with the frame.

照⽚装在⼀个结实的信封
中，信封与相框装在⼀个盒
⼦中。

在盒⼦上⽅有张照⽚，照⽚中有⼀幅画框，画框中有
⼀张照⽚。\n照⽚的底⾊为⽩⾊，背景为⿊⾊。照⽚
中有⼀名男⼦

照⽚附在画框内，在盒内还有
⼀张卡⽚。

Figure 5: Case studies on Chinese-to-English translation tasks, where the highlighted red texts indicate the model
deviates from the translation instruction, generating content not present in the source text.
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