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Abstract

Deploying large language models (LLMs) to
real scenarios for domain-specific question an-
swering (QA) is a key thrust for LLM applica-
tions, which poses numerous challenges, es-
pecially in ensuring that responses are both
accommodating to user requirements and ap-
propriately leveraging domain-specific knowl-
edge bases. They are the two major difficul-
ties for LLM application as vanilla fine-tuning
falls short of addressing. Combining these re-
quirements, we conceive of them as the require-
ment for the model’s preference to be harmo-
niously aligned with humans’. Thus, we intro-
duce Knowledgeable Preference AlignmenT
(KnowPAT), which constructs two kinds of
preference sets to tackle the two issues. Be-
sides, we design a new alignment objective to
align the LLM preference with different hu-
man preferences uniformly, aiming to optimize
LLM performance in real-world, domain-
specific QA settings. Adequate experiments
and comprehensive comparisons with 15 base-
line methods illustrate that our KnowPAT is
a superior pipeline for real-scenario domain-
specific QA with LLMs.

1 Introduction

In contemporary digital commerce platforms, the
deployment of automated and intelligent question-
answering (QA) services is a pivotal task to aug-
ment service quality. These services are designed
to furnish answers to domain-specific customer
queries. Building such a domain-specific QA sys-
tem, while highly sought after, remains a daunting
challenge in practical scenarios.

Domain-specific QA necessitates a comprehen-
sive understanding of a specific domain to answer
specialized questions. However, traditional deep
learning models (Devlin et al., 2019; Raffel et al.,
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Figure 1: A simple case of intelligent service for cloud
products. Such a simple example is meant to illustrate
the importance of selective use of retrieved knowledge
as MAC is a terminology in computer networking rather
than a kind of computer or lipstick in the user context.

2020) still have insufficient domain-specific exper-
tise. This makes the domain knowledge bases
(KBs) (Liang et al., 2022) a pivotal tool for the stor-
age and querying of domain knowledge. KBs can
store human knowledge in the triple form, offering
a unified, maintainable, and extensible representa-
tion of the knowledge from heterogeneous sources.
The utility of KBs has already been demonstrated
across various application scenarios such as E-
commerce (Zhu et al., 2021), and health care (Li
et al., 2020). Within the context of QA, incorporat-
ing external knowledge source represents a promis-
ing approach, which is known as KBQA (Jiang
et al., 2023b).

Meanwhile, as large language models (LLMs)
(West et al., 2023) achieve significant progress and
exhibit substantial proficiency within numerous
NLP fields (Zhu et al., 2023), applying LLMs into
various downstream tasks have been a predominant
trend in industry (Zhang et al., 2023a). Contrasting
earlier pre-trained language models (Devlin et al.,
2019; Raffel et al., 2020), LLMs trained on the
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massive corpus have outperformed text generation
capabilities which perform better when interact-
ing with human (Ouyang et al., 2022). To adapt
the LLMs for downstream usage, supervised fine-
tuning (SFT) (Zhang et al., 2023e) is applied to fit
the model with specific tasks and data. However,
the LLM application for real-scenario QA with ex-
ternal KB remains an underexplored domain, with
limited work addressing this intersection.

Our goal entails the resolution of a challenge in
real-world applications: How can LLM be used
to solve real-scenario QA problems supported
by external knowledge bases? A generic pipeline
for this problem is the retrieve-augmented genera-
tion (RAG) (Tian et al., 2023), which first retrieves
relative knowledge triples for the question as ref-
erence data and subsequently fine-tunes the LLM
with knowledge-enhanced prompt. However, this
conventional approach often encounters obstacles
in practical scenarios. Firstly, the LLM-produced
responses must prioritize user-friendliness, avoid-
ing any generation of inappropriate or unfriendly
content. Secondly, the retrieved knowledge is not
invariably useful, necessitating that LLMs develop
the capacity to judiciously exploit knowledge. Fig-
ure 1 illustrates a simple case in which retrieved
knowledge is not always desperately needed (e.g.,
MAC is a kind of lipstick), which requires the
LLMs to selectively utilize the retrieved knowledge
instead of generating answers without thoughtful
consideration. These two issues can uniformly
collectively constitute the preference problem of
LLMs. LLMs have their style preference to gen-
erate contents and knowledge preference to selec-
tively use the retrieved knowledge in the prompt.
As a practical application, the preference of
LLMs needs to align with human expectations
and requirements for better service. This refers
to preference alignment (PA) (Yuan et al., 2023), a
burgeoning topic in the LLMs community, which
would incorporate human preference to tune the
LLMs during training. PA aims to control the
model to generate human-preferred content and
avoid unpreferred content. However, the scenar-
ios faced by current PA works tend to be generic.
No research has been explicitly directed towards
domain-specific applications such as our scenario,
providing impetus for further exploration.

In this paper, we propose a novel three-step
Knowledgeable Preference AlignmenT (Know-
PAT) pipeline to address the domain-specific QA
task for a real-scenario LLM application. Know-

PAT propose knowledgeable preference set con-
struction to incorporate domain KBs to construct
knowledgeable preference data. Besides, a new
alignment objective is designed to optimize the
LLM with the knowledge preference. Our contri-
bution can be summarized as three-folded:
(1). We are the first work that introduces preference
alignment for domain-specific QA with LLMs and
domain KBs, which is an industrial practice with
practical applications.
(2). We propose a knowledgeable preference align-
ment (KnowPAT) framework to incorporate KBs
into the preference alignment process of LLMs.
We balanced the need for both style and knowledge
preference and devised a new training objective to
align the LLM with human preference.
(3). We conduct comprehensive experiments to
validate the effectiveness of our methods on two
datasets, which shows that KnowPAT outperforms
15 existing baselines.

2 Problem Setting

In this section, we will first introduce our problem
scenario and basic notations.

Our overall target is to fine-tune a LLM M with
our QA datasets D = {(qi, ai) | i = 1, 2, . . . , N}
where qi, ai represent a question and answer pair.
The questions in the dataset are all about common
usage issues with our cloud products while the
questions and answers are manually collected and
labeled, which are gloden answers with decent and
knowledgeable responses. For vanilla fine-tuning
(VFT), we first wrap the QA pair with a prompt
template I and the model M is autogressively
(Brown et al., 2020) optimized as:

Lft = − 1

|ai|

|ai|∑

j=1

logPM(ai,j |I, qi, ai,<j) (1)

where ai,j is the j-th token of ai and PM de-
notes the token probability predicted by the model
M. With such a training objective, the training
QA data serves as the supervision information
to tune the model M to the QA scenario. Be-
sides, as a domain-specific task, we maintain a
domain knowledge base (domain KB) B. The
domain KB can take very many forms, such as do-
main knowledge graphs, or documents. We denote
ki ∈ B as one support knowledge in the domain
KB. By retrieving top-k knowledge k with higher
relevance, the input prompt will incorporate the
retrieved knowledge K. Thus, M can learn the
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Figure 2: The overall architecture of KnowPAT. We design three important modules in our framework: unsupervised
knowledge retrieve, knowledgeable preference set construction, and knowledgeable preference alignment.

relative knowledge during the VFT process, which
is a general retrieve-augmented generation (RAG)
pipeline for domain-specific LLM applications.

However, such a VFT approach can not achieve
pretty good results for the domain-specific QA. On
the one hand, applications in real scenarios should
be user-friendly, otherwise, they will not bring com-
mercial value. Thus, the text style of the generated
response should be more acceptable for users. On
the other hand, the knowledge retrieval process is
unsupervised and the effectiveness of the retrieved
knowledge is hard to guarantee, which means that
the model M needs to acquire the ability to judge
and selectively utilize the knowledge triples. There-
fore, we should improve the basic VFT to solve
these two problems.

Actually, both of these problems can be sum-
marised as model preference. The LLM M has
its style preference to generate texts and its knowl-
edge preference to selectively utilize the retrieved
knowledge. For the model to be practically ap-
plicable, the model preference should align with
human preference, aiming to generate high-quality
answers that humans prefer. Preference alignment
(PA) is an important topic for LLMs. To apply PA
during LLM fine-tuning, we sample a preference
set P = {b1, b2, . . . , bl} with l different answers
for each QA pair (q, a). We denote ri as the pref-
erence score of each answer bi where higher ri
represents that humans prefer this answer. During
training, we will define another objective Lalign to
align the model M with the preference set P , aim-
ing to increase the probability of a human preferred

answer appearing and simultaneously decrease the
probability of an unpreferred answer. The human
preference of each answer is the preference score
r. The overall training objective then becomes
L = Lft+Lalign.With such a multi-task objective,
the LLM is fine-tuned to fit the golden answers
while avoiding unpreferred results. The next
question is how to generate a preference set to re-
flect both the style and knowledge preference.

3 Our KnowPAT Pipeline

In this section, we will present our pipeline of
knowledgeable preference alignment (KnowPAT),
which consists of three key parts: unsupervised
knowledge retrieve, knowledgeable preference set
construction, fine-tuning, and training. Figure 2
demonstrates an intuitive view of the three parts in
our pipeline design.

3.1 Unsupervised Knowledge Retrieve

The first key parts is the unsupervised knowledge
retrieve which aims to link the knowledge in the
KB B to each question qi. We design a simple
semantic similarity-based retriever H to achieve
this goal. The similarity between the i-th question
qi and the j-th knowledge kj is:

sim(i, j) = Cosine(H(qi),H(kj)) (2)

where the retriever H serves as a textual encoder
and we treat both the question and knowledge as a
text sequence to get their sentence representations.
The similarity is based on the cosine similarity
of the two representations. We retrieve the top-k
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knowledge with the highest similarities for each
question qi and denote the retrieved knowledge
(RK) as K. RK will be added into the input prompt
as the background knowledge for the current ques-
tion.

This process is unsupervised as we have no man-
ually labeled question-knowledge pairs. Besides,
our model will be deployed for real scenario usage,
so it also requires strong zero-shot generalization
capabilities to new questions. For these two rea-
sons, the retrieved knowledge K might be noisy
and useless to provide background knowledge. We
think that the LLM M should learn the knowledge
preference to select helpful information from the
retrieved knowledge K.

3.2 Knowledgeable Preference Set
Construction

Motivated by such goal, we propose a knowledge-
able preference set construction process to enable
retrieved knowledge in the preference set construc-
tion, which consists of two parts: the style and the
knowledge preference set.

For the style preference set (SPS) Ps, we select
l−1 different LLMs denoted M1,M2, . . . ,Ml−1.
These different LLMs Mi have different textual
comprehension and expression skills, which can
generate answers with different text styles. The
ability and quality of these models to answer
domain-specific questions are inferior compared
to human-labeled golden answers. The l − 1 an-
swers generated in this way and golden answers
form a style preference set Ps = {b1, b2, . . . , bl}
with length l. For the knowledge preference set
(KPS), we assume that the knowledge that has
high similarity but do not reach the top-k rank
are more likely to be knowledge that is not use-
ful for the input question. We can get preference
sets with different quality by retrieving some rela-
tively worse knowledge and prompting the model
to generate responses with knowledge of different
quality. In our design, we retrieve 3 groups of
knowledge K1,K2,K3 from the CPKG. K1 repre-
sents the retrieved top-k knowledge, K2 = ∅ is an
empty set with no retrieved knowledge. K3 repre-
sents the knowledge with top k + 1 to 2k similari-
ties which we think are easily misused knowledge
with relatively high semantic similarity. Then we
wrap the different knowledge Ki with the input
prompt I into the LLM M and generate differ-
ent answers. These generated 3 answers and the
golden answer form a knowledge preference set

Pk = {c1, c2, c3, c4}.
By doing this, we can get two preference sets

for each QA pair. To simplify the setting, we set
l = 4 to let the two sets be of the same size. Be-
sides, we design a rule-based strategy to decide the
preference score r for each answer. For the style
preference set Ps, the high-quality golden answer
b1 is assigned with the highest score, and answers
from other LLMs were determined by their general
capabilities. In practice, we choose three differ-
ent LLMs ChatGPT (b2) (Ouyang et al., 2022),
ChatGLM-6B (b3) (Zeng et al., 2023), and Vicuna-
7B (b4). The results of several LLM ranking lists
indicate that the three are ranked in order of ability
as follows ChatGPT > ChatGLM > Vicuna. Be-
sides, after verification by human experts, we also
believe that the quality of the answers generated
by these three models in our QA scenarios also
conforms to this rule. Thus, the preference scores
are assigned in this order: r1 > r2 > r3 > r4.

Meanwhile, for the knowledge preference set Pk,
the golden answer c1 still has the highest prefer-
ence score r1. The answer c2 generated with top-k
knowledge K1 has the second highest preference.
The answer c3 generated with no extra knowledge
K2 has the third highest preference, and the answer
c4 generated with knowledge K3 is the worst. We
found in our actual tests that the mismatch rate be-
tween the retrieved knowledge K3 and the question
q is very high and easily misleads the model M,
so we set its score to be lower than the case of the
empty knowledge K2. Thus, for the knowledge
preference set Pk, the preference scores are still
in the order: r1 > r2 > r3 > r4. For each QA
pair, we can construct two preference sets and we
finally get the whole preference data with 2N pref-
erence sets. The preference data will participate
in the fine-tuning process to control the style pref-
erence and knowledge preference for the model
M. Note that the size of the two preference sets
need not be strictly same, and we have adopted
the above formulation for the sake of uniformity of
representation in our paper.

3.3 Fine-tuning and Preference Alignment
In addition to the vanilla fine-tuning loss Lft with
the golden answer, the preference data will also
participate in the training process. For each prefer-
ence set, the preference score ri of the i-th answer
represents our degree of preference. We expect the
model M to align with our preference. Thus, we
design another score to represent the preference of
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the model, which is denoted as:

Si =
1

|ai|

|ai|∑

j=1

logPM(ai,j |I, qi, ai,<j) (3)

This score Si is the average log-likelihood of
each answer token conditioned on the given prompt
template I and question qi. Higher scores repre-
sent a higher probability that the model considers
the current answer to occur. To align the model
preference with our envision, we designed a new
alignment objective for our scenario. The align-
ment objective is denoted as:

Lalign = −
|P|−1∑

i=1


log σ(Si) +

∑

rj<ri

log σ(−Sj)


 (4)

where σ is the sigmoid function. Such an objec-
tive is newly proposed by us to achieve the pref-
erence alignment process, which contrasts the pre-
ferred answer and the unpreferred answers. It is
worth noting that the human preference scores ri
will only determine the ordering corresponding to
different answers and will not be directly involved
in the computation and gradient accumulation. Ex-
isting methods like RRHF (Yuan et al., 2023) and
SLiC-HF (Zhao et al., 2023) apply a margin-rank
loss in the form

∑
rj<ri

max(0, λ − Si + Sj) to
achieve preference alignment. But their design only
optimizes the model preference when the model
preference score S of a human preferred answer is
lower than an unpreferred answer (a more formal-
ized formulation would be Si < Sj when rj < ri).
However, we think that the preference should still
be optimized in this situation and propose such
a training objective to continuously decrease the
occurrence probability of the unpreferred answers.
Meanwhile, as different answers have different text
quality and preference degrees, we further design
an adaptive weight to control the influence of each
preferred answer, which is denoted as:

µi =
Si − Smin

Smax − Smin
(5)

where Smax and Smin are the max and min model
preference scores in a preference set P . With such
an adaptive weight, the influence of the answers
with different preferences could be dynamically
adjusted. The alignment loss then becomes:

Lalign =

|P|−1∑

i=1

µi


log(1 + e−Si) +

∑

rj<ri

log(1 + eSj )




(6)

The final training objective is still in a multi-task
manner and we add a hyper-parameter λ as the
coefficient of the alignment loss:

L = Lft +
λ

|P| − 1
Lalign (7)

where P−1 represents the count of prefer-unprefer
contrast to normalize the alignment loss. For each
preference set constructed in the previous section,
the model is trained and optimized with such an
objective.

4 Experiments and Analysis

In this section, we present the detailed experimen-
tal settings and analyze the experiment results to
investigate the following four research questions:
(i) RQ1: How does KnowPAT perform compared
with the baseline methods?
(ii) RQ2: Do the proposed modules in KnowPAT
really benefit the performance of KnowPAT?
(iii) RQ3: Are there some intuitive cases to demon-
strate the effectiveness of KnowPAT.
(iv) RQ4: Does the LLM still keep the general
ability rather than catastrophic forgetting?

These four questions evaluate our approach on
four dimensions: performance, design soundness,
intuition, and usability in real scenarios. We will
answer the four questions in the following sections.

4.1 Experiment Settings

4.1.1 Dataset Information
Our experiments are performed on both private
and public datasets. The private CPQA dataset
consists of a CPKG and QA pairs. The public
dataset is RJUA-QA (Lyu et al., 2023), which is a
urology domain QA dataset. The detailed dataset
information is presented in Appendix B.1.

4.1.2 Baseline Methods
To make a comprehensive study, we select four
types of different baseline methods to demonstrate
the effectiveness of our preference alignment ap-
proach. We not only want to show that alignment
is a better framework for LLM application com-
pared to other paradigms (e.g. zero-shot reasoning,
in-context learning (Dong et al., 2023), vanilla fine-
tuning (Ouyang et al., 2022; Fang et al., 2023)), but
also to show that our method is better than other
preference alignment methods (Yuan et al., 2023;
Zhao et al., 2023; Song et al., 2023; Wang et al.,
2023b; Rafailov et al., 2023). The detailed informa-
tion of the baselines are shown in Appendix B.2.
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Table 1: The experimental results for traditional text generation metrics on two datasets. The red numbers represent
the improvement of KnowPAT on each dataset. The best baseline performance is underlined.

Dataset Type Setting BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L METEOR
C

PQ
A

Zero-shot

Vicuna 14.18 7.89 5.02 2.69 16.31 6.15 15.69 17.96
ChatGLM 14.21 8.36 5.41 2.79 15.38 5.64 14.75 19.34
Baichuan 15.51 9.08 5.86 2.87 16.74 6.64 15.81 19.71

Atom 10.07 4.11 2.06 8.15 6.24 1.99 6.02 11.31
ChatGPT 13.09 7.72 4.93 2.59 16.96 6.68 16.15 19.52

In-context
Learning

1-shot 8.97 3.84 1.88 0.53 7.49 1.99 7.31 10.41
2-shot 9.11 3.84 1.85 0.50 7.34 1.82 7.01 9.88
4-shot 8.18 3.42 1.65 0.48 7.07 2.04 6.91 8.83
8-shot 7.79 3.29 1.70 0.79 6.57 1.38 6.41 8.19

Fine-tuning Atom 14.89 9.35 7.33 6.05 14.77 5.57 14.61 15.99

Alignment

DPO 18.31 12.07 9.63 7.81 17.74 6.61 17.38 18.81
RRHF 11.99 6.32 4.52 3.47 12.56 4.08 12.29 12.62
SLiC 16.55 10.34 7.99 6.53 14.69 5.03 14.48 16.95
PRO 18.27 12.36 10.04 8.41 17.07 6.75 16.85 19.17

AFT-BC 18.39 12.17 9.86 7.81 18.09 7.14 17.76 19.48
AFT-DC 15.34 8.44 5.94 4.35 14.51 5.59 14.15 16.31

KNOWPAT
21.87 15.59 13.21 11.14 19.91 8.31 19.62 22.42

+18.92% +26.13% +31.57% +32.46% +10.06% +16.38% +10.47% +15.09%

Fine-tuning Atom 23.12 15.17 10.89 8.31 7.92 0.79 7.17 21.26

R
JU

A
-Q

A

Alignment

DPO 23.87 15.81 11.67 8.99 11.69 2.53 9.66 22.43
RRHF 22.32 14.94 10.86 8.41 7.39 1.40 5.92 21.66
SLiC 23.51 15.46 11.27 8.69 8.68 1.17 7.70 22.14
PRO 24.01 16.05 11.76 9.06 12.50 1.69 9.98 22.38

AFT-BC 24.43 16.27 12.10 9.37 9.06 2.03 7.31 23.30
AFT-DC 20.81 13.01 9.15 6.92 6.40 0.65 5.08 20.02

KNOWPAT
25.61 18.04 13.95 11.38 10.75 4.26 10.46 24.48

+4.83% +10.88% +15.28% +21.45% - +68.38% +4.82% +5.64%

Table 2: The experimental results of model-based met-
rics. We report the BERTScore, reward score, and per-
plexity (PPL) for KnowPAT and the baseline methods.
The best result of each metric is bold and the second
best is underlined.

BERTScore↑ Reward↑ PPL↓
Fine Tuning 66.24 -1.64 31.13

RRHF 64.48 -1.67 31.26
SLiC 66.69 -1.74 32.51
PRO 67.41 -1.78 32.37
AFT 66.16 -2.25 30.11

KnowPAT 69.34 -1.69 29.93

4.1.3 Evaluation Metrics
To make a comprehensive evaluation of the exper-
imental results, we employ the different evalua-
tion metrics from three aspects: traditional text
generation metrics (BLEU (Papineni et al., 2002),
ROUGE (Lin, 2004), CIDEr (Vedantam et al.,
2015), and METEOR (Banerjee and Lavie, 2005)),
model-based metrics (BERTScore (Zhang et al.,
2020a), PPL), and manual evaluation. The detailed
information of the evaluation metrics refers to Ap-
pendix B.3.

4.1.4 Implementation Details
In our experiment, we select Atom-7B 1 as the back-
bone LLM M, which is an open-source version of

1https://github.com/FlagAlpha/Llama2-Chinese

Llama2 (Touvron et al., 2023b,a) with Chinese vo-
cabulary extension. As our dataset is mainly in Chi-
nese, we choose Atom-7B-chat to be our backbone
model for experiments. Another consideration for
us is that using the open-source Llama architecture
model enhances the generality of our method to
maintain the community ecology of LLMs. For un-
supervised triple linking, BGE-base-zh-v1.5 (Xiao
et al., 2023) is applied as the retriever H to encode
and retrieve relative knowledge candidates.

During training, we tune the backbone model
with bf16 float precision. The training epoch is
set to 3 and the gradient accumulation step is set
to 8. We optimize the model using AdamW op-
timizer (Loshchilov and Hutter, 2019) while the
learning rate is fixed to 3e−4. The coefficient hyper-
parameter λ is search in {1, 0.1, 0.01, 0.001}.

4.2 Main Results (Q1)

The main results of the traditional metrics are
shown in Table 1. As we mentioned before, the
traditional metrics can measure the similarity be-
tween the generated answer and the golden answer.
From the results, we can observe that KnowPAT
achieved obvious improvements compared with the
baseline methods. We can conclude that KnowPAT
achieves a more significant improvement in the
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Figure 3: The human evaluation results. For each com-
petition, we randomly select 100 questions and compare
the generated results of the two methods.

BLEU-3(42.03%)/BLEU-4(43.99%) than BLEU-
1(22.67%)/BLEU-2(34.79%), which means that
KnowPAT makes more significant progress in cap-
turing some complex phrases and discourse. Corre-
sponding to our cloud product QA scenario, these
complex phrase usages are usually specialized
terms that have a critical impact on the quality of
the answer.

Besides, we evaluate our methods with three
model-based metrics BERTScore (Zhang et al.,
2020a), reward score (Yuan et al., 2023), and PPL
(Yuan et al., 2023), which is shown in Table 2.
We can observe that KnowPAT still achieves good
performance in the model-based metrics such as
BERTScore and PPL, which means that the results
generated by KnowPAT are more acceptable for the
language models. For the reward score, relatively
good results have also been achieved by KnowPAT.

Further, we conduct a human evaluation for our
method and baseline methods. The two results
from the two models are shown to the human evalu-
ator anonymously so that the human evaluator can
choose a better result. The model which generates
that result will get one point and the competition
results are shown in Figure 3. We can observe from
the figure that our method generates answers that
are more acceptable to humans compared to other
baselines, maintaining a relatively high win rate
in the competition. Only a small number of times
does KnowPAT perform weaker than the baselines,
and most of the time KnowPAT is equal or even
better. Therefore, combining the above three dif-
ferent perspectives of evaluation, we can conclude
that KnowPAT achieves outperforming results in
the cloud product QA scenario.

4.3 Ablation Study (Q2)

We conduct Ablation experiments to verify the va-
lidity of each module design. We validated the
effectiveness of the designed components in our

Table 3: The ablation study results. We evaluate var-
ious stripped-down versions of our model to compare
the performance gain brought by different components.
The full names of these abbreviations are as follows:
FT (fine-tuning); AW (adaptive weight); SPS (style
preference sets); KPS (knowledge preference sets); RK
(retrieved knowledge).

Setting BLEU-1↑ ROUGE-1↑ Reward↑ PPL↓
KnowPAT 22.56 20.28 -1.69 29.93

w/o FT 13.17 12.91 -2.14 31.96
w/o AW 21.87 19.91 -1.71 30.84
w/o SPS 17.57 17.66 -1.75 31.08
w/o KPS 16.12 16.51 -1.79 30.82
w/o RK 17.46 17.56 -1.89 30.85
w/o KG 15.09 16.55 -2.09 33.50

KnowPAT. We can find that the fine-tuning objec-
tive Lft and the alignment objective Lalign are
both contributing to the model performance. With-
out fine-tuning (FT), the model performance can
take a serious dip, as the LLM is not tuned to fit
the golden answer. Besides, both two preference
sets (SPS and KPS) in KnowPAT are contributing
to the performance. The adaptive weights (AW)
can control for the participation of different qual-
ity samples in the loss, which is also effective in
KnowPAT.

Besides, we demonstrate the necessity of the
CPKG with two groups of experiments. w/o RK
denotes the experiment that removes the retrieved
knowledge in the input prompt during the fine-
tuning and preference alignment process. w/o KG
denotes the experiment without KG in the whole
process, which means the KPS and RK in the input
prompt are all removed. For the results of these
two groups of experiments, we can observe that
the CPKG plays a remarkable role in KnowPAT.
In the design of KnowPAT, the CPKG does not
only serve as an external knowledge source dur-
ing training but also participates in the preference
set construction process, which is important to the
model performance. In summary, each detailed
design in our method KnowPAT has its unique role
and contributes to the overall performance.

4.4 Case Study (Q3)

To make an intuition for the effectiveness of our
method, we conduct a case study as shown in Table
4. We can observe that the answers generated by
KnowPAT are more similar to the golden answer
while keeping a user-friendly tone and providing
sufficient information such as the host parameters
in the second case. This suggests that the model
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Table 4: The case study results for ground truth (GT),
our KnowPAT predictions, and RRHF (Yuan et al., 2023)
results. The original Chinese text have been translated
into English for clarity.

Question Please provide the steps for handling IOPS
detection errors.

GT
It is recommended to replace the disk with one
that meets the IOPS specification.

Ours
It is recommended to replace the server with
device that meets the IOPS specifications.

RRHF
After ADAC troubleshooting, restart the business
and check whether it is valid.

Question What is the explanation for the hwFlowRestoreFailed
alarm in CloudEngine 1800V product?

GT
The switch flow table restore failed (host_ip=
[host_ip], host_name=[host_name])

Ours
The switch flow table restore failed. (host_ip=
[host_ip], host_name=[host_name])

RRHF Flow table restore failed

learns appropriate style preferences. Besides, the
retrieved knowledge in the first case is (EIP, used
for, IP Binding), (Select Box, belongs to, Alarm
Management Component), etc., which are all help-
less to answer this question. However, KnowPAT is
not misled by this useless knowledge and generates
the correct answer while RRHF falls into the trap.

4.5 Knowledge Retention Analysis (Q4)

Figure 4: The commonsense ability on five domains.

As a project that needs to get off the ground
in real-world scenarios, the general ability of the
trained model should also be carefully evaluated,
because the user may ask various kinds of ques-
tions if they like the model. We expect the model
to keep their existing knowledge learned during
pre-training and obtain new knowledge about our
domain. Thus, we also conduct a commonsense
evaluation on the trained models with the CMMLU

(Li et al., 2023) dataset, which is a benchmark for
LLM’s Chinese ability evaluation. The evaluation
result is shown in 4. We demonstrate the general
ability on five distinctive commonsense regions
(history, clinical, politics, computer science, and
economics) for KnowPAT, vanilla Atom-7B (none),
and other PA methods. As can be seen from the
radargram, there is a relatively significant decline in
the KnowPAT’s ability in medicine, but in the areas
of politics, history, and economics it still maintains
the ability of the original backbone model and even
grows slightly. PRO, while unexpectedly showing a
significant improvement in the economics problem,
shows a more pronounced performance degrada-
tion than KnowPAT in several other areas. Taken
together, such variations of KnowPAT in general-
ized ability are acceptable for our cloud product
QA scenario.

5 Related Works

Preference alignment (PA) (Wang et al., 2023d;
Cheng et al., 2023) seeks to tailor pre-trained
LLMs to align with human preferences (feedbacks)
(Ouyang et al., 2022). RLHF is a landmark work
for PA, which leverages reinforcement learning
(RL) (Schulman et al., 2017) to align human pref-
erence with LLMs. Due to the sensitivity of RL
parameters and the intricate three-stage processes
of RLHF, many PA approaches have been pro-
posed to address these challenges. For example,
RRHF (Yuan et al., 2023) propose a margin-rank
loss to optimize the LLMs without the need for
extra reward models. PRO (Song et al., 2023) op-
timizes complex preference data with a list-wise
contrastive loss. DPO (Rafailov et al., 2023) pro-
pose a direct preference optimization method by
treating the LLM itself as a reward model. AFT
(Wang et al., 2023b) propose a ranking-feedback
boundary-constrained alignment loss to optimize
the preference data. Besides, our work also fo-
cuses on the large language model application and
knowledge-enhanced QA. We give a brief introduc-
tion of these fields in Appendix A.1 and A.2.

6 Conlusion

In this paper, we introduce a novel framework,
knowledgeable preference alignment (KnowPAT),
for domain-specific QA tasks in cloud product ser-
vices, leveraging LLMs and KGs in a practical ap-
plication setting. Our approach constructs a knowl-
edgeable preference set by retrieving and utilizing
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knowledge triples to generate answers with dif-
ferent quantities. A new alignment objective is
designed to unleash the power of the preference set.
Comprehensive experiments demonstrate that our
method surpasses existing solutions for this real-
world challenge. Looking ahead, we aim to apply
KnowPAT to more real scenarios such as enterprise-
class services and further investigate the potential
of KG-enhanced LLM application in the future.
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Limitations

In this paper, we mainly focuses on a real-world
application problem to align LLMs with knowledge
preference for better domain-specific QA. There
are still some limitations in our work.
Domain-specific scenario. Our approach is de-
signed for specific domain (cloud product QA in
our paper), and its effectiveness on general domains
and open-source datasets is still subject to further
validation. This will be the goal of our future en-
deavours.
Forms of external knowledge. In our paper, we
apply knowledge bases to store the external back-
ground knowledge for the QA tasks. This is a con-
venient and efficient way of storing knowledge for
our scenario, but in more other scenarios, knowl-
edge may be stored in other forms (e.g. unstruc-
tured text). Therefore, a more general framework
to process the external knowledge with any format
(KGs, unstructured text, documents) should be con-
sidered for better usage, which is also our future
plan.

Ethical Considerations

In this paper, we employ the open-source LLM to
validate the effectiveness of our approach. Besides,
the dataset we used is manually labeled with golden
answer from domain experts engaged legally with
suitable work intensity and well above aversage
wages. Their rights are well protected at work. The

content of the dataset is mainly questions about our
cloud product usage, which do not involve private
information and sensitive data of the target users.
We promise that the content and collection steps of
our dataset that are not against scientific ethics.
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Appendix

A Related Works

A.1 KG-enhanced Question Answering

Knowledge graphs (KGs) (Wang et al., 2017; Liang
et al., 2022) is a kind of complex semantic web
that models world knowledge in terms of structural
triples as (head entity, relation, tail entity). KGs
serve as external knowledge source and benefit
many AI tasks like language model pre-training
(Liu et al., 2020), question answering (Yasunaga
et al., 2021; Wang et al., 2023c), and recommenda-
tion systems (Wang et al., 2019; Sun et al., 2020).
Besides, domain-specific KGs are the important
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infrastructure of internet industry to provide exact
factual knowledge, which is widely leveraged in
E-commerce (Zhu et al., 2021; Zhang et al., 2021),
telecom fault analysis (Chen et al., 2023b), health
care (Li et al., 2020; Zhang et al., 2020b) and so
on. It is a popular topic to utilize KGs in real in-
dustry applications. In our scenario, we construct
a domain-specific KG for cloud service products
to benefit our Question Answering (QA) task. QA
stands as a cornerstone in NLP, aiming at equipping
machines with the capability to autonomously re-
spond to human queries (Su et al., 2019; Yoon et al.,
2019). QA tasks can take on various forms. Some
require the selection from multiple choices, as seen
in certain knowledge base QA (KBQA) (Cui et al.,
2017; Tian et al., 2023; Baek et al., 2023) and vi-
sual question answering (VQA) (Antol et al., 2015;
Chen et al., 2021; Wang et al., 2018). Conversely,
tasks like open-domain QA often challenge sys-
tems to directly produce textual responses without
a set answer pool (Gao et al., 2021; Karpukhin
et al., 2020). In the last few years, fine-tuning
pre-trained language models has been a leading
approach for QA tasks. Models like BERT (Devlin
et al., 2019) and T5 (Raffel et al., 2020) have previ-
ously achieved notable performance when adapted
with question-answer pairs.

We hold that QA doesn’t just remain an aca-
demic pursuit; it acts as a bridge, facilitating the
adoption of AI technologies in real-world appli-
cations. Numerous industrial efforts have been
directed toward developing domain-specific QA
systems to meet the needs of their users (Gao et al.,
2021, 2019). Such systems often rely on domain-
specific knowledge bases, like Knowledge Graphs
(KGs), to provide relevant information for the
posed questions. Our current investigation aligns
with this trend, focusing on a domain-specific QA
scenario for cloud service products. Moreover, our
approach diverges from these recent KG-based QA
systems (Jiang et al., 2023b,a; Luo et al., 2023;
Zhang et al., 2023d; Chen et al., 2022) that utilize
prompts for dialog with (large) language models to
facilitate path reasoning and refine the scope of KG
retrieval. We propose an innovative knowledgeable
preference alignment framework that enhances KG-
aware QA with the knowledge preference.

A.2 Large Language Model Application
Prominent large language models (LLMs) like GPT
(OpenAI, 2023; Brown et al., 2020; Ouyang et al.,
2022) and GLM (Zeng et al., 2023; Du et al., 2022)

are sparking a wave of research in the commu-
nity due to their generalization ability in many
NLP tasks such as relation extraction (Zhu et al.,
2023), algebraic reasoning (Wei et al., 2022), and
question answering (Dao et al., 2023; Nguyen and
Nguyen, 2023). Most LLMs leverage the trans-
former (Vaswani et al., 2017) architecture, benefit-
ing from training on vast corpora (Thakkar et al.,
2023) through autoregressive tasks. Deploying and
applying LLMs in real-life scenarios is also a ma-
jor topic in industry today and several efforts have
been made. For example, many works (Zhang
et al., 2023a; Bao et al., 2023b; Zhang et al., 2023c;
Bao et al., 2023a; Zhang et al., 2023b; Chen et al.,
2023a) attempt to build recommendation systems
with LLMs. Some work like Huatuo (Wang et al.,
2023a) and LawyerLlama (Huang et al., 2023) have
developed LLMs for domain-specific usage.

Our work proposes a knowledgeable preference
alignment framework to incorporate the domain-
specific KG into the preference alignment pipeline
for the LLM application. By constructing a knowl-
edgeable preference set, the LLMs are trained to
align the knowledge preference with humans and
select better factual knowledge in the input prompt
to solve the QA task.

B Experiment Details

B.1 Dataset Details
The detailed information of our dataset are shown
in this section. We evaluate the performance of
KnowPAT on two dataset: one private dataset
CPQA constructed by us, and one public dataset
RJUA-QA (Lyu et al., 2023). They are both
domain-specific datasets.

• CPQA is for the cloud product domain labeled
by a team of human experts with 8909 QA
pairs. CPQA employs a cloud product knowl-
edge graph (CPKG) as the domain KB.

• RJUA-QA is a urological domain open-source
dataset extracted from real-world medical
records with 2132 QA pairs. RJUA-QA la-
bels a series of medical context documents for
each QA pair. We collect these contexts in the
form of documents as the domain KB.

B.2 Baseline Details
(i) Zero-shot approach, which directly prompts
the LLM with the input question to get the answer
without training.
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(ii) In-context learning (Dong et al., 2023) ap-
proach, which would sample a few (k-shot) QA
pairs as demonstrations from the training dataset
as examples and get the answers from the LLM
without training.
(iii) Vanilla fine-tuning approach, which fine-
tunes the LLM using the QA pairs w/ or w/o re-
trieved knowledge as Equation 1. The fine-tuning
baseline with retrieved knowledge is also known as
retrieve-augmented generation (RAG) method.
(iv) Preference alignment approaches, which in-
troduce additional preference alignment objectives
during training to align with human preference.
We select five existing state-of-the-art (SOTA) PA
methods including RRHF (Yuan et al., 2023), SLiC-
HF (Zhao et al., 2023), DPO (Rafailov et al., 2023),
PRO (Song et al., 2023), AFT (both AFT-BC and
AFT-DC) (Wang et al., 2023b) as our baselines.

B.3 Evaluation Details
We select three types of metrics to evaluate our
method against baselines. The detailed information
on the metrics is listed in the following:

(i) Traditional text generation metrics. We
select several traditional text generation metrics
such as BLEU (Papineni et al., 2002), ROUGE
(Lin, 2004), CIDEr (Vedantam et al., 2015), and
METEOR (Banerjee and Lavie, 2005) to evaluate
the generated answers. However, these evaluation
metrics are mainly used to measure the text-level
similarity between generated answers and real an-
swers, which means they can not fully reflect the
semantic relevance or depth of understanding of
the text.

(ii) Model-based metrics. To evaluate the se-
mantic similarity of the generated answers and the
golden answers, we employ several model-based
metrics such as BERTScore (Zhang et al., 2020a),
perplexity (PPL), and preference score. These met-
rics evaluate the generated answers using various
language models. BERTScore employs BERT (De-
vlin et al., 2019) to calculate the semantic similarity
between two sentences. PPL measures the ability
of the LLM to understand and predict the entire
sentence. The preference score is S mentioned in
Equation 3 to reflect the model’s preference degree
of the current answer.

(iii) Manual evaluation metrics. We employ
human labelers to evaluate the results from differ-
ent methods. The labeler makes a judgment on
two answers from unknown sources in a single-
blind situation, chooses the better one, and counts

the results. The comparison result in each turn is
recorded as win/tie/lose.

The three main categories of metrics respond to
a certain part of the result’s characteristics at three
levels: similarity at the textual level, similarity at
the semantic level, and human preference.

B.4 Implemention Details
For zero-shot baselines, we select several different
LLMs (ChatGPT (Ouyang et al., 2022), ChatGLM-
6B (Zeng et al., 2023), Baichuan-7B 2, Vicuna-7B
3, and Atom-7B-CP) for the zeros-shot approach.
For in-context learning, we sample 1,2,4,8-shot
QA pairs as demonstrations to support the input
question. For the PA methods, we leverage the
official code of RRHF (Yuan et al., 2023) and im-
plement other PA methods (SLiC-HF (Zhao et al.,
2023), PRO (Song et al., 2023), AFT (Wang et al.,
2023b)) based on the code to reproduce the results
on our preference dataset. The selection of hyper-
parameters is based on the original paper. Atom-
7B-CP is employed as the backbone model for all
the baseline methods such as in-context learning,
vanilla fine-tuning, and PA methods.

2https://github.com/baichuan-inc/Baichuan-7B
3https://github.com/lm-sys/FastChat
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