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Abstract

End-to-end argumentation mining (AM) aims
to extract the argumentation structure includ-
ing argumentation components and their argu-
mentation relations from text. Recent develop-
ments in end-to-end AM models have demon-
strated significant progress by redefining the
AM task as a sequence generation task, exhibit-
ing simplicity and competitive performance.
Nevertheless, these models overlook the inte-
gration of supplementary discourse structure
information, a crucial factor for comprehend-
ing argumentation structures, resulting in sub-
optimal outcomes. In this study, we propose
the DENIM framework, which generates dis-
course structure-aware prefixes for each layer
of the generation model. These prefixes im-
bue the generation-based AM model with dis-
course structures, thereby augmenting the over-
all generation process. Moreover, we intro-
duce a multi-task prompt coupled with a three-
step decoding strategy, aiming to optimize the
efficiency and effectiveness of argumentation
structure decoding. Extensive experiments and
analyses on two benchmark datasets show that
DENIM achieves state-of-the-art performances
on two AM benchmarks.

1 Introduction

Argumentation mining (AM) has recently received
much research attention (Palau and Moens, 2009;
Stede et al., 2019; Lawrence and Reed, 2020),
which aims to analyze and understand argumen-
tation texts to obtain argumentation structure.

Generally, AM generally comprises three sub-
tasks following (Morio et al., 2022): 1) argumen-
tation component segmentation (ACS) detects the
boundaries of token-level argumentative segments,
which are known as ACs; 2) argumentation com-
ponent type classification (ACTC) classifies the

* Equal Contribution.
† Min Yang and Ruifeng Xu are corresponding authors.

segment-level ACs into the categories (i.e., Claim
and Premise); 3) argumentation relation classifi-
cation (ARC) further classifies the AR types (i.e.,
No-Relation, Support and Attack) between AC pair.
The end-to-end AM task is highly challenging due
to the complexity of simultaneously addressing
these three subtasks within a unified framework.

Early studies focus on only a subset of the three
subtasks (Niculae et al., 2017; Bao et al., 2021a) in
AM. Recently, some studies have formulated the
end-to-end AM as a dependency parsing task (Eger
et al., 2017; Ye and Teufel, 2021). However, depen-
dency parsing requires a complex pre-processing
and post-processing process to match the argumen-
tation structure with the elaborately designed de-
pendency graph. Morio et al. (2022) tackled AM
by combining sequence labeling and multi-class
classification tasks within a multi-task learning
framework. Inspired by the success of the genera-
tive methods, a generation-based end-to-end AM
model (Bao et al., 2022) is proposed to transform
the AM as a unified generation task.

Compared to traditional classification-based
methods (Ye and Teufel, 2021; Morio et al., 2022),
recently proposed generative AM models (Bao
et al., 2022) have demonstrated simplicity in task
decoding and competitive performance. How-
ever, existing generative approaches primarily fo-
cus on problem reformulation and, unlike tradi-
tional classification-based methods, do not incor-
porate additional discourse structure information,
which has been proven effective for argument min-
ing in prior works (Accuosto and Saggion, 2019,
2020). As shown in Figure 1, the discourse struc-
ture graph derived from the input text summarizes
the semantic structure of the text, where the ele-
mentary discourse units (EDUs) are nodes and the
discourse relations (e.g., Contrast) between EDUs
form edges. In this graph, many nodes and edges

11597



BART-Encoder

[𝑺𝟏] [𝑺𝟐] [𝑺𝟑]

BART-Decoder

⊙ ⊙

No-Relevant

Support

Attack

ACS Loss ACTC Loss ARTC Loss

[𝑨𝑪𝟏] [𝑨𝑪𝟐] [𝑨𝑪𝟑] [𝑷𝟏,𝟐] [𝑷𝟏,𝟑] [𝑷𝟐,𝟑]

MajorClaim

Claim

Premise

Prefix

Feed Forward

Multi-Head Attention

Q K V

Transformer Block

Argumentation Text: Despite the fact that advertisements can be falseful and exaggerated, it is also true 

that it plays an important role economically. They introduce new products. 

Discourse Structure Encoder

BART-Encoder

RGCN

Attention Layer

Q K V
Learnable 

Vector

Linear Project Discourse Structure Graph

Prompt Template 𝑻:

Prefix 

Generation

1 2 3 4 5 6

Span Selector

𝑻𝑨𝑪𝑺 𝑻𝑨𝑪𝑻𝑪 𝑻𝑨𝑹𝑪

Length 𝑙

EDU1: Despite the fact

EDU2: that advertisements can be exaggerated,

EDU3: it is also true 

EDU4: that it plays an important role economically.

EDU5: They introduce new products.

EDU2

EDU5

Prefix

Generation
Input: Argumentation Text 

D
isco

u
rse P

arser

Encode Discourse Structure Information into Prefix

Parse

EDU4

Argumentation Structure of Text

AC1 (Type: Premise): advertisements can be exaggerated,

AC2 (Type: Claim): it plays an important role economically.

AC3 (Type: Premise): They introduce new products.

AC1 AC2

AC3 Rel: Support

Rel: Attack

Rel: Contrast

Rel: Explanation

Figure 1: The architecture of DENIM, where the discourse structure graph of argumentation text in the blue block
has a strong similarity to the argumentation structure in the grey block of the text and thus provides important clues
for AM. Noted that the two BART-Encoders are identical.

share strong similarities with the argumentation
structure. For example, the AC3 “ They introduce
new products” can be mapped to the EDU5, and
its relative AC can be found using edge “Contrast”.
Hence, we argue that the discourse structure graph
could provide important clues for generative-based
AM models to figure out the argumentation struc-
ture, potentially enhancing overall performance
and improving generalizability.

To address the aforementioned issue, we
propose DENIM (Discourse structure-aware
prEfix geNeration-based argumentatIon Mining),
a generation-based end-to-end AM model that
incorporates discourse structure information
into prefix (Li and Liang, 2021) to guide the
generation-based AM models. Specifically, we
employ an additional discourse structure encoder
to convert the input discourse structure graph
into dense vectors. Then, these vectors will be
disassembled and allocated to each Transformer
layer within generation-based AM models as
prefixes. These generated prefixes are converted
into supplementary key and value matrices,
exerting influence on the attention calculation
process and guiding the generation mechanism.

Furthermore, we design a multi-task prompt us-
ing a fixed template and a three-step decoding strat-
egy tailored for AM. DENIM initially produces
spans of all ACs for ACS, subsequently classifies
their types for ACTC, and ultimately identifies the

relations between AC pairs for ARC. The com-
putation process in each step adheres to a fixed
format and is parallelized on GPUs. Compared
to the previous generation-based AM model (Bao
et al., 2022) using an autoregressive decoding strat-
egy, our method demonstrates enhanced efficiency
through task-specific decoding and improved con-
trollability with a fixed prompt template.

Our contributions can be summarized as follows.
(1) We propose a discourse structure-aware pre-
fix to encode discourse structure information for
the generation-based end-to-end AM model. (2)
We design a multi-task prompt with a three-step
decoding strategy for AM. This approach is more
effective and efficient than the traditional autore-
gressive decoding strategy. (3) We conduct exten-
sive experiments on two AM benchmark datasets.
The experimental results present that our method
significantly outperforms the strong baselines.

2 Methodology

DENIM uses BART (Lewis et al., 2019) as the base
model, and augments it with discourse structure-
aware prefix and multi-task prompt with a three-
step decoding strategy, as depicted in Figure 1. To
generate the discourse structure-aware prefix, we
first employ a pre-trained discourse parser to ex-
tract the discourse structure graph of the input text
(Section 2.2). Then, the graph is transformed into
dense vectors through a discourse structure encoder.
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Subsequently, these dense vectors will be disassem-
bled and distributed to each layer of the BART so
the generation is guided by the discourse structure
information (Section 2.3). Lastly, we introduce
a multi-task prompt with a three-step decoding
strategy to alleviate the time-consuming and in-
stability of sequence decoding for effectively and
efficiently generating the argumentation structure
(Section 2.4).

2.1 Task Definition

Following previous works (Morio et al., 2022), for
the end-to-end AM, the input is a piece of argu-
mentation text W = {w1, w2, . . . , wn} consisting
of n tokens. The first goal is to extract a set of ACs
A = {ai|ai = (si, ei)}mi for ACS, where ai is the
i-th AC, si and ei denote its start and end indexes
respectively, and m denotes the number of ACs in
the text. Next, the type ci (i.e., Claim and Premise)
of each extracted AC should be predicted for ACTC.
Finally, the argumentation relation rel(i,j) (i.e., No-
relevant, Support and Attack) between each AC
pair (ai, aj) should be identified for ARC.

2.2 Discourse Structure Parsing

The first step of our method is to prepare the
discourse structure graph (DSG) of the input
text. We consider an external discourse parser
called DMRST (Liu et al., 2021) to automatically
parse the input text. As illustrated by Figure 1,
the discourse parser encodes the input text into
a DSG G =< V,E >, where each node vi ∈ V
represents an EDU. The edge set, E ⊆ V ×R×V ,
comprises edges ei,j ∈ R|R| ⊆ E, each indicating
a distribution over all discourse relations between
two EDUs (vi, vj). Here, we consider three
types of common discourse relation types R =
{Expansion,Contingency, Comparison}
like (Pu et al., 2023) 1.

Note that we utilize the distributions over all
discourse relation labels between two EDUs to en-
hance the heterogeneous graph, rather than restrict-
ing to the 1-best result (i.e., the relation with the
highest predicted probability) inspired by (Pu and
Sima’an, 2022). This strategy offers two advan-
tages. Firstly, it mitigates error propagation from
the external discourse parser by using relation dis-
tributions. Secondly, as suggested by Yung et al.
(2022), multiple intrinsic relations can coexist si-
multaneously between EDUs. Representing these

1Further details are presented in Appendix A.7

relations as a distribution rather than the 1-best
result provides a more nuanced and accurate dis-
course structure. Thus, we argue that the logit
output from the parser is more informative. It pro-
vides not just the n-best results but also captures
the remaining uncertainty of predictions.

We validate the effectiveness of this strategy
and our model’s sensitivity to discourse structure
information through experiments detailed in Ap-
pendix A.5.

2.3 Discourse Structure-Aware Prefix
Generation

Next, to enable the discourse structure informa-
tion to guide the generation-based AM model,
we use the prefix (Li and Liang, 2021) as the
bridge between them and inject the discourse struc-
ture information into the prefix. We employ a
discourse structure encoder comprising a BART-
Encoder and a Relational Graph Convolutional
Network (RGCN) (Schlichtkrull et al., 2018) to
model the discourse structure graph. The BART-
Encoder first learns the initialized node represen-
tation and the RGCN models the graph structure
by information propagation. Specifically, we uti-
lize the BART-Encoder to encode the argumenta-
tive text W and obtain the hidden states HW =
BARTEncoder(W ). Then, for i-th node in the
DSG G, we mean-pool its context corresponding
representations from HW to obtain the initialized
node feature hi.

To let the nodes in DSG interact with each
other and model the discourse structure informa-
tion, we perform graph-based information propa-
gation (Gilmer et al., 2017) to update node repre-
sentations. Since DSG is a heterogeneous graph
containing multiple types of edges, we utilize the
relation-specific node-to-node information propa-
gation mechanism in RGCN to model the DSG.
Specifically, given a node v ∈ G at the c-th RGCN
layer, the information propagation and aggregation
operation is defined as follows:

hc+1
v = ReLU(hc

v +
∑

r∈R

∑

u∈Nr(v)

Êv,r,uW
c
rh

c
u + bcr) (1)

where Nr(v) denotes the neighbors for node v con-
nected with the edge of type r, ReLU is the ReLU
activation function, W c

r and bcr are the trainable
parameters. Êv,r,u =

Ev,r,u∑
o Ev,r,o+1 is the normal-

ized edge weight between the node v and u with
relation r. Finally, we select the representation of
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all nodes in the last layer as the updated node rep-
resentations, which aggregate discourse structure
information from a certain heterogeneous graph.

After that, we introduce an attention
layer (Vaswani et al., 2017) and z learnable
vectors as queries, where z is a hyperparameter
determining the length of the used prefixes. These
queries interact with the updated node represen-
tations, serving as both keys and values in the
attention mechanism. The output of the attention
layer is a set of dense vectors, denoted as P ,
which effectively condense the discourse structure
information from the node representations.

We then transform these vectors into prefixes,
similar to (Li and Liang, 2021), to be incorpo-
rated into our generation-based AM model. Con-
cretely, this transformation involves partitioning
P into L pieces, corresponding to the number
of layers in the generation-based AM model, i.e.,
P = {P 1, . . . , PL}. For the i-th layer, the prefix
is further divided into two matrices representing ad-
ditional keys and values matrices: P i = {Ki, V i},
where Ki and V i are the addition key and value
matrices, and they can be further written as Ki =
{ki1, . . . , kiz} and V i = {vi1, . . . , viz}. ki∗ and vi∗
are vectors with the same hidden dimension in the
i-th Transformer layer. These additional key and
value matrices will be concatenated with the orig-
inal key and value matrices in the attention block.
Consequently, when calculating dot-product atten-
tion, the query at each position will be influenced
by these discourse structure-aware prefixes.

It is worth noting that we assign different key-
value pairs for different layers, offering two bene-
fits. 1) the layer-wise queries and keys can exert
strong control. 2) Different layers may need to em-
bed varied information (Clark et al., 2019; Rogers
et al., 2021). In addition, DENIM generates a dis-
tinct set of prefixes when the input text varies. The
variation reflects the different discourse structure
graph’s presentation. This differs from the prefix
tuning technique (Li and Liang, 2021) uses a fixed
set of prefixes for all input instances.

We can integrate prefixes into the encoder self-
attention blocks, decoder cross-attention blocks,
or decoder self-attention blocks of our generation-
based AM model. Based on our preliminary ex-
periments in Appendix A.3, we observe that using
prefixes in the self-attention blocks of the encoder
and decoder works best in DENIM.

ACS Subtask

(𝒔𝒑𝒂𝒏𝟏, 𝒕𝒚𝒑𝒆𝟏, 𝒔𝒑𝒂𝒏𝟐, 𝒕𝒚𝒑𝒆𝟐, 𝒓𝒆𝒍𝟏𝟐)

(a) Autoregressive Decoding

(b) Our Multi-Task Prompt with Three-Step Decoding
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Figure 2: Comparison of decoding process between
autoregressive decoding and our three-step decoding
strategy. Top panel: the autoregressive decoding de-
codes the target sequence by token-by-token generation.
Bottom panel: our three-step decoding employs a fixed
prompt template and task-by-task decoding for AM.

2.4 Multi-Task Prompt with Three-Step
Decoding

We design a more effective and efficient multi-
task prompt with a three-step decoding strat-
egy to extract the argumentation structure for
AM, compared with the previous generation-
based AM model (Bao et al., 2022) using an au-
toregressive decoding strategy. Specifically, as
shown in the top panel of Figure 2, the previ-
ous generation-based AM model formulates AM
as a sequence generation task and the target se-
quence comprises several tuples. Each tuple rep-
resents an AC pair and their relation in the format
[span1, type1, span2, type2, rel1,2] where spani
denotes the start/end indexes of i-th AC, typei is
type (i.e., Claim and Premise) of i-th AC and reli,j
denote the argumentation relation (i.e., Support and
Attack) between the AC pair (i, j). They apply an
autoregressive decoding strategy to decode the tar-
get sequence by token-by-token generation. It not
only is time-consuming but also may cause invalid
predictions since the sequence generation is not
fully controllable (Bao et al., 2022).

To mitigate the issues of time-consuming and un-
controllable token-by-token generation of autore-
gressive decoding (Bao et al., 2022), as discussed
in Section 1, we introduce a multi-task prompt with
a three-step decoding for AM, as shown in Figure 2.
In particular, given an argumentative text W , we
assume it has at most m ACs 2 and m× (m− 1)/2

2We heuristically set m to the maximum number of ACs
in the train set.
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AC pairs, the prompt template can be defined as:

T = Concat(TACS , TACTC , TARC)

TACS = [S1] . . . [Sm]

TACTC = [AC1] . . . [ACm]

TARC = [P(1,2)] . . . [P(m−1,m)]

Where [Si], [ACi] and [P(i,j)] placeholders 3 de-
note the span, type of AC ai and relation between
the AC pair (ai, aj) for ACS, ACTC and ARC
subtasks, respectively. We use a fixed number of
template tokens for all instances though different
instances have different numbers of ACs. These
redundant placeholders for each instance can be
recognized as invalid tokens during training and
inference. We feed the prompt template into the
BART-Decoder to decode the argumentation struc-
ture for AM.

Training The training objective of DENIM is to
predict gold labels based on the placeholders in the
prompt template for AM. Specifically, DENIM is
expected to derive the i-th AC span (si, ei) from
the input text W using the placeholder [Si] for
the ACS subtask. For that, we employ the out-
put hidden state hSi of the [Si] to get the span se-
lector θi = {ψsi , ψei}, where ψsi = wstarth

S
i ,

ψei = wendh
S
i , and wstart and wend are learnable

parameters. Then, the start/end indexes (si, ei) of
the i-th AC can be obtained by calculating the dis-
tribution of each token in the input context W :

si = argmax
0≤k≤n

softmax(ψsiH
W )

ei = argmax
0≤k≤n

softmax(ψeiH
W )

(2)

For ACTC, DENIM predicts the type of the i-th
AC using the output hidden state of the placeholder
[ACi]. To align the prediction of the placeholder
[ACi] with the i-th AC span, we add the context
representation hai = 1

ei−si+1

∑ei
k=si

HW
k of the

gold AC ai into the embedding of the [ACi] before
feeding it into the BART-Decoder. Similarly, we
add the sum of context representations hai,aj =
1
2(hai + haj ) of the gold AC pair (ai, aj) and the
embedding of their gold type into the embedding of
the placeholder [P(i,j)] and feed it into the BART-
Decoder. DENIM predicts the relation between
AC pair (ai, aj) using the output hidden states of
the placeholder [P(i,j)]. The loss functions of all
subtasks are cross-entropy losses.

3The placeholders are also called virtual words and imple-
mented by using different specific tokens similar to eos token
< s > in the BART vocabulary.

Take Figure 1 as an example, DENIM is ex-
pected to enable [S1] to predict the AC span (“ad-
vertisements can be exaggerated”), then use [AC1]
to predict the type (“Premise”) of the AC a1, and
use [P1,3] to predict the relation (“Attack”) between
AC pair (a1, a3). If there is no predicted AC for
one placeholder [Si], the model should predict the
last position of the input W (i.e., specific token
“</s>”) and the [ACi] and [Pi,j ] are invalid.

Inference During inference, our prompt template
utilizes a three-step decoding strategy, differing
from the token-by-token autoregressive decoding
in the prior generation model (Lewis et al., 2019;
Bao et al., 2022). Initially, DENIM inputs all place-
holders [S∗] into the decoder to derive all AC spans.
This step sets the foundation for subsequent de-
coding. In the second step, placeholders [AC∗]
with the context representation of the predicted AC
spans are fed into the decoder to predict the type
of ACs, as in the training phase. Finally, DENIM
calculates the relation between all AC pairs using
the placeholder [P(∗)] with the sum of the context
representation of the predicted AC pair and the em-
bedding of the AC type. Notably, the decoding of
the placeholders in the later subtask depends only
on the result of placeholders in the former subtask.
Thus, our prompt template only needs to be fed
into the decoder three times, which saves time com-
pared to autoregressive decoding. Furthermore, the
prompt template serves as a strong control signal
and defines the expected output format to ensure
the output is valid.

Efficiency Considerations DENIM comprises
three major components including a BART, an
RGCN and a prompt template. The RGCN is re-
quired to model the discourse structure graph, with
a time complexity of O(|R||V |2) that may cause
efficiency considerations. In practice, this issue
is minor for our experiments on the two datasets
(AAEC and Abstract) and real scenarios, as the
number 4 of EDUs in argumentation texts is consis-
tently small in scale. Additionally, when incorpo-
rating the prefix into the BART-Encoder, the input
context needs to be processed twice by the BART-
Encoder. The first time is to construct the prefix
and the second is to model the context representa-
tion of the input for the decoder. Its time cost is
acceptable, as demonstrated in Appendix A.6.

4The average number of EDUs for the samples in the two
datasets is 6 and 17, respectively.
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3 Experimental Setup

Datasets To evaluate the effectiveness of our
DENIM model, we conduct extensive experi-
ments on two widely used AM datasets, named:
AAEC (Stab and Gurevych, 2017) and Ab-
stRCT (Mayer et al., 2020).

Evaluation Metrics We employ the same evalu-
ation metrics as the previous works (Morio et al.,
2022; Cheng et al., 2022; Guo et al., 2023), includ-
ing F1 score and macro averaged score (denoted
as Macro). We calculate F1 scores for determin-
ing the AC span for ACS. We adopt the F1 and
macro averaged score for ACTC and for determin-
ing the relation type (not including No-Relevant)
for ARC. We also introduce the Link score (Kurib-
ayashi et al., 2019), used to measure F1 scores for
identifying the existence of relations regardless of
their types.

Baselines We compare DENIM with the follow-
ing strong baseline models. For the AAEC dataset,
we compare our model with five strong baselines,
including BiPAM (Ye and Teufel, 2021), BiPAM-
syn (Ye and Teufel, 2021), BART-B (Yan et al.,
2021), GMAM (Bao et al., 2022) and ST (Morio
et al., 2022). For the AbstRCT dataset, we compare
our model with fhree strong baselines, which are
BART-B (Yan et al., 2021), GMAM (Bao et al.,
2022) and ST (Morio et al., 2022).

Implementation Details DENIM is imple-
mented in PyTorch on an NVIDIA TESLA A100-
PCIE-40GB and employs the BART base5. Our
model is optimized using AdaW (Loshchilov and
Hutter, 2017) with the learning rates of 3e-5 and
weight decay of 1e-5 on both AbstRCT and AAEC
datasets. For both datasets, we set the batch size to
4 and adopt dropout (Srivastava et al., 2014) with a
dropout rate of 0.1 to avoid overfitting. We set the
layer number L of RGCN to 1 because of its best
performance. All experiments are performed five
times with different random seeds, and the evalua-
tion scores are averaged. Our code is available at
https://github.com/syiswell/DENIM.

4 Experimental Results

4.1 Overall Performance

We report the overall performance of our proposed
framework and baseline methods in Table 1. Our

5We implement BART using huggingface toolkit:
https://huggingface.co/

method achieves the best performance on both
AAEC and AbstRCT datasets. For example, on
AAEC, DENIM exceeds the current state-of-the-
art (SOTA) method ST and obtains about 6.74%
higher Macro score on the ACTC subtask. On Ab-
stRCT, DENIM outperforms ST by 7.23% in terms
of F1 score on the ACS subtask. The experimental
results verify the superiority of our method for AM.

We also observe that the generation-based mod-
els (i.e., BART-B and GMAM) surpass the depen-
dency parsing-based methods (i.e., BiPAM and
BiPAM-syn), indicating that formulating the end-
to-end AM task as a generation task might be more
effective than as a dependency parsing task. While
BART-B and GMAM underperform the SOTA
method ST, they typically offer a simpler decoding
paradigm for AM. Based on the generation-based
method, our DENIM performs better than all strong
baselines by integrating a discourse structure-aware
prefix and a multi-task prompt.

4.2 Ablation Study
To analyze the impact of different components
in our proposed DENIM method, we conduct ab-
lation studies in terms of removing RGCN (w/o
RGCN), removing discourse structure-aware prefix
(w/o Prefix), and removing multi-task prompt (w/o
Prompt), respectively. Note that w/o Prompt means
removing the prompt and transforming the task-
specific decoding into token-by-token decoding
while the target sequence is similar to the prompt
format. The results are reported in Table 2.

We can observe that w/o RGCN degrades the
performance, verifying that the discourse relations
are beneficial for AM. w/o Prefix leads to further
performance drops, demonstrating that discourse
structure-aware prefixes can provide crucial clues
to figure out the argumentation structure. Note that
w/o Prefix outperforms previous generation-based
methods (GMAM and BART-B) and SOTA method
ST, verifying that our multi-task prompt with three-
step decoding is more effective than them. Remov-
ing the multi-task prompt (w/o Prompt) leads to a
noticeable drop in performance due to the absence
of an efficient output format and strong control
signals from the prompt.

4.3 Adaptability Experiment
Inspired by the recent success of Large Language
Models (LLMs) (Min et al., 2023), we conduct
additional experiments on two prominent LLMs,
namely ChatGPT-3.5-Turbo and LLAMA2 (Tou-
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Data Model ACS ACTC Link ARC AVGF1 Macro F1 Macro

AAEC

BiPAM - 72.90 - - 45.90 - -
BiPAM-syn - 73.50 - - 46.40 - -
BART-B 81.71 73.61 70.10 49.75 47.93 34.73 59.57
GMAM 84.10 75.94 71.96 50.40 50.08 36.22 61.45
ST 85.02 75.43 73.49 55.75 55.19 44.11 64.83
DENIM (our) 85.75 76.50 73.33 59.55 58.51 44.14 66.30 (+1.47)

AbstRCT

BART-B 60.37 55.88 43.96 32.07 30.47 18.41 40.19
GMAM 72.67 65.35 49.36 34.88 33.64 27.21 46.85
ST 70.29 64.16 45.04 39.35 38.38 31.91 48.19
DENIM (our) 77.52 70.19 51.71 41.79 40.46 34.70 52.73 (+4.54)

Table 1: Performance comparison on the AAEC and AbstRCT. AVG indicates the average value across all metrics.
Our improvements over baselines are statistically significant with p < 0.05.

Data Model ACS ACTC Link ARC AVG

AAEC

DENIM 85.75 74.92 59.55 51.33 66.30
w/o RGCN 84.39 73.11 57.79 49.80 64.67
w/o Prefix 84.52 72.69 56.44 48.77 63.98
w/o Prompt 84.68 68.86 47.33 38.83 57.90

AbstRCT

DENIM 77.52 60.95 41.79 37.58 52.73
w/o RGCN 76.76 60.19 40.29 37.04 51.92
w/o Prefix 76.57 60.33 38.90 34.40 50.82
w/o Prompt 76.02 55.24 27.19 17.08 41.31

Table 2: The results of ablation study where we present
the average value of F1 and Macro for ACTC and ARC.

vron et al., 2023). We employ the natural language
prompt approach like (Madaan et al., 2022; Li et al.,
2023) and few-shot in-context learning (here we
employ 3-shot due to the limitation of input length)
in ChatGPT-3.5-Turbo and LLAMA2 for AM. Fig-
ure 4 displays the format of the natural language
prompt for AM. To evaluate the versatility of our
method, we adapt it to fine-tune LLAMA2 using
LORA (Hu et al., 2021), denoted by LLAMA2-
DENIM. Furthermore, we fine-tune LLAMA2 with
the natural language prompt approach (denoted
by LLAMA2-FT) and LLAMA2-DENIM with-
out prefix (w/o Prefix) as baselines. Each fine-
tuning method uses a batch size of 1. Unfortunately,
due to computational resource limitations, we are
unable to perform fine-tuning experiments using
LLAMA2 on the AbstRCT dataset. The results are
presented in Table 3.

We observe that few-shot-based methods (i.e.,
LLAMA2 and ChatGPT-3.5-Turbo) significantly
underperform fine-tuning methods (i.e., DENIM,
LLAMA2-DENIM and LLAMA2-FT) on AAEC.
Among these fine-tuning approaches, our DENIM
framework with LLAMA2 (i.e., LLAMA2-
DENIM) outperforms the w/o Prefix as well as
the LLAMA-FT which is fine-tuned using natu-
ral language prompt, validating the effectiveness

of our methods. In addition, LLAMA-DENIM
performs worse than DENIM using BART as the
base model. This discrepancy can be attributed
to LLAMA-DENIM’s large number of parameters
(including trainable and non-trainable parameters)
while the AM datasets have a small number of sam-
ples (see Data Statistics), which leads to severe
overfitting.

4.4 Impact of Different Ways for Discourse
Information Incorporation

We compare different ways to incorporate dis-
course structure information into the generation-
based AM model: 1) discourse structure-aware
prompts for Encoder (denoted by DENIM-E). We
append the output representations of RGCN to the
input text embeddings as the prompt. 2) encoding
concatenation (denoted by DENIM-C). We con-
catenate the output representations of RGCN with
the output representation of the BART-Encoder and
feed them together to the BART-Decoder. 3) dis-
course structure-aware prompts for Decoder (de-
noted by DENIM-D). We concatenate the output
representations of RGCN to the embeddings of the
multi-task prompt template as part of the prompts.
We present the results in Table 4. We can observe
that DENIM outperforms all variants. An inter-
esting finding is that DENIM-E is worse than the
model w/o Prefix in Table 2. This is because the
heterogeneous nature between discourse structure
graphs and natural language sentences of encoder
input would be confusing for models. The DENIM-
C achieves better performance than DENIM-D and
DENIM-E by concatenating the discourse struc-
ture information with high-level output represen-
tations of the encoder instead of natural language
sentences and formatted prompts.
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Data Type Model ACS ACTC Link ARC AVGF1 Macro F1 Macro

AAEC
FT

DENIM 85.75 76.50 73.33 59.55 58.51 44.14 66.30
LLAMA2-FT 78.37 64.61 61.90 46.14 44.59 29.00 54.10
LLAMA2-DENIM 85.53 76.74 74.19 50.50 48.95 41.70 62.94
-w/o Prefix 84.85 74.54 73.08 45.62 44.85 36.50 59.91

FS ChatGPT-3.5-Tubor 59.71 42.85 37.30 25.61 22.53 14.17 33.70
LLAMA2 22.41 15.92 9.13 3.91 3.91 2.09 9.56

AbstRCT
FT DENIM 77.52 70.19 51.71 41.79 40.46 34.70 52.73

FS ChatGPT-3.5-Tubor 65.91 58.82 47.98 29.79 26.37 12.07 40.15
LLAMA2 22.94 19.90 11.42 6.03 5.70 2.26 11.38

Table 3: Performance comparison of the AAEC and AbstRCT. AVG indicates the average value across all metrics.
FT and FS represent fine-tuning and few-shot learning approaches, respectively.

Data Model ACS ACTC Link ARC AVG

AAEC

DENIM 85.75 74.92 59.55 51.33 66.30
DENIM-E 84.16 72.24 56.31 48.95 63.81
DENIM-C 84.69 73.35 57.65 50.51 65.01
DENIM-D 85.25 74.04 56.70 49.50 64.84

AbstRCT

DENIM 77.52 60.95 41.79 37.58 52.73
DENIM-E 76.01 59.55 39.02 34.43 50.50
DENIM-C 77.08 57.93 40.61 36.59 51.12
DENIM-D 76.76 51.05 38.96 59.72 51.05

Table 4: The impact of different ways for Discourse
Information Incorporation.

4.5 Impact of Different Prompt Template

We explore two multi-task prompt variants: 1).
DENIM-I uses identical placeholders for each sub-
task to assess placeholder effects. 2). DENIM-
R swaps ACTC and ARC placeholders to exam-
ine the impact of task order bias from the left-to-
right generation paradigm of the BART. In addition,
we introduce a two-step decoding strategy for our
prompt (denoted by DENIM-T), where the ARC
does not depend on the results of ACTC. During
decoding, DENIM-T first decodes all AC spans
and then predicts the type of AC and the relation
between AC pairs simultaneously. We describe the
prompt formats and decoding process for the three
variants in detail in Appendix A.4.

The results of all variants of prompt templates
on AAEC and AbstRCT are shown in Table 5. We
observe that our prompt template gets better per-
formance than DENIN-I, demonstrating different
prompt tokens may contain specific semantics for
different ACs and AC pairs. We also focus on
DENIM-R making performance degradation com-
pared to DENIM, confirming the negative effect
caused by the order biases between tasks, which
has been explored in previous work (Bao et al.,
2022). Unsurprisingly, DENIM-T’s performance is
slightly worse than DENIM’s due to placeholders

Data Model ACS ACTC Link ARC AVG

AAEC

DENIM 85.75 74.91 59.55 51.33 66.30
DENIM-I 84.55 73.83 58.67 50.68 65.37
DENIM-R 84.68 73.83 59.19 50.47 65.41
DENIM-T 85.52 75.23 59.03 50.57 66.02

AbstRCT

DENIM 77.52 60.95 41.79 37.58 52.73
DENIM-I 76.53 59.66 40.46 36.93 51.69
DENIM-R 76.30 59.47 40.46 36.00 51.28
DENIM-T 76.92 60.76 41.45 36.35 52.04

Table 5: The impact of different prompt approaches.

in ARC not being able to access the information
of types from the placeholders in ACTC, and vice
versa.

4.6 Case Study

We conduct a case study to explain the benefit of in-
tegrating discourse information into AM intuitively.
We compare DENIM and w/o Prefix and demon-
strate two exemplary cases in Figure 3 to show the
difference in their results.

Example A illustrates a typical case in which the
EDUs in the DSG provide hints for the model to
accurately segment the boundaries of the AC span.
Specifically, the argumentation text is divided into
five EDUs, two of which have strong similarities
with the ACs of the argumentation structure. With-
out the DSG information, w/o Prefix will segment
AC insufficiently, while DENIM can correctly seg-
ment two ACs in a lengthy sentence.

Example B shows how DSG helps DENIM per-
form ARC. In the DSG, both EDU2 and EDU3
have an “Elaboration” relationship pointing to
EDU1. Given the high similarity of EDU1, EDU2
and EDU3 to AC1, AC2 and AC3, respectively,
DENIM accurately identifies two AC pairs (AC1,
AC2) and (AC1, AC3) with a “Support” relation,
while w/o Prefix struggles to capture the relation-
ship between AC pairs.
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Example  A

Argumentation Text:
[Although it is real in some aspects, ]EDU1 [ I believe ] EDU2 [ that the capital that spend on taking care the elderly is contributed by 
these people during their working time, ] EDU3 [ so they are worth to have good care. ] EDU4

DENIM output :
AC1 (Type: Premise) : the capital that spend on taking care the elderly is contributed by these people during their working time
AC2 (Type: Premise): they are worth to have good care
w/o Prefix output :
AC1 (Type: Premise) : the capital that spend on taking care the elderly is contributed by these people during their working time, so 
they are worth to have good care

Example  B

Argumentation Text:
[First, when it comes to the field of transportation, there is no doubt that the technology in automobile 
has made people's life simpler. ] EDU1 [ With a private car, you can reach the destination in another city 
just sitting in the vehicle. ] EDU2 [ Alternatively, if you would like to have a trip across the ocean, a plane 
can carry you there in only a few hours, which is hard to imagine in the ancient times. ] EDU3

DENIM output :
AC pair 1: AC2 is support AC1
AC pair 2: AC3 is support AC1
w/o Prefix output :
AC pair 1: AC2 is support AC1 AC2

Rel: Support Rel: Support

AC1

AC3

Rel: Expansion Rel: Expansion

EDU1

EDU2 EDU3

Discourse Structure:

Argumentation Structure:

Figure 3: Two examples of how discourse structure information helps the generation of argumentation structure. A
text fragment in a bracket is an EDU and a fragment of the same color (except black) is an AC.

5 Related Work

Argumentation Mining Argumentation mining
aims to extract the argumentation structure from
the argumentation text, which involves three sub-
tasks (Lawrence and Reed, 2020; Bao et al., 2021b;
Cheng et al., 2021; Sun et al., 2022; Guo et al.,
2023; Chen et al., 2023). Early work (Persing and
Ng, 2016) performed joint inference in an Integer
Linear Programming (ILP) framework. With the
success of deep learning, Eger et al. (2017) inves-
tigated neural techniques for AM and formalized
the end-to-end AM task into multiple other tasks.
Ye and Teufel (2021) extended the approach of
(Eger et al., 2017) using biaffine dependency pars-
ing and achieved promising performance. How-
ever, it requires tedious pre- and postprocessing.
Bao et al. (2022) proposed a generative framework
with a constrained pointer mechanism and a recon-
structed positional encoding for end-to-end AM.
Morio et al. (2022) proposed a Longformer (Belt-
agy et al., 2020) based model with biaffine func-
tions for AM.

In addition, some works explore incorporating
discourse information for AM. (Green, 2010) in-
troduced a non-deep learning approach that lever-
ages Rhetorical Structure Theory to analyze argu-
ment structures within biomedical corpora. (Stede
et al., 2016) introduced two theories, including
Rhetorical Structure Theory and Segmented Dis-
course Representation Theory, to annotate and ana-
lyze argumentative texts. (Accuosto and Saggion,
2019) proposed an LSTM-based transfer learn-
ing approach that uses contextual representations
learned from discourse parsing tasks as input for
argument mining models. (Accuosto and Saggion,
2020) employed the annotated discourse units and

relations as auxiliary information and proposed
two transfer learning approaches (i.e., multi-task
learning and sequential learning) with BiLSTM
and CRF models for AM. (Chistova, 2023) pro-
posed a deep dependency parsing model to explore
the relationship between rhetorical and argument
structures. Different from them, we explore how
to incorporate this additional information into a
generation-based end-to-end AM and enhance it
with prefix and prompt learning.

Prefix tuning and prompt tuning Prompt tun-
ing (Liu et al., 2023) has achieved desirable per-
formance in the field of natural language process-
ing (NLP) (Schick and Schütze, 2021; Wang et al.,
2022; Li and Liang, 2021; Ma et al., 2022; Hsu
et al., 2023). Prefix tuning (Li and Liang, 2021),
a member of the prompt-based tuning family, can
trigger the desired generation of PLMs by only opti-
mizing small continuous prefix vectors. To the best
of our knowledge, we are the first to explore the
potential of prefix tuning with discourse informa-
tion for AM and propose an effective and efficient
multi-task prompt with a three-step decoding strat-
egy.

6 Conclusion

In this paper, we designed discourse structure-
aware prefixes, which introduce discourse structure
information to the generation-based AM model,
thereby enhancing the generation. Additionally,
we introduce a multi-task prompt complemented
by a three-step decoding strategy, optimizing the
efficiency and effectiveness of argumentation struc-
ture decoding. Extensive experiments and analyses
on two benchmarks show that our method outper-
formed strong baselines significantly.
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Limitation

To point out future research direction for
generation-based AM models, we performed error
analysis on 100 cases where our DENIM made mis-
takes for ACS, ACTC and ARC subtasks. On the
ACS subtask, we identified two common types of
errors: (1) incorrect AC span due to short segment.
DENIM has lower confidence in the segmentation
of short ACs compared to longer ACs. In particu-
lar, if an AC is a short segment, it tends not to be
predicted as an AC or will be incorrectly spliced
with subsequent clauses as an AC. (2) error AC
combined with a main clause. For example, "It
is generally understood that", "Many studies have
pointed out that", etc. The former is not part of
AC, while the latter is part of AC. DENIM finds it
difficult to distinguish these subtle semantic differ-
ences. In DSG, both such examples are segmented
into EDUs, which cannot provide effective hints for
DENIM at the discourse structure level. For ACTC,
the most serious problem is the error extraction of
AC span, resulting in incorrect AC classification.
In addition, we discover that there is a type bias for
different positions of ACs. For instance, DENIM
tends to predict the first AC as “Claim” and the
last AC as “Premise”. This is because DENIM
overfits the type distribution of ACs at different
positions using the prompt placeholders. Maybe
we can adopt a debias approach to alleviate this
issue. On the ARC task, we find that DENIM cap-
tures the connection between long-distance ACs so
excessively that it generates additional AC pairs.
In the argumentation structure, AC pairs with re-
lationships should not be too far apart, or it won’t
follow the argumentation structure habits of hu-
man texts. Therefore, we suggest that during ARC
tasks, incorporating distance loss between ACs can
guide the model to focus more on the connection
between ACs with moderate distances, which could
potentially address the issue.

Last, we discuss the prefix technique proposed,
which utilizes discourse structure graphs generated
by a pre-trained discourse parser. These graphs,
while effective, are not infallible and may contain
imperfections, leading to potential error propaga-
tion issues in DENIM. Although employing dis-
tributions over all discourse relation labels helps
mitigate this problem, it is not a perfect solution. A
prospective approach to address this is to treat AM
and discourse parsing as concurrent tasks within
a multi-task learning framework. We leave this

integrated approach as our future work.
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A Appendix

A.1 Data Statistics
• AAEC (Stab and Gurevych, 2017): The

AAEC dataset comprises 420 essays with
1833 paragraphs. There are three types of
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ACs (i.e., MajorClaim, Claim and Premise)
and two types of ARs (i.e., Support and At-
tack). Each AC has at most one outgoing AR
so the argumentation graph of the paragraph
can be either directed trees or forests. We di-
vide this dataset into a training set of 1464
ACs and a testing set of 369 ACs, and ran-
domly choose 10% of the training set as the
validation set, which is consistent with previ-
ous works (Morio et al., 2022).

• AbstRCT (Mayer et al., 2020): The AbstRCT
includes abstracts of randomized controlled
trials (RCTs) from the MEDLINE database.
All ACs are classified into three types: Ma-
jorClaim, Claim and Evidence. The ARs
have three types: Support, Attack and Partial-
attack. Each AC may have several outgoing
ARs, thus the argumentation graph is of non-
tree structure. We used 350 training, 50 devel-
opment, and 100 test texts following (Morio
et al., 2022).

The detailed statistics of the AAEC and AbstRCT
datasets are summarized in Table 6.

Type AAEC AbstRCT
Text 1833 500
Train 1464 350
Test 369 100
Components 6089 3279
Relations 3832 2060

Table 6: The statistics of the AAEC and AbstRCT
datasets.

A.2 Baselines

We compare our proposed model with the follow-
ing baselines:

• BiPAM (Ye and Teufel, 2021): This method
applies BERT as the base model and trans-
forms AM as a biaffine dependency parsing
task for end-to-end AM.

• BiPAM-syn (Ye and Teufel, 2021): The Bi-
PAM model is enhanced by explicit syntactic
information produced by the Stanford syntac-
tic dependency parser.

• ST (Morio et al., 2022): This method pro-
poses an end-to-end AM model based on
Longformer (Beltagy et al., 2020) and the bi-
affine function.

Data Type ACS ACTC Link ARC AVG

AAEC

TTT 84.44 72.75 59.62 51.63 65.47
TTF 84.02 71.71 59.96 51.48 65.06
TFT 85.75 74.81 59.55 51.33 66.30
FTT 85.10 73.92 58.31 47.89 64.51
TFF 85.21 73.70 60.05 49.89 65.41
FTF 84.66 72.86 58.61 51.46 65.32
FFT 83.78 72.38 59.06 49.96 64.59
FFF 84.52 72.69 56.44 48.77 63.98

AbstRCT

TTT 76.98 61.02 40.23 37.62 52.41
TTF 76.30 59.92 40.40 34.85 51.04
TFT 77.52 60.95 41.79 37.58 52.73
FTT 78.36 60.62 40.29 36.88 52.27
TFF 78.03 60.40 40.79 37.96 52.59
FTF 76.89 59.38 39.70 34.92 50.91
FFT 76.16 60.83 41.30 35.39 51.65
FFF 76.57 60.33 38.90 34.40 50.82

Table 7: The results of the additional ablation study
where we present the average value of F1 and Macro
for ACTC and ARC. The letter “T” in the Type denotes
true and the letter “F” denotes False. The three letters
in the Type denote whether or not to use prefixes in
the encoder’s self-attention blocks, the decoder’s cross-
attention blocks, and the decoder’s self-attention blocks,
respectively. e.g. TTT denotes the use of prefixes in all
three blocks respectively, and FFF denotes the use of
prefixes in none of the three blocks.

• BART-B (Yan et al., 2021): The model con-
verts all aspect-based sentiment analysis sub-
tasks into a unified generative formulation,
which is adapted for extracting argument struc-
ture by (Bao et al., 2022).

• GMAM (Bao et al., 2022): A generative end-
to-end AM model reformulates AM as a se-
quence generation task, enhanced by recon-
structed positional encoding and constrained
pointer mechanism. Noted the BART-B is the
basic model of GMAM without augmentation
mechanism.

A.3 Additional Ablation Study

Here, we explore which blocks (i.e., self-attention
blocks in the encoder, self-attention blocks in the
decoder, or cross-attention blocks in the decoder)
we should place prefixes into. We find that (1)
employing prefixes consistently improves the per-
formance of our methods. (2) Using the prefixes
only in the self-attention blocks of the encoder out-
performs using it in another block. (3) We obtained
the best performance by using prefixes in the self-
attention blocks of the encoder and decoder, in-
stead of using prefixes in all blocks. This may be
because reusing prefixes in the self-attention and
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Input: 

The text is "Despite the fact that advertisements can be exaggerated, it is also true that 

it plays an important role economically. They introduce new products. ". The type of 

argumentation component and argumentation relation in the text:

Output: 

"advertisements can be exaggerated." is Premise.

"it plays an important role economically." is Claim.

"They introduce new products." is Premise.

the argument relation between "advertisements can be exaggerated." and "it plays an 

important role economically." is "Attack".

the argument relation between "it plays an important role economically." and "They 

introduce new products." is "Support".

Figure 4: The format of natural language prompts for AM.
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(𝒔𝒑𝒂𝒏𝟏, 𝒕𝒚𝒑𝒆𝟏, 𝒔𝒑𝒂𝒏𝟐, 𝒕𝒚𝒑𝒆𝟐, 𝒓𝒆𝒍𝟏𝟐)

(a) Autoregressive Decoding

(b) Our Multi-Task Prompt with Three-Step Decoding

(𝒔𝒑𝒂𝒏𝟏, 𝒕𝒚𝒑𝒆𝟏, 𝒔𝒑𝒂𝒏𝟑, 𝒕𝒚𝒑𝒆𝟑, 𝒓𝒆𝒍𝟏𝟑)
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𝒓𝒆𝒍𝟏𝟐 𝒓𝒆𝒍𝟏𝟑 𝒓𝒆𝒍𝟐𝟑
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Figure 5: Comparison of the decoding process between
autoregressive decoding and our three-step decoding
strategy. Top panel: the autoregressive decoding de-
codes the target sequence by token-by-token generation.
Middle panel: our three-step decoding employs a fixed
prompt template and task-by-task decoding for AM.
Bottom panel: our two-step decoding first decodes ACS
and then ACTC and ARC simultaneously.

cross-attention blocks of the decoder introduces
redundant information.

A.4 Impact of Different Prompt Template

We study two variants of our multi-task prompt: 1).
prompt template with identical task placeholders
(denoted by DENIM-I). To explore the effect of
placeholders in the multi-task prompt, we employ
the same placeholder for different ACs or AC pairs
in each subtask. 2). prompt template with task
order reverse (denoted by DENIM-R). To study the
effect of task order biases in the left-to-right gener-
ation paradigm of the BART decoder for DENIM,

we consider reversing the generation order between
ACTC and ARC. For that, we reverse the position
of placeholders for ACTC and the position of place-
holders for ARI. The format of the two prompt
templates can be viewed in Table 8.

In addition, we introduce a two-step decoding
strategy for our prompt (denoted by DENIM-T)
as shown in the bottom panel of Figure 5, where
the ARC does not depend on the results of ACTC
compared with the three-step decoding. During
decoding, DENIM first inputs all placeholders [S∗]
into the decoder to derive all AC spans, which is
the same as the first step in three-step decoding.
Then, placeholders [AC∗] with the context repre-
sentation of the predicted AC spans, and [P(∗)] with
the sum of the context representation of the two
AC spans of the predicted AC pair, are fed into
the decoder together. The placeholders [AC∗] and
[P(∗)] are employed to predict the type of ACs and
the relation between AC pairs simultaneously.

A.5 Discussion of Different Discourse
Structure Graph Construction

We utilize the distributions over all discourse re-
lation labels between two EDUs to strengthen the
heterogeneous graph, rather than a limitation to
the 1-best result (i.e., the relation with the high-
est predicted probability) inspired by (Pu and
Sima’an, 2022). This approach offers two advan-
tages. Firstly, it mitigates error propagation from
the external discourse parser by using relation dis-
tributions. Since the parser is known to perform
poorly on out-of-domain data (Atwell et al., 2022),
and may hence propagate errors into the AM model.
Secondly, as Yung et al. (2022) suggests, multiple
intrinsic relations can exist simultaneously between
EDUs. Representing these relations as a distribu-
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Type Templates
DENIM [D][S1] . . . [Sm][AC1] . . . [ACm][P(1,2)] . . . [P(m−1,m)]
DENIM-I [D][S] . . . [S][AC] . . . [AC][P ] . . . [P ]
DENIM-R [D][S1] . . . [Sm][P(1,2)] . . . [P(m−1,m)][AC1] . . . [ACm]

Table 8: The format of different prompt templates.
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(b) AbstRCT

Figure 6: The result of different discourse structure graph construction approaches on AAEC and AbstRCT, where
the value in parentheses is k corresponding to each method.

Data Model Train (min) Inference (sec)

AAEC

BART-B 0.12 119.60
GMAM 0.13 129.52
ST 1.62 17.40
DENIM 0.80 21.86
w/o Prefix 0.58 15.63
w/o Prompt 0.65 51.24

AbstRCT

BART-B 0.16 151 29
GMAM 0.16 117.13
ST 0.79 5.32
DENIM 0.79 7.72
w/o Prefix 0.62 6.79
w/o Prompt 0.76 37.37

Table 9: Comparison of the Training Time per epoch
(minutes) and Inference Time in the test set (second) on
AAEC and AbstRCT.

tion rather than the 1-best result provides a more
nuanced and accurate discourse structure. Thus, we
argue that the logit output from a discourse parser
is more informative. It provides not just the n-best
results but also captures the remaining uncertainty
associated with these predictions.

To assess the efficacy of the proposed strategy,
we conduct a set of experiments, incorporating a
different variant. The variant termed the 1-best
strategy (BS for short), utilizes the 1-best result
to connect two nodes. The results are presented
in Figure 6. Compared with the 1-best strategy,

our method exhibits a consistent superiority across
all metrics. This enhancement is attributed to our
strategy’s dual focus: mitigating error propagation
from the discourse parser by leveraging a distri-
bution over all relations, and acknowledging the
potential coexistence of multiple intrinsic relations
between EDUs to construct a more nuanced and
accurate discourse structure.

Further exploration into the sensitivity of our
method to discourse information involved the im-
plementation of two additional variants. The sec-
ond variant termed the EDU contamination strategy
(ECS), introduces random contamination of k%
of EDUs by changing its start/end indexes. The
third variant, known as the relation contamination
strategy (RCS), involves random contamination of
k% of relations between two EDUs by substitut-
ing them with alternate relations. Surprisingly, we
observed only a marginal decline in the model’s
performance with increasing k values, significantly
outperforming the previous state-of-the-art (SOTA)
standard. These findings underscore the pivotal
role of discourse information for AM and demon-
strate our method’s commendable robustness in
handling discourse information.
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Relation AAEC AbstRCT

Overlap Non-Overlap Overlap Non-Overlap

Attribution 3 179 2 21
Comparison 0 8 0 41
Condition 1 212 0 38
Enablement 10 446 2 201
Manner-Means 3 77 4 387
Same-Unit 4 169 3 177

Background 192 875 97 397
Cause 394 276 106 136
Contrast 322 508 384 285
Elaboration 1032 757 253 492
Evaluation 171 26 173 26
Explanation 317 124 3 24
Joint 730 1028 1255 1515
Summary 4 5 0 3
Temporal 34 40 13 104
TextualOrganization 0 0 0 0
Topic-Change 0 0 0 0

Table 10: Statistical analysis of the overlap between EDU and AC in various discourse relations. The frequency of
the first six discourse relations appearing in non-AC text segments is significantly higher than in cases of overlaps
with ACs.

Data Method ACS ACTC Link ARC AVGF1 Macro F1 Macro

AAEC

Unlabeled-DSG 84.76 74.26 71.32 56.92 56.39 38.53 63.70
Unlabeled-Exc-DSG 85.63 75.01 71.15 56.98 56.33 40.46 64.26
Full-DSG 85.44 74.38 72.01 57.76 56.27 41.62 64.58
Exc-DSG 84.25 74.34 71.90 58.78 58.02 44.06 65.22
Full-Random-DSG 84.30 74.07 71.39 57.61 56.30 42.70 64.40
Exc-Random-DSG 84.46 74.29 70.37 58.55 57.24 43.65 64.76
DENIM 85.75 76.50 73.33 59.55 58.51 44.14 66.30

AbstRCT

Unlabeled-DSG 76.27 70.00 50.66 39.24 37.67 33.47 51.22
Unlabeled-Exc-DSG 76.76 69.71 50.67 40.29 39.47 34.60 51.92
Full-DSG 77.16 69.90 51.27 40.07 37.80 31.89 51.35
Exc-DSG 77.07 70.01 51.57 41.33 39.95 33.18 52.19
Full-Random-DSG 77.29 69.74 50.36 38.91 37.38 34.02 51.28
Exc-Random-DSG 77.20 70.04 50.68 40.65 38.92 32.28 51.63
DENIM 77.52 70.19 51.71 41.79 40.46 34.70 52.73

Table 11: The impact of selection and categorization of discourse relations.

A.6 Computational Cost

We investigate the computational cost of baseline
methods and our DENIM model in training and
inference. For a fair comparison, all these models
use the same batch size of 4 in training and 1 in
inference. Table 9 shows the training time and
inference time on the AAEC and AbstRCT.

DENIM is faster than or comparable to the SOTA
model (i.e., ST) for training, but slightly slower
than the base model for inference. For example,
DENIM shows an average increase of 0.003s and
0.007s in inference time per sample in AAEC and
AbstRCT, respectively, compared to ST, which
is acceptable in practice. In addition, during in-
ference, our DENIM is more efficient than previ-
ous generation-based baselines (i.e., BART-B and

GMAM) by a factor of 5-20 owing to the multi-task
prompt with a three-step decoding, although addi-
tional overhead is added to the training process.

Comparing DENIM with w/o Prefix, the prefix
introduces a small amount of extra time (almost
13.2 seconds on AAEC and 10.2 seconds on Ab-
stRCT for one epoch) in both the training and infer-
ence phases (6.23 seconds on PE and 0.93 seconds
CDCP for all instances). This additional cost is
acceptable.

A.7 Selection and Categorization of Discourse
Relation

We notice that some discourse relations parsed by
the DMRST parser may be irrelevant to the argu-
ment mining task, and removing these irrelevant
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Group Relation Description Group Description 

1 

Background 
Elaborates on the objective 

background of the Nucleus. 

These relations share a significant 

characteristic where one unit supplements 

or further elaborates on the information of 

another unit. 

Elaboration 
Additional information and 

details of the Nucleus. 

Evaluation 
An evaluation or conclusion of 

the Nucleus. 

Summary 
Summarizes the Nucleus, without 

adding additional information. 

Topic-

Comment 

Comments and explains the 

Nucleus (topic). 

2 

Cause 
Causes (subjective or objective 

reasoning). These relations often denote that one unit 

results from or is the cause of another unit. 
Explanation 

Explanation (both subjective and 

objective). 

3 

Contrast 
Contrast and transition, tending 

towards objective. 

These relations often denote that one unit 

is of the same informational level as 

another unit, distinguishing them from the 

first set of relations. 

Joint Lists and 'or' conditions. 

Temporal 
Sequences, such as 'when', 

'before', etc. 

Textual-

Organization 

Textual division and connection, 

without semantics. 

Topic-Change Topic change, semantic leaps. 

Figure 7: The definition and the description of the discourse relations.

relationships may benefit the AM task. A simi-
lar operation can be seen in prior work (Pu et al.,
2023). For that, we analyze the number of over-
laps between EDUs and ACs under each discourse
relationship in the training set, as shown in Ta-
ble 10. We observed that for relations such as
Comparison, Condition, Enablement, and Manner-
Means, the number of overlaps between EDUs
with these relations and ACs was minimal, while
the non-overlapping instances were significantly
higher. We believe that EDUs that share text frag-
ments with ACs provide more accurate cues for
AM. To minimize the impact of these EDUs with
low relevance and their associated relations, we
chose to exclude these relations (named irrelevant
relations) (The top six in Table 10).

To validate whether the irrelevant relations
would affect performance, we explore four variants:
1) we employ all discourse relations to construct
the DSG (denoted by Full-DSG). 2) we exclude
irrelevant discourse relations and use the remain-
ing relations to construct the DSG. (denoted by
Exc-DSG). 3) we limit the difference among dis-
course relations and set the weight of edges in the
DSG to 1 (denoted by unlabeled-DSG). 4) we set
the weight of the edges with irrelevant relations to
0 in the DSG, while the weight of the remaining
edges is set to 1 (denoted by unlabeled-Exc-DSG).
The experimental results, presented in Table 11,

indicate that excluding irrelevant discourse rela-
tions is beneficial. Our strategy suggests that future
research could focus on more effectively eliminat-
ing noise in discourse relations and better aligning
them with argumentative relations.

In addition, we refer to the definitions of (Carl-
son and Marcu, 2001) to obtain the semantics of
each discourse relation, as shown in Figure 7. Then,
inspired by (Pu et al., 2023), we manually group
relations with similar semantics, such as Reason
and Explanation, and present the grouping descrip-
tion in Figure 7. To validate the effectiveness of
our grouping strategy, we conduct additional exper-
iments, including applying the random grouping
strategy to both Full-DSG and Exc-DSG variants
(denoted by Full-Random-DSG and Exc-Random-
DSG, respectively). The results of these compar-
isons, as shown in Table 11, demonstrate the ratio-
nale of our approach.

We recognize that the strategies we employed for
the selection and grouping of discourse relations
exhibit certain limitations. The specific grouping
strategies may confuse the true features of cate-
gories, which merit further investigation in future
research endeavors.
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