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Abstract

Recent progress in large language models
(LLMs) has marked a notable milestone in the
field of artificial intelligence. The conventional
evaluation of LLMs primarily relies on existing
tasks and benchmarks, raising concerns about
test set contamination and the genuine compre-
hension abilities of LLMs. To address these
concerns, we propose to evaluate LLMs by
designing new tasks, automatically generating
evaluation datasets for the tasks, and conduct-
ing detailed error analyses to scrutinize LLMs’
adaptability to new tasks, their sensitivity to
prompt variations, and their error tendencies.
We investigate the capacity of LLMs to adapt to
new but simple tasks, especially when they di-
verge from the models’ pre-existing knowledge.
Our methodology emphasizes the creation of
straightforward tasks, facilitating a precise er-
ror analysis to uncover the underlying causes
of LLM failures. This strategic approach also
aims to uncover effective strategies for enhanc-
ing LLM performance based on the detailed
error analysis of system output.1

1 Introduction

LLMs have produced impressive results on many
NLP tasks (Zhang et al., 2019a,b; Devlin et al.,
2019; Tian et al., 2020; Touvron et al., 2023), and
existing studies for evaluating LLMs mainly lever-
age benchmark datasets for existing tasks, such
as summarization (Tian et al., 2024), question an-
swering (Berant et al., 2013; Joshi et al., 2017;
Kwiatkowski et al., 2019; Reddy et al., 2019), rea-
soning (Clark et al., 2018), and math word prob-
lems (Hendrycks et al., 2021; Cobbe et al., 2021;
Shi et al., 2022). These evaluation approaches face
the test set contamination issue (Oren et al., 2023).
It is also difficult to determine to what degree the

* Equal contribution.
† Corresponding author.

1The code and processed datasets are available at https:
//github.com/CLINEEK/ELAGENT.

high performance of LLMs relies on the memo-
rization of prior knowledge acquired during pre-
training or on their ability to successfully follow
the instructions in the prompts.

Another challenge with prior research lies in the
increasing complexity of benchmark tasks. Paired
with the frequent absence of thorough error analy-
sis, the resulting performance metrics often amount
to mere numbers. They lack the substantive in-
sights necessary for understanding why models
struggle with certain tasks, which is essential for
improving LLMs in the future.

In this study, we focus on the following research
questions: (Q1) How effectively can LLMs adapt
to new tasks, particularly when instructions in the
prompts conflict with the model’s prior knowledge?
(Q2) How robust are LLMs to minor variations of
prompts? (Q3) What are the common error types
made by LLMs in our designed tasks? (Q4) Draw-
ing from the insights gained in the preceding ques-
tions, what strategies can be employed to enhance
LLMs’ performance on specific tasks?

To answer these questions, we propose a new
paradigm of Evaluating LLMs with Automati-
cally Generated Evaluation datasets for New Tasks
(ELAGENT) - we create new tasks and new
datasets instead of exploiting current benchmarks
- to reduce the risk of data contamination. More
importantly, our tasks are designed to be novel
but simple to facilitate identifying the source of
LLMs’ deficiencies during error analysis. In addi-
tion, based on detailed error analysis, we improve
system performance via techniques such as chain-
of-thought (CoT) (Wei et al., 2022).

2 Task Design

To answer the research questions, we design six
new tasks, automatically create datasets for them,
design prompts, and conduct detailed error analy-
ses on the LLM output.
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Task 1
We redefine the priorities of elementary arithmetic opera-
tors as follows: ‘+’ > ‘*’ = ‘-’
Based on the new priorities, what is the value of 8 - 4 * 4
+ 9? Your can give the result as a decimal, and please put
the final numeric result in brackets [], such as [1.0]

Task 2
For the expression 8 - 4 * 4 + 9. the precedence of the
operators is redefined. If 8 - 4 * 4 + 9 = 52, what is the
redefined precedence of the operators? Please choose the
correct answer from A, B, C, and D, and put the final
answer choice in brackets, for example, [B].
(A) ‘+’ = ‘*’ = ‘-’ (B) ‘-’ = ‘*’ > ‘-’ (C) ‘+’ > ‘*’ = ‘-’
(D) ‘-’ = ‘*’ = ‘+’.

Table 1: Example prompts for Task 1-2.

2.1 Task 1 & 2: Arithmetic Expression
Evaluation with Changed Precedence

Previous studies (Brown et al., 2020; Anil et al.,
2023) have tested LLMs’ performance in arith-
metic expression evaluation, revealing that chain-
of-thought (CoT) (Wei et al., 2022) enhances model
accuracy. To answer Q1, we change the original
task by redefining the precedence of elementary
arithmetic operations to assess LLMs’ ability with
changed math rules. In Task 1, the LLM is given
the new precedence and an expression and asked
to produce the correct value; In Task 2, the model
is given an expression and its corrected value and
asked to choose the correct precedence of opera-
tors. The prompts for the tasks are shown in Table
1. Subsequently, we analyze the system output to
investigate the effect of variations in prompts on
model performance, addressing Q2-Q4.

We measure the difference between the new and
the standard precedence by the number of ‘moves’
needed to change from the latter to the former. The
precedence is represented in a five-slot array. Fig
1(a) shows the standard, where ‘*’ and ‘/’ are in
slot 2, and ‘+’ and ‘-’ are in slot 4. Here, smaller
numbers indicate higher priorities. To create a new
precedence, some operators are moved from their
original slots to new ones. For instance, in Fig
1(b), ‘+’ is moved from slot 4 to 1; in Fig 1(c),
‘+’ is from slot 4 to 1, and ‘*’ from slot 2 to 3.
We call these three cases no move, one move, and
two moves, respectively. In Section 3.1, we report
system performance with respect to each case.

2.2 Task 3 & 4: Machine Translation with an
Artificial Language

Prior research on machine translation (MT) primar-
ily focus on translation between natural languages
such as English and French (Bawden and Yvon,

Figure 1: Redefine priorities of operators in Task 1-2 by
moving operators from their original slots to new ones.

ID Rule

S1
(SOV)

In Language A, the canonical word order of sen-
tences is Subject-Object-Verb.

S2
(PV)

In Language A, modifiers of verbs come before the
verbs. If a verb is modified by both a preposition
phrase (PP) and an adverb, the correct word order is
PP first, then the adverb, and then the verb.

S3
(PN)

In Language A, modifiers of nouns appear before
nouns. When a noun has multiple modifiers, the
word order is prepositional phrases first, then deter-
miners, then adjectives, and finally the noun.

M1
(Plu)

In Language A, a singular noun and a plural noun
start with prefix ‘S_’ and ‘P_’, respectively, followed
by its lemma.

M2
(PT)

In Language A, verbs in past tense and present tense
are represented by the lemma, followed by suffix ‘_-’
and ‘_+’, respectively.

M3
(AR)

In Language A, each adjective appears twice consec-
utively in a sentence.

Table 2: The set of linguistic properties that a prompt
can select when defining Language A for Task 3.

2023; Tamura et al., 2023; Zhang et al., 2023). To
test LLMs’ abilities in understanding prompts, we
define a non-existing language called Language A,
which is similar to English except for the syntactic
or morphological properties in Table 2. In Task 3,
LLMs are given an English sentence, the transla-
tion of the words, a subset of properties in Table
2 and asked to translate the English sentence into
Language A. Task 4’s prompts include two English
sentences and their translations in Language A as
well as the word-level translation pairs. LLMs are
asked to infer Language A’s syntactic properties
(e.g., whether Language A is SOV or SVO). The
prompts are shown in Table 3.

The tasks assess LLMs’ prior knowledge about
linguistics (e.g., the meaning of SVO) and their
adaptability to new linguistic challenges such as
translating English into an artificial language, tack-
ling research question Q1. We explore LLMs’ ro-
bustness with respect to prompt variations (Q2),
identify common error types (Q3), and improve
LLMs’ performance with CoT (Q4).
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Task 3
The following are the linguistic rules of Language A:
<Rules>
For anything not explicitly specified, Language A follows
the same word order as English.
Here are the word pairs between English and the language
A: <Word Pairs>.
Translate the following simple sentence into Language A:
"<English Sentence>".
Please put the final translated result in brackets [] at the end
of your response.

Task 4
<Sentence X1> in English is translated to <Sentence Y1>
in Language A <Sentence X2> in English is translated to
<Sentence Y2> in Language A
Here are the word pairs between English and Language A:
<Word Pairs>.
What is the canonical word order in Language A: (a) SVO
only, (b) VSO only, (c) SVO or SOV, (d) SOV only

Table 3: Example prompts for Task 3 and Task 4. Full
prompt for Task 3 can be found in Appendix G.

Predicate Types Example of Definition

None-transitive &
None-symmetrical X fears Y

Transitive &
None-symmetrical X runs faster than Y

None-transitive &
Symmetrical X and Y are partially related

Transitive &
Symmetrical X and Y have the same speed

Table 4: Four types of predicates and examples of defi-
nition given in Task 6 prompts.

2.3 Task 5 & 6: Basic Deduction with a Twist

In Task 5, we evaluate LLMs’ reasoning ability. We
start with the bAbI dataset (Weston et al., 2015),
which has been used by several prior studies (Xu
et al., 2023; Bang et al., 2023). We adopt the basic
deduction test set from bAbI; an example is shown
in Table 5. To answer Q1, we modify the dataset in
two ways: we replace nouns in the original state-
ments with random strings to test LLMs’ ability to
handle unfamiliar entities; to answer Q2, we negate
the verb or add some to the subject or the object of
some statements to check whether LLMs interpret
negation and quantifiers properly during reasoning.

In Task 6, we assess LLMs’ capability to discern
semantic nuances of predicates. Some predicates
represent transitive relations (e.g., if X runs faster
than Y and Y runs faster than Z, then X runs faster
than Z); Some represent symmetric relations (e.g.,
"X equals Y" implies "Y equals X"). Thus, pred-
icates can be divided into four types according to
these two properties, as shown in Table 4. We

Task 5
(1) Wolves are afraid of mice. (2) Sheep are afraid of
mice. (3) Winona is a sheep. (4) Mice are afraid of cats.
(5) Cats are afraid of wolves. (6) Jessica is a mouse. (7)
Emily is a cat. (8) Gertrude is a wolf.
Based on the above sentences, what is Emily afraid of?
(a) cat (b) mouse (c) wolf (d) sheep (e) not enough infor-
mation is provided to answer the question

Task 6
’X BBTuL Y’ means ’X runs faster than Y’. Suppose (1)
X2 BBTuL X3, (2) X4 BBTuL X1, and (3) X1 BBTuL
X2. What does X1 BBTuL?
(a) Only X2 (b) Only X3 (c) Only X4 (d) X2 and X3
(e) X2 and X4 (f) X3 and X4 (g) X2, X3, and X4

Table 5: Example prompt for Task 5 and 6. Task 5
uses a revised version of the bAbI dataset (Weston et al.,
2015); Task 6 uses our own newly created datasets.

want to test whether LLMs can distinguish differ-
ent types of predicates during reasoning. To pre-
vent LLMs from utilizing their prior knowledge
about the actual predicates in English, we define
new predicates (written as random strings) in the
prompts and ask LLMs to reason about the pred-
icates. The example prompts of Task 5-6 are in
Table 5.

2.4 Dataset creation

We begin Task 5 with the basic deduction test set
sourced from the bAbI dataset. Subsequent modi-
fications to Task 5 and the creation of datasets for
the other five tasks are all automated, including the
generation of prompts, gold standards, and evalu-
ations. The detailed process of dataset creation is
included in Appendix C.

3 Experiment Setting

We run the experiments on GPT4-Turbo2 (OpenAI,
2023), LLaMA-2-chat-70B (LLaMA2) (Touvron
et al., 2023), LLaMA-3-70B-Instruct (LLaMA3)
(AI@Meta, 2024), and Flan-T5-XXL (T5) (Raffel
et al., 2020). For comparison, we also randomly
select some instances from each task’s dataset and
ask human annotators to answer the questions.

3.1 GPT4 Setting

In the main section of the paper, we have opted to
exclusively report the experiments conducted with
GPT4, given its superior performance compared
to other models (see Appendix A). Similarly, our
error analysis also centers on the output generated
by GPT4.

2We use their API at https://platform.openai.com
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3.1.1 Non-determinism of GPT4
GPT4 model is known to be non-deterministic
(Ouyang et al., 2023) even when its hyperparame-
ter top_p is set to 0, which requires the model to
always select the token with the highest probability
when generating the next token. We have run the
same experiments multiple times and confirmed
that the model we use, GPT-4-preview-1106, is
indeed non-deterministic. On the other hand, we
found that the system performance does not vary
much with multiple runs. We report the mean and
the standard deviation of system performance on
each task in Appendix A.

3.1.2 Sampling Strategies
To explore the performance of GPT4 with varying
top_p values, we run Task 1 experiments with four
top_p values on two-move expressions under the 1-
shot-CoT setting. The results are in Table 6, which
shows that the system performance does not vary
greatly with respect to different top_p values. Thus,
we have opted to utilize top_p=0 for all the main
experiments reported in this paper.

0 0.1 0.2 0.4

1d 90.2±0.5 91.5±1.2 91.5±1.0 92.0±1.5
2d 94.7±1.2 93.2±1.3 94.8±0.5 94.5±1.5
3d 78.0±0.7 78.0±0.4 77.0±1.5 77.8±0.2
4d 48.3±1.0 48.7±1.2 49.0±0.7 47.3±2.0
5d 45.7±0.6 44.8±1.0 44.8±0.5 45.3±0.8

Table 6: Accuracy of GPT4 on two-move expressions
in Task 1 under the 1-shot-CoT setting. The row label
shows the number of digits in the operands; the column
labels are top_p values; temperature is fixed at 0.4. Each
cell reports the mean and standard deviation of accuracy
with three runs.

3.2 Other models
Beside GPT4, we also evaluate these tasks on
LLaMA2, LLaMA3, and T5. Notably, the perfor-
mance of T5 demonstrates significant deficiencies.
Its output is often incomplete or erroneous, so we
choose not to report T5 results. Both LLaMA2
and LLaMA3 exhibit lower performance compared
to GPT4 in almost all tasks. A full performance
comparison of the three models is in Appendix A.

3.3 Human Evaluation
When we design the tasks, we want to keep them
simple and easy, at least to humans. To determine
whether that is the case, we ask human annotators

to answer a subset of questions in our datasets.
These responses are included for comparison with
model performances.

Among the six tasks, Task 3 is the most time-
consuming one and its exact match score is very
strict. Thus, we randomly select 10 instances for
human evaluation. For all other tasks, we randomly
selected 50 instances from each dataset. All the
prompts given to the human annotators are without
CoT instructions. The results are in Appendix A,
alongside the performance of GPT4, LLaMA2 and
LLaMA3.

4 GPT4 Results

In all the tables in this section that report system
performance, each cell reports accuracy on 200 test
instances except for Task 5, which uses 250 test
instances modified from the original bAbI dataset.

For Task 1-3, we experiment with chain of
thought (CoT) with 0-shot and 1-shot. In this
section, we include only the results with 0-shot
without CoT (denoted as 0-s) and 1-shot with CoT
(denoted as 1-s-c). More results including the ones
under the settings of 0-shot-with-CoT and 1-shot-
without-CoT are in Appendix B. The full prompts
and some system output for Task 1-3 are in Ap-
pendix C-E.

4.1 Task 1: Arithmetic Expression
Calculation

For Task 1, we run the experiment under the zero-
move, one-move, and two-move settings (as de-
fined in Sect 2.1); each operand has one to five
digits. The result is in Table 7, which shows that
the system performance decreases as the number of
digits in the operands increases, consistent with pre-
vious findings (Brown et al., 2020; Touvron et al.,
2023). The system performance also deteriorates
significantly when the precedence is different from
the standard one (e.g., the accuracy of two digits
calculation for two moves dropped drastically from
95.0% to 39.5%) under the 0-shot setting.

After a thorough error analysis (see Section 5.3),
we identified common error types and designed
CoT instructions accordingly, which greatly im-
proved model performance (see Row 2/4/6 vs. Row
1/3/5 in Table 7). The full CoT prompt and a system
output example are in Appendix D-E.
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ID Move AP 1D 2D 3D 4D 5D

1 zero 0-s 99.0 95.0 67.5 31.5 20.0
2 move 1-s-c 100 98.5 69.0 28.0 20.5

3 one 0-s 75.0 58.5 40.5 17.5 14.5
4 move 1-s-c 94.5 97.5 73.0 35.5 32.5

5 two 0-s 54.0 39.5 32.5 15.5 13.5
6 moves 1-s-c 92.0 94.0 79.5 48.5 46.0

Table 7: Accuracy of GPT4 on Task 1. Each test in-
stance is an arithmetic expression with three distinct
operators and four operands. ‘AP’ denotes the approach:
‘0-s’ means ‘0-shot’. ‘1-s-c’ means 1-shot-CoT. Col 1D-
5D refers to number of numbers in operands, ranging
from 1 to 5. The same sets of test instances are used
for the cells in the same column, but the precedence of
the operators are different between no move, one move,
and two moves. See Table 27 in Appendix B for the full
results on Task 1.

1D 2D 3D

0-s 25.0/52.0 21.5/61.0 19.0/62.0
1-s-c 41.5/53.0 43.5/53.0 30.5/64.5

Table 8: Performance of GPT4 on Task 2 under two-
move configuration. Each cell has the format x/y, where
x is the system accuracy and y is the percentage of
invalid answers (i.e., GPT4 does not pick any choice).

4.2 Task 2: Choosing Precedence of
Operators

In Task 1, we observed GPT4’s subpar performance
with redefined ‘2-move’ precedence under 0-shot
setting. We report GPT4’s performance with such
precedence on Task 2 in Table 8. The correct
answer is uniformly distributed among the four
choices, so the accuracy of a random guess would
be 25%. Notably, the ‘0-shot’ accuracy is worse
than random guess. This is primarily caused by
GPT4’s low performance on Task 1 and its ten-
dency of not picking any given choice and hence
producing an invalid answer.

Like in Task 1, we experimented with 1-shot-
CoT for Task 2, which leads to better performance.
Nevertheless, GPT4’s performance is still very low
as it produces invalid answers more than half of the
time, indicating that GPT4 cannot handle redefined
precedence well in this task. The CoT prompts and
GPT4 output examples are in Appendix F.

4.3 Task 3: Machine Translation

In Task 3, LLMs are asked to translate some En-
glish sentences into Language A. The results are
in Table 9. S and M are the number of syntac-
tic and morphological rules used when describing
Language A in the prompts.

EM BLEU METEOR F1
Score C UA

(a) S=0 M=0

0-s 100 100 100 1.00 0.0 -
(b) S=3 M=0

0-s 66.0 97.0 94.1 2.08 0.6 -
1-s-c 93.0 99.8 99.8 1.27 0.01 -

(c) S=0 M=3

0-s 30.0 95.5 89.5 2.56 1.59 87.9
1-s-c 49.0 98.6 95.6 1.51 0.64 93.1

(d) S=3 M=3

0-s 1.0 88.8 68.0 5.58 4.45 59.3
1-s-c 33.5 97.3 93.4 2.10 1.11 88.9

Table 9: The performance of GPT4 on Task 3 with two
types of prompts. The full results are in Table 29.

For evaluation, we use four metrics: Exact
Match (EM), BLEU (Papineni et al., 2002), ME-
TEOR (Banerjee and Lavie, 2005), and Morph F1-
score. EM is the strictest, requiring the entire trans-
lation sentence produced by the system to be iden-
tical to the gold standard; BLEU and METEOR
are more lenient (for instance, failing to "apply"
the M3 rule will affect only the adjectives and the
ngrams that contain the adjectives). Morph F1 eval-
uates LLMs’ ability to apply morphological rules
by calculating precision and recall of the correct
spellings of the words which the morphological
rules should apply to. For METEOR, in addition to
Score, we include aligned chunk numbers (C) and
unaligned word count (UA) numbers, for which
smaller numbers are better. For the other metrics,
larger numbers are better.

Table 9 shows that GPT4 produces perfect trans-
lation when Language A has the same word order
as English and no morphological rules is applied.
However, the introduction of linguistic rules led
to a decline in performance, notably more severe
for strict metrics like EM, which plummeted from
100% in the no-rule-applied scenario (S=0 M=0)
to 1% when three syntactic and three morpholog-
ical rules are used to define language A. When
comparing the impact of syntactic (S=3 M=0) vs.
morphological (S=0 M=3) rules, the system’s per-
formance dipped more sharply with morphological
complexities, highlighting handling morphological
rules is more challenging for GPT4. Finally, 1-shot-
CoT provides a big boost like in Task 1-2; the full
CoT prompt is in Appendix G.
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Original Exp. Switch Exp.

SOV PV PN SOV PV PN

1-order 83.0 69.5 97.5 87.0 78.5 97.5
1-order-noise 95.0 66.0 98.0 91.0 64.5 96.0
2-order 2.5 17.5 14.0 7.0 77.5 88.5
2-order-noise 3.0 17.0 14.5 14.0 62.0 75.5

Table 10: GPT4’s accuracy on Task 4. See Section 2.2
and Section 4.4 for the meaning of the row and column
headers.

4.4 Task 4: Inferring Word Order

In Task 4, we assess LLMs’ capability to identify
Language A’s syntactic properties when given two
(English, Language A) sentence pairs. Suppose the
test question is what is the canonical word order in
Language A. There are four scenarios based on the
word order in the two Language-A sentences:
1-order: Both language-A sentences have SOV
order, and other word orders (e.g., noun and its
modifier) are the same as in English.
1-order-noise: Both language-A sentences have
SOV order, but other word orders are different from
English (e.g., in Language A, nouns follow its PP
modifier).
2-order: One language-A sentence is in SOV order,
and the other is in SVO. Other word orders are the
same as in English.
2-order-noise: One language-A sentence is in SOV
order, and the other is in SVO; other word orders
are different from English (e.g., nouns follow its
PP modifier).

For the latter two scenarios, the order of the two
sentence pairs matters. In our original experiments,
the first language-A sentence is in SOV, and the
second SVO. If we switch the order of the sentence
pairs, GPT4’s performance increases. The improve-
ment is more notable if the test question is about
PV or PN rules, as shown in Table 10. The table
shows that GPT4 achieves relatively high accuracy
in the 1-order setting and can handle noise in the
1-order-noise setting. Under the 2-order scenario,
rather than choose the option that says both orders
are possible, GPT4 often chooses the option of one
order only, leading to much worse performance.
We will discuss this in more details in Section 5.

4.5 Task 5: Basic Deduction

In Task 5, we run experiments on the original bAbI
dataset and its modified versions. The accuracy for
task 5 is reported in Table 11.

GPT4 achieved an accuracy of 90.8% on the

Base Ran Neg Quan Ext

Acc 90.80 95.20 98.80 91.20 85.60

Table 11: Accuracy of GPT4 on Task 5. ‘Base’: original
dataset from bAbI; ‘Ran’: replace nouns with random
strings; ‘Neg’: negation some predicates; ‘Quan’: add
‘some’ to the subject of the sentence; ‘ext’: extend the
reasoning chain.

NT & NS NT & S T & NS T & S

Ran Pred 99.00 87.00 83.00 52.00
Ran Ent 100.00 100.00 96.00 56.50

Table 12: Accuracy of GPT4 on Task 6. ‘T’: transitive
predicate; ‘S’: symmetrical predicate. ‘NT’: predicate
that is not transitive. ‘NS’: predicate that is not symmet-
rical. ‘Ran Pred’ is when the predicate in the statements
(e.g., ‘runs faster than’) is replaced by a random string;
‘Ran Ent‘ is when the entities in the statements (e.g.,
"Emily") are replaced by some random strings.

original dataset. When we test GPT4 on 250 new
test examples whose length of inference chains is
three (increased from two in the original dataset),
its performance decreased to 85.6%. Replacing
nouns with random names or adding quantifiers ac-
tually increase the accuracy a little bit, which could
be surprising as those changes should conceptually
make the task harder. Upon detailed analysis of
errors made on the original test, we have found an
explanation, which is discussed in Section 5.

4.6 Task 6: Deduction with Different Types of
Predicates

Table 12 shows GPT4’s performance on Task 6
with four types of predicates. In the first row, we re-
place the spelling of the predicate (e.g., ‘runs faster
than’) with a random string and add the definition
of the random string to the prompt (see Table 5). In
the second row, we replace the spellings of the en-
tities (e.g., ‘Emily’) with random strings. Clearly,
the former posts more challenges to GPT-4 than
the latter.

The predicate type also affects system perfor-
mance. For predicates that are not transitive nor
symmetric (‘NT & NS’), GPT4’s performance is
exceptional, reaching 99% accuracy. In contrast,
GPT4 performs much worse when predicates are
both transitive and symmetric (‘T & S’). The perfor-
mances for ‘NT & S’ and ‘T & NS’ are in between.
This experiment indicates GPT4 is relatively weak
at considering the properties of predicates during
reasoning, especially when the predicates are re-
placed by random strings.
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5 Discussion

We have conducted extensive error analysis across
tasks. In this section, we synthesize the findings
from the error analysis to answer our research ques-
tions.

5.1 Q1: How effectively can LLMs adapt to
new tasks?

Through detailed error analysis of Task 1, 4, and
5, we have discovered that GPT4 is indeed prone
to errors when the prompt contains information in
conflict with prior knowledge. In Task 1, for two-
move expression with two-digit operands, without
CoT, GPT4 made 73 mistakes out of 200 instances
in which it still uses the standard precedence de-
spite it is given a redefined precedence.

Likewise, in Task 4, one or both of the Language-
A sentences in the prompt have different word or-
ders from English. Even when GPT4 correctly reit-
erated the Language-A sentences from the prompt,
it may still claim Language A has the same word
order as in English. Table 18 shows that there are
35 cases of this error type out of 200 for the rule
‘prepositional phrase before noun’ in Language A.

Factual Counterfactual

Correct 11 8
Incorrect 0 9

Table 13: Raw count of correct and incorrect predictions
made by GPT4 on the original dataset for Task 5 when
one evidence statement is factual vs. counterfactual.

In Task 5, we find that the errors on the origi-
nal dataset are correlated with the counterfactuality
condition in the input statements. For instance, the
factual statement ‘Mice are afraid of Cats’ is used
as the evidence in the reasoning chain 11 times, and
GPT4 picks the correct answer every time. In con-
trast, the counterfactual statement ‘Cats are afraid
of mice’ is used 17 times, and GPT4 picks the
correct answers only 8 times. The accuracy count
is shown in Table 13. Fisher’s exact test returns
a p-value of 0.004, implying that counterfactual
statements, namely ’Cats are afraid mice’, often
lead to errors when used as reasoning evidence.

Finally, a comparison between Table 11 and 12
shows the LLMs are good at understanding nega-
tion and quantifier, but much worse at discerning
the semantic nuances introduced by transitivity and
symmetry, which are concepts that might not have

been learned well by the LLMs.

5.2 Q2: How robust are LLMs to minor
variations of prompts?

Based on our experiments, LLMs are robust in
handling some types of noise in the prompt. As
evidenced by Table 10 from Task 4, the presence of
noise in prompts has a minimal impact on LLMs’
abilities.

SOV SVO VSO SVO&SOV

SOV 0 0 0 0
SVO 0 0 0 0
VSO 0 0 0 0

SVO&SOV 155 39 0 6

Table 14: Confusion Matrix for Task 4’s 2-Order Origi-
nal Experiment asking about Language A’s canonical
word order. In the experiment, the language-A sentences
in the two sentence pairs are in SOV and SVO, respec-
tively. In the table, row labels represent the correct
answers, while column labels indicate GPT4’s predic-
tions.

SOV SVO VSO SVO&SOV

SOV 0 0 0 0
SVO 0 0 0 0
VSO 0 0 0 0

SVO&SOV 37 135 0 28

Table 15: Confusion Matrix for Task 4’s 2-order Switch
Experiment asking about Language A’s canonical word
order. Row labels represent the correct answers, while
column labels indicate GPT4’s predictions. All the sys-
tem setup and the test instances for this experiment are
identical to the ones in the Original Experiment in
Table 14 except that the order of the two sentence pairs
in each test instance is switched.

However, they are not robust but rather sensi-
tive to the positioning of the key information in
the prompt. For instance, models’ performance in-
creased dramatically when the two sentence pairs
are switched in Task 4. Table 14 shows the con-
fusion matrix for the 2-order setting when the test
question asks about canonical word order and the
first language-A sentence is in SOV order. Table 15
is the confusion matrix when the order of the two
sentence pairs are switched. The contrast between
the two tables show how sensitive GPT4 is to the
position of certain input.

This observation was validated through a chi-
square analysis detailed in Table 16, which mea-
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SOV SVO SVO&SOV SubTotal

SOV 1st 155 39 6 200
SVO 1st 37 135 28 200

Total 192 174 34 400

Table 16: Chi-square test of SOV Rule Recognition
Before and After Sentence Pair Reordering in Tables
14 and 15. ‘SOV 1st’ indicates scenarios where the
first sentence pair follows the SOV structure, and con-
versely for the switched condition. p-value is lesser than
0.00001.

sured the impact of sentence pair sequencing on the
LLM’s predictive accuracy. The results confirmed
a pronounced correlation, emphasizing the signifi-
cant role that the sequence of presentation plays in
the LLM’s capacity to correctly identify and apply
syntactic rules.

Similarly, the error analysis of Task 5 reveals
that errors are correlated with the position of the
reasoning evidence in the given eight statements.
Among the eight statements in the prompt, if the
first statement is part of the reasoning chain, GPT4
is more likely to make mistakes. To be more spe-
cific, out of 23 errors, 13 use first statement in the
reasoning chain. In the total 250 instances, 93 use
the first statement, and the rest 157 do not. The
error rate with regard to the smallest position of
the evidence sentence is reported in Table 17. Both
analyses show that the different placements of key
information in the prompt will affect model perfor-
mance.

Incorrect Total Error Rate

1st stmt 13 93 14.0%
Rest stmts 10 157 6.4%

Table 17: The count of correct and incorrect instances
out of 250 with regard to the position of the evidence in
the prompt.

5.3 Q3: What are the common error types
made by LLMs in our designed tasks?

We have conducted comprehensive error analysis
on Task 1 and Task 4.

In Task 1, Errors for two-move expressions with
two digits without CoT can be classified into fol-
lowing types3: (1) false precedence (FP): the model

3We omit the error types, such as miscalculation, that have
count of one.

MR1 MR2 FO1 FO2

original 38 92 35 7
switch 17 2 1 3

Table 18: Error Type Distribution for "PP Before Noun"
Rule in Task 4: Analyzing 200 Instances. "MR" de-
notes misremembered translations, with MR1 and MR2
indicating errors in the first and second sentence pairs,
respectively. "FO" signifies incorrect observations, dis-
tinguishing between the first (FO1) and second (FO2)
translated sentences.

succeeds in translating the newly defined prece-
dence into words but still uses the standard in the
subsequent calculations; (2) false interpretation
(FI): the model fail to translate the newly defined
precedence into words or fail to understand the ex-
pression correctly; (3) wrong operands (WO): the
model fails to evaluate an operator with operands
next to it; (4) missing step (MS): the model fails to
execute one step of calculation due to ignoring one
operator; (5) extra step (ES): the model adds one
more step of calculation. The raw count of these
error types are detailed in 24.

In Task 4, our error analysis, as detailed in Ta-
ble 18, identifies two primary error types made by
LLMs. The first type involves misremembering the
translated sentence from the prompts, labeled as
MR errors. Here, LLMs inaccurately replicate the
sentence in Language A, either altering the word
order of the first translated sentence (MR1) or mod-
ifying the second translated sentence (MR2). An
example of this error is when the original prompt
sentence "the dog with a tail" is incorrectly echoed
by the LLM as "with a tail the dog."

The second type of error, referred to as FO er-
rors, occurs when LLMs correctly copy the trans-
lated sentence but then make incorrect observations
about it. These errors are divided into two cate-
gories: faulty observations about the first translated
sentence (FO1) or the second translated sentence
(FO2). For example, despite accurately repeating
"the dog with a tail" from the prompts, the LLM
might erroneously analyze this structure as "prepo-
sitional phrase before noun."

5.4 Q4: What strategies can be employed to
enhance LLM performance on our tasks?

Drawing on the previously mentioned error types
and the acknowledged effectiveness of CoT, a
promising strategy to boost the performance is to

4We count multiple errors in one instance separately.
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Figure 2: Raw count with regard to error types across
No CoT, CoT1, and CoT2 conditions for Task 1. The
explanation of five types is in Section 5.3.

craft prompts tailored to guiding models in avoid-
ing those common errors. CoT prompts is a known
approach to boost model performance, but we pro-
pose that CoT could achieve the most desirable ef-
fect when designed in accordance with the results
of detailed error analysis. After concluding the
error types for Task 1, we design two versions of
CoT prompt. The result is shown in Fig 2. The first
version (CoT1) prompt that instructs the model to
interpret the new precedence and evaluate in steps,
but the positioning of operators in the question ex-
pression is different from that in the demonstration
example. CoT1 greatly reduced errors of FI, MS,
and ES, but not FP. We then design CoT2 to ensure
that this positioning is also aligned. The improved
CoT drastically reduces errors caused by FP, and
eliminates other error types.

6 Related Work

Numerous studies have been conducted to assess
LLMs. Many have extensively examined a diverse
range of LLM abilities on existing benchmarks
(Laskar et al., 2023; Bang et al., 2023; Qin et al.,
2023), but the results may be influenced by the data
contamination problem (Brown et al., 2020).

Several studies have integrated strategies to mit-
igate such risks in dataset development. For in-
stance, Wu et al. (2023) devised counterfactual
tasks that are less likely to have been encoun-
tered by LLMs, while Saparov and He (2022) con-
structed datasets featuring false and fictional on-
tologies, which are potentially unfamiliar to LLMs.

Our work differs from theirs in that we designed
six new tasks and conducted a comprehensive error
analysis to identify common error types made by
LLMs on these tasks.

In terms of the robustness of LLMs, MUCH at-
tention IS focused on evaluating their resistance to
adversarial attacks (Zhao et al., 2021; Hou et al.,
2024). A related study explores the effect of re-
ordering answer choices in multiple-choice ques-
tions on model performance (Pezeshkpour and Hr-
uschka, 2023). We test the robustness of LLMs in
several ways, such as randomizing the spellings of
words (in Task 3-6) and altering the placement of
key information (in Task 4-5).

7 Conclusion

In this study, we propose a new paradigm for eval-
uating LLMs, which includes three crucial compo-
nents: designing simple tasks, automatically gener-
ating the evaluation dataset, improving system per-
formance based on thorough error analysis. Our ex-
periments show LLMs such as GPT4 struggle with
simple tasks when instructions conflict with prior
knowledge. Our research also highlights LLMs’
robustness to some types of noise but vulnerability
to other variations, such as the position of key in-
formation in the prompts. Additionally, we have
shown that extensive error analysis can guide the
design of CoT by aiming at eliminating common
errors and improving model performance.

The six tasks used in this study cover a small por-
tion of the spectrum in assessing LLMs. Therefore,
we intend to develop additional tasks to explore
other facets of LLM capabilities. Also, while our
study focuses on analyzing the output of GPT4, we
aim to extend our analysis to include other mod-
els. By conducting detailed error analyses on the
outputs of these models, we hope to identify com-
mon patterns in errors across different LLMs. This
approach could potentially offer insights into the
underlying architectures of LLMs and contribute
to their further development.
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A Full Comparison of GPT4, LLaMA2,
LLaMA3, and Human Performance

In this appendix, we include the full compari-
son of the performance between GPT4, LLaMA2,
LLaMA3, and human evaluation over the six tasks.
Due to the non-deterministic nature of GPT4, we
also run the experiment three times for each cell
with temperature set to 0.4 and top_p to 0 and re-
port the mean and standard deviation. Again, the
results of T5 are not reported because the system
output is either incomplete or erroneous. The hu-
man evaluations reported in the following tables
are all on prompts without CoT instructions. The
comparison of Task 1 is detailed in Table 19, of
Task2 is detailed in Table 20, of Task 3 is detailed
in Table 21, of Task 4 is detailed in Table 22, of
Task 5 is detailed in Table 24, and of Task 6 is
detailed in Table 25.

B Additional results of GPT4 on the six
tasks

In this appendix, we report any additional experi-
ment results of GPT4 that we are unable to include
in the main section due to space limit. The full
results of GPT4 performance on Task 1 is detailed
in 27. The full results on Task 3 is detailed in Table
29.

C Detailed process of dataset creation

Following the task design ideas and the template
finalized in the prompt adjustment, we then create
dataset for each task. In each subset of data for
Task 1 - Task 4 and Task 6, we create 200 test
instances. Each subset for Task 5 contains 250
instances, which are adopted and modified from
the bAbI dataset. The creation is detailed in the
following sections in this chapter.

C.1 Task 1

For Task 1, a test instance is an (exp-priorities, val)
pair, where exp is an arithmetic expression, prior-
ities specify the priorities of the operators in the
expression, and val is the correct value of the ex-
pression with the specified priorities. During the
evaluation, exp and priorities are inserted into the
prompt template, and the system output is com-
pared with val to calculate the accuracy. We gener-
ate an expression in three steps:

• (1) Pick the number of operators, n, in the
expression; in this study we will focus on the
cases when n is 2 or 3.

• (2) Randomly sample (with replacement) n+1
operands from all the positive integers with m
digits, m ranges from 1 to 5.

• (3) Randomly choose n distinct operators
from the four basic operators (‘+’, ‘-’, ‘*’,
and ‘/’) to connect the n + 1 operands. We
divide the expressions into 2*5=10 subsets
based on the values of n and m.

To generate priorities of the operators in the ex-
pression, when n is 2, the two operators in an ex-
pression (e.g., 2+3*4) follow either the standard
priorities (e.g., ‘*’ > ‘+’) or the opposite one (e.g.,

‘+’ > ‘*’). They correspond to the no-move and one-
move scenarios, respectively. When n is 3, there
are six possible orders for evaluating the expres-
sion. For the simplicity of presenting evaluation
results, we pick three of the six possible orders:
one with the standard priorities (i.e, no move), one
with one move, and the last one with two moves.

Once we have redefined the priorities, we eval-
uate the expression based on the priorities to get
val. We keep an expression in our dataset only if
its values differ when the priorities change.5 For

5E.g., we will throw away 2+3*1 because its answer is
always 5 regardless of which operator has higher priority.
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No CoT CoT Human

GPT4 LLaMA2 LLaMA3 GPT4 LLaMA2 LLaMA3

0-move 96.7 ± 0.8 18.0 9.5 98.8 ± 0.3 46.0 20.5 100
1-move 57.3 ± 1.6 1.5 2.0 96.7 ± 0.8 31.0 11.5 98.0
2-move 47.7 ± 4.3 2.0 1.5 94.5 ± 1.5 31.5 11.5 100

Table 19: Accuracy comparison between GPT, LLaMA2, LLaMA3, and human evaluation on Task 1 for two-digit
expressions. Each cell reports the accuracy of n instances. n is 50 for human evaluation and 200 for models.

No CoT CoT Human

GPT4 LLaMA2 LLaMA3 GPT4 LLaMA2 LLaMA3

one digit 25.0 ± 0.9 12.5 12.5 39.2 ± 2.0 4.5 17 98.0
two digits 23.2 ± 1.5 15.0 9.5 43.5 ± 2.2 4.0 19 100

Table 20: Accuracy comparison between GPT4, LLaMA2, LLaMA3, and human evaluation on Task 2 under
two-move configuration. Each cell reports the accuracy of n instances. n is 50 for human evaluation and 200 for
models. The CoT does not work well with LLaMA2 because it become confused about the input prompt when
the input is very long. For example, LLaMA2 sometimes outputs ‘I agree that C is the correct answer’ as if it is
responding to the answer shown in the demonstration example, while it should be responding to the actual question.

each (n,m) pairs, our dataset consists of 200 ex-
pressions with the redefined priorities and corre-
sponding values.

C.2 Task 2

The dataset for Task 2 is derived from the one with
Task 1 with two changes. First, for each test in-
stance (exp-priorities, val) in Task 1, we randomly
pick three wrong choices of the precedence of the
operators in exp such that those choices lead to ex-
pression values different from val. Second, we put
the correct and wrong choices in a list, randomly
shuffle it, and then assign the choices as Choice A,
B, C, and D in a multiple-choice question.

C.3 Task 3

The dataset for Task 3 begins with a manually cre-
ated seed sentence that contain all six rules in Table
2: ‘The yellow dog with a small tail chases the
black cat quickly across the park’. We create a test
set for Task 3 in the following steps.

• (1) We add the seed sentence to a prompt and
ask GPT4 to generate 200 sentences with sim-
ilar structures.

• (2) We use SpaCy6 to parse these sentences
to obtain the dependency structure. For sen-
tences that are ambiguous or whose parse trees
are incorrect (e.g., with wrong PP attachment),

6https://spacy.io/

we make minor modifications to the sentences
to remove the ambiguities and ensure that the
resulting parse trees by SpaCy are correct.7

• (3) For each (m,n) pairs (where m and n
ranges from 0 to 3), we create a dataset with
the same 200 test instances; each instance con-
sists of an English sentence, m randomly se-
lected syntactic rules and n randomly selected
morphological rules from Table 2, and auto-
matically generated gold standard translation
by applying syntactic rules to the dependency
structure and morphological rules to related
words (e.g., M1 to a singular or plural noun).

C.4 Task 4

Task 4’s dataset is built upon Task 3. In task 4, Each
test question asks LLMs to infer one word order
given two sentence pairs, the English sentence and
its Language-A translation. The sentence pairs
are selected from different datasets in Task 3 to
create the following four scenarios. Suppose the
test question is ‘what is the canonical word order
in Language-A’. The four scenarios based on the
word order in the two Language-A sentences are:

• 1-order: Both language-A sentences have
7For instance, suppose the sentence is ‘NP1 V NP2 PP

Adv’, where PP should attach to the verb, but the parser mis-
takenly attach it to NP2. We just switch the positions of PP
and Adv to get the new order ‘NP1 V NP2 Adv PP’, which
SpaCy can parse correctly.

8152

https://spacy.io/


No CoT CoT Human

GPT4 LLaMA2 LLaMA3 GPT4 LLaMA2 LLaMA3

0S0M 100 ± 0.0 12.0 4.0 - - - -
3S0M 65.9 ± 0.9 0.0 0.0 95.6 ± 1.9 0.0 0.0 100
0S3M 31.1 ± 4.2 0.0 0.0 48.1 ± 1.8 0.0 0.0 100
3S3M 1.0 ± 0.4 0.0 0.0 33.4 ± 0.9 0.0 0.0 90.0

Table 21: Accuracy comparison between GPT, LLaMA2, LLaMA3, and human evaluation on Task 3 for different
number of sentence rules and morphological rules. Each cell reports the exact match of n instances. n is 10 for
human evaluation and 200 for models. Note that for human annotators regard prompts with or without CoT the
same questions.

Original Switch

SOV PV PN SOV PV PN

GPT4 6.9 ± 2.8 16.5 ± 0.9 16.1 ± 1.2 14.8 ± 1.4 62.5 ± 2.7 76.0 ± 1.3
LLaMA 2 81.1 21.9 30.4 79.2 21.4 30.8
LLaMA 3 40.4 67.8 72.3 39.6 74.4 64.9
Human 100 100 98 98 100 100

Table 22: Comparison of accuracy for GPT4, LLaMA 2, LLaMA 3, and human evaluations on Task 4 involving
2-order-noise; column title adopted from Table 10.

SOV order, and other word orders (e.g., noun
and its modifier) are the same as in English.

• 1-order-noise: Both language-A sentences
have SOV order, but other word orders are
different from English (e.g., in Language-A,
nouns follow its PP modifier).

• 2-order: One sentence is in SOV order, and
the other is in SVO. Other word orders are the
same as in English.

• 2-order-noise: One sentence is in SOV order,
and the other is in SVO; other word orders are
different from English (e.g., nouns follow its
PP modifier). All the answer choices in Task
4 is fixed. For example, for prompt that asks
about canonical order of Lanaguge A, the four
answers are fixed as ‘(a) SVO only, (b) VSO
only, (c) SVO or SOV, (d) SOV only’.

C.5 Task 5
For Task 5, we adopt the basic deduction test set
from bAbI dataset and change the question format
from question answering to multiple choice ques-
tion to make the gold answer unique.

In the original prompt, there are eight statements
of two sentence structures: (1) <Person Name> is
a <Animal Name>, (2) <Animal Name 1> is afraid
of <Animal Name 1>. The question is ‘What is

<Person Name> afraid of?’ The gold answer is
a type of animal. In order to arrive at the gold
answer, two steps of reasoning chain are involved.
For instance, for the example displayed in Table 5,
to answer ‘what is Emily afraid of?’ The two steps -
‘Emily is a cat’ and ‘Cats are afraid of wolves’ - will
obtain the gold answer of ‘wolf’. However, from
the small-scaled test, GPT4 produces as the final
answer ‘Gertrude’, which should also be acceptable
as ‘Gertrude is a wolf’ in this example. To make
the gold answer unique, we modified the original
prompt into multiple question format.

Additional datasets are created by modifying
each test instance in the original dataset detailed
in Section 2.3. For random string dataset, we re-
place all the person names and animal names in
the prompts with random strings of length four to
six, and leave everything unchanged. For negation
and quantifier dataset, we add ‘not’ or ‘some’ to
the evidence sentences used in the reasoning chain
respectively to alter the reasoning chain. For ex-
tended dataset, we change the answer choices from
animal names to person names so that the deduc-
tion requires one more step of ‘<Person Name> is
a <Animal Name>’ to arrive at the answer.

C.6 Task 6
For Task 6, we firstly create a template ‘Suppose
(1) X1 p X2, (2) X2 p X3, and (3) X4 p X1, what
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1 order 1-ord-noise 2-order 2-ord-noise

Orig. Exp. Sw. Exp. Orig. Exp. Sw. Exp. Orig. Exp. Sw. Exp. Orig. Exp. Sw. Exp.

GPT4
SOV 83.0 87.0 95.0 91.0 2.5 7.0 3.0 14.0
PV 69.5 78.5 66.0 64.5 17.5 77.5 17.0 62.0
PN 97.5 97.5 98.0 96.0 14.0 88.5 14.5 75.5

LLaMA 2
SOV 9.9 8.4 0.0 0.5 78.0 81.2 81.1 79.2
PV 5.0 6.5 6.3 5.5 22.3 20.9 21.9 21.4
PN 3.7 4.8 7.2 10.3 26.3 20.5 30.4 30.8

LLaMA 3
SOV 22.2 21.3 9.8 14.4 27.3 29.8 40.4 39.6
PV 9.0 15.5 15.9 13.6 61.8 67.4 67.8 74.4
PN 13.7 14.4 12.0 15.3 59.0 64.2 72.3 64.9

Table 23: Comparative analysis of GPT4, LLaMA 2, and LLaMA 3 performance on Task 4 for original and switch
experiments (transposed table)

Base Ran Neg Quan Ext

GPT4 91.1 ± 0.2 95.0 ± 0.8 97.2 ± 0 93.7 ± 1.7 82.9 ± 1.6
LLaMA2 64.4 45.6 25.2 8.4 59.2
LLaMA3 67.2 23.2 26.4 10 55.6
Human 100 98.0 100 100 100

Table 24: Accuracy comparison between GPT4, LLaMA2, LLaMA3 and human evaluation on Task 5; column title
adopted from Table 11. Each cell reports the accuracy of n instances. n is 50 for human evaluation and 250 for
models.

does X1 p’. A test instance is created by replacing
the predicate ‘p’ in the template with a random
string and assigning the random string one predi-
cate type from Table 4. Each predicate type has 200
instances as a separate dataset. For the instances
in all four datasets, the answer choices are all the
same, namely ‘(a) Only X2, (b) Only X3, (c) Only
X4, (d) X2 and X3, (e) X2 and X4, (f) X3 and
X4, (g) X2, X3, and X4’. We intentionally keep
the answer choices exactly the same across four
datasets to eliminate the effect of ordering of an-
swer choices on model performance. At the same
time, depending on the predicate type, the gold
answer will be different.

Next, we create a comparison set for each predi-
cate type. In the comparison set, we use actual En-
glish words rather than random strings as predicate.
Instead, the entities in the sentences are replaced
by random strings to create 200 instances.

D Full prompts for Task 1

Table 26 shows the full prompts that we used for
Task 1. The <Example> field in the template is
empty for 0-shot; it is replaced by "<Example> (1-
shot)" for 1-shot, "<Example> (1-shot-CoT)" for
1-shot-CoT, etc.

E Full GPT4 Output for Task 1 Case
Study

In this appendix, we show the full answers pro-
duced by GPT4 on the example used in Task 1 case
study, where the precedence is "+" = "*" > "-", and
the test instance is 2 - 7 + 2 * 5.

E.1 0-shot output

Based on the new priorities where
’+’ has the same priority as ’*’, and both
are higher than ’-’, we would perform
the operations in the following order:

1. Perform the multiplication and
addition first (since they have the same
priority, we’ll perform them from left to
right): 2 - 7 + (2 * 5)

2. Calculate the multiplication: 2 - 7
+ 10

3. Perform the addition: 2 + 10 = 12

4. Finally, perform the subtraction:
12 - 7 = 5

So, the value of the expression 2
- 7 + 2 * 5 with the given priorities is [5].
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NT & NS NT & S T & NS T & S

GPT4 98.2 ± 1.5 87.8 ± 1.1 85.8 ± 2.8 48.3 ± 2.1
LLaMA2 2.0 11.0 14.0 31.0
LLaMA3 0 1.0 4.0 47.0
Human 100 100 100 100

Table 25: Accuracy comparison between GPT4, LLaMA2, LLaMA3, and human evaluation on Task 6; column title
adopted from Table 12. Each cell reports the accuracy of n instances. n is 50 for human evaluation and 200 for
models.

Template
We redefine the priorities of elementary arithmetic operators as follows: <Priorities>
<Example>
Based on the new priorities, what is the value of <Test Instance>? You can give the result as a decimal, and please put the
final numeric result in brackets [], for example, [1].

<Priorities>
’+’ = ’/’ > ’*’

<Example> (1-shot)
Example Question: What is the value of 62 * 19 + 57 / 74?
Answer: [63.67567567567567].

<Example> (1-shot-CoT)
Example Question: What is the value of 62 * 19 + 57 / 74?
Answer: Based on the new rules, ’+’ and ’/’ have the same priority, which is higher than that of ’*’
Step1: Since ’+’ and ’/’ have the same priority over *, we evaluate ’+’ and ’/’ from left to right. In this case, ’+’ comes
before ’/’, so we calculate ’+’ first: 19 + 57 = 76, so the expression becomes 62 * 76 / 74.
Step2: ’/’ has priority over ’*’, now we calculate ’/’: 76 / 74 = 1.027027027027027, so the expression becomes 62 *
1.027027027027027.
Step3: Finally, 62 * 1.027027027027027 = 63.67567567567567, so the final answer is [63.67567567567567].

<Test Instance>
98 * 43 + 29 / 25

Table 26: The prompts used for Task 1. The red, blue, and orange colors highlight the precedence assessments, the
change of expressions, and the example instance, respectively, in the 1-shot-CoT setting.

E.2 0-shot-CoT output

Based on the new priorities you’ve
given, the ’+’ operator (addition) has the
same priority as the ’*’ operator (multi-
plication), and both are higher than the

’-’ operator (subtraction). So we need
to perform the addition and multiplica-
tion before the subtraction. Here’s the
expression with the new priorities:

2 - 7 + 2 * 5
First, we perform the addition and multi-
plication since they have the same prior-
ity. We can do them from left to right:

7 + 2 = 9
2 * 5 = 10

Now we replace the original numbers
with the results of these operations:

2 - 9 * 10
Next, we perform the multiplication,
which has the same priority as addition
but comes next in the sequence:

9 * 10 = 90
Now we replace the multiplication with
its result:

2 - 90
Finally, we perform the subtraction:

2 - 90 = -88
So the value of the expression 2 - 7 + 2 *
5 with the new priorities is [-88].

E.3 1-shot output

Based on the new priorities where
’+’ has the same priority as ’*’ and both
are higher than ’-’, we should perform
the addition and multiplication before
the subtraction. So for the expression 2
- 7 + 2 * 5, we first do the addition and
multiplication:

7 + 2 * 5 = 7 + (2 * 5) = 7 + 10 =
17
Now we perform the subtraction:
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ID Move AP 1D 2D 3D 4D 5D

(a) number of operators = 2

1 0-s 100 97.0 80.0 50.5 43.5
2 no 0-s-c 99.5 98.5 71.0 51.0 41.5
3 move 1-s 100 99.0 82.5 52.5 46.5
4 1-s-c 100 100 82.0 53.5 47.5

5 0-s 94.5 91.5 80.0 57.0 45.5
6 one 0-s-c 97.0 96.0 82.0 53.0 44.5
7 move 1-s 89.5 93.5 74.0 55.0 43.5
8 1-s-c 100 100 88.5 65.5 57.0

(b) number of operators = 3

9 0-s 99.0 95.0 67.5 31.5 20.0
10 no 0-s-c 99.5 95.5 66.5 26.5 19.0
11 move 1-s 99.5 97.5 69.0 27.5 18.5
12 1-s-c 100 98.5 69.0 28.0 20.5

13 0-s 75.0 58.5 40.5 17.5 14.5
14 one 0-s-c 74.5 57.0 32.5 11.5 11.0
15 move 1-s 67.0 58.5 36.0 17.5 12.0
16 1-s-c 94.5 97.5 73.0 35.5 32.5

17 0-s 54.0 39.5 32.5 15.5 13.5
18 two 0-s-c 46.0 42.0 24.0 10.0 7.0
19 moves 1-s 41.0 36.0 25.5 13.5 11.5
20 1-s-c 92.0 94.0 79.5 48.5 46.0

Table 27: The accuracy of GPT4-Turbo on Task 1. “AP”
denotes the approach, where “s” and “c” denote “shot”
and “CoT”, respectively (e.g., “1-s-c” means 1-shot-
CoT). Col 1D-5D refers to the numbers of digits in
operands, ranging from 1 to 5. Each cell reports the
accuracy on 200 test instances. When the number of op-
erators is fixed, the arithmetic expressions used in each
column are the same, but the priorities of the operators
in the expressions are different between no move, one
move, and two moves.

2 - 17 = -15
Therefore, the value of the expression 2 -
7 + 2 * 5 is [-15].

E.4 1-shot-CoT output
Based on the new priorities where ’+’

and ’*’ have the same priority and are
higher than ’-’, we evaluate ’+’ and ’*’
before ’-’. We also evaluate from left to
right since ’+’ and ’*’ have the same
priority.

Step 1: Evaluate ’+’ before ’*’. So
we calculate 7 + 2 first: 7 + 2 = 9, so
the expression becomes 2 - 9 * 5.

Step 2: Now we evaluate ’*’, which
has the same priority as ’+’, but since
there’s no ’+’ left, we just perform the
multiplication: 9 * 5 = 45, so the expres-
sion becomes 2 - 45.

Step 3: Finally, we perform the sub-
traction: 2 - 45 = -43.

ID S M EM BLEU METEOR F1
Score C UA

1 0 0 100 100 100 1.00 0.0 -
2 0 1 69.0 98.5 96.3 1.51 0.54 85.9
3 0 2 46.0 97.8 94.0 1.94 0.87 88.3
4 0 3 30.0 95.5 89.5 2.56 1.59 87.9

5 1 0 67.5 97.6 95.7 2.10 0.29 -
6 1 1 25.5 94.8 88.0 2.57 1.46 60.0
7 1 2 10.0 90.6 76.8 3.75 3.11 87.8
8 1 3 4.5 89.1 71.6 4.12 4.22 61.5

9 2 0 61.5 95.4 91.3 2.21 0.93 -
10 2 1 18.0 93.7 84.9 3.59 1.73 59.7
11 2 2 8.0 91.3 77.4 4.27 3.03 60.6
12 2 3 0.5 89.0 69.5 5.00 4.46 58.3

13 3 0 66.0 97.0 94.1 2.08 0.6 -
14 3 1 11.0 93.8 85.4 3.51 1.69 61.5
15 3 2 4.5 91.6 77.3 4.65 2.91 64.2
16 3 3 0.1 88.8 68.0 5.58 4.45 59.3

Table 28: The performance of GPT4 on Task 3 with
0-shot prompts. “S” and “M” represent the number
of syntactic and morphological rules included in the
prompts. "EM" is exact match, "F1" is Morph F1, and
for METEOR, we report the METEOR score, the num-
ber of aligned chunks C and the number of unaligned
target words UA.

So the final answer is [-43].
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EM BLEU METEOR F1
Score C UA

(a) S=0 M=0

0-s 100 100 100 1.00 0.0 -
(b) S=3 M=0

0-s 66.0 97.0 94.1 2.08 0.6 -
0-s-c 60.0 99.9 98.3 2.81 0 -
1-s 77.0 99.9 99.3 1.90 0.01 -
1-s-c 93.0 99.8 99.8 1.27 0.01 -

(c) S=0 M=3

0-s 30.0 95.5 89.5 2.56 1.59 87.9
0-s-c 27.0 96.3 90.1 2.33 1.62 86.8
1-s 54.0 98.4 96.9 1.46 0.57 94.3
1-s-c 49.0 98.6 95.6 1.51 0.64 93.1

(d) S=3 M=3

0-s 1.0 88.8 68.0 5.58 4.45 59.3
0-s-c 1.5 90.8 75.6 5.44 3.86 62.4
1-s 19.5 98.0 92.3 3.45 1.06 90.3
1-s-c 33.5 97.3 93.4 2.10 1.11 88.9

Table 29: The performance of GPT4 on Task 3 with
four types of prompts

F Example prompts for Task 2

In this appendix, we show the four types of prompts
used in Task 2: For 0-shot, we provides the full
prompt. For 1-shot-CoT, we only include the [Ex-
ample Question] and [Answer]. The [Example
Question] is just a multiple-choice question, and
the [Answer] part is where the three types of 1-shot-
CoT prompts differ.

F.1 0-shot prompt

For the expression 8 - 4 * 4 + 9, the
precedence of the operators is redefined.
If 8 - 4 * 4 + 9 = 52, what is the
redefined precedence of the operators?
Please choose the correct answer from
A, B, C, and D, and put the final answer
choice in brackets, for example, [B].
A. ’+’ = ’-’ = ’*’
B. ’-’ = ’*’ > ’+’
C. ’+’ > ’*’ = ’-’
D. ’-’ = ’+’ = ’*’

F.2 1-shot-CoT-Simple

[Example Question]:
For the expression 3 * 9 + 4 - 9, the
precedence of the operators is redefined.

If 3 * 9 + 4 - 9 = 22, what is the
redefined precedence of the operators?
Please choose the correct answer from
A, B, C, and D, and put the final answer
choice in brackets, for example, [B].
A. ’*’ = ’+’ = ’-’
B. ’+’ = ’-’ > ’*’
C. ’-’ > ’+’ > ’*’
D. ’+’ > ’*’ > ’-’

[Answer]:
Using the precedence rule in the correct
answer choice, the expression 3 * 9 + 4
- 9 should evaluate to 22. We test four
options one by one.
Step 1: using the precedence rule of
choice A: ’*’ = ’+’ = ’-’, the expression
3 * 9 + 4 - 9 evaluates to 22
Step 2: using the precedence rule of
choice B: ’+’ = ’-’ > ’*’, the expression
3 * 9 + 4 - 9 evaluates to 12
Step 3: using the precedence rule of
choice C: ’-’ > ’+’ > ’*’, the expression
3 * 9 + 4 - 9 evaluates to 12
Step 4: using the precedence rule of
choice D: ’+’ > ’*’ > ’-’, the expression
3 * 9 + 4 - 9 evaluates to 30
Given above, only with choice A, the
expression evaluates to 22, so the correct
answer should be [A]

For the expression 8 - 4 * 4 + 9,
the precedence of the operators is
redefined. If 8 - 4 * 4 + 9 = 52, what
is the redefined precedence of the
operators? Please choose the correct
answer from A, B, C, and D, and put
the final answer choice in brackets, for
example, [B].
A. ’+’ = ’-’ = ’*’
B. ’-’ = ’*’ > ’+’
C. ’+’ > ’*’ = ’-’
D. ’-’ = ’+’ = ’*’

F.3 1-shot-CoT-partial
[Example Question]:

For the expression 3 * 9 + 4 - 9, the
precedence of the operators is redefined.
If 3 * 9 + 4 - 9 = 22, what is the
redefined precedence of the operators?
Please choose the correct answer from
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A, B, C, and D, and put the final answer
choice in brackets, for example, [B].
A. ’*’ = ’+’ = ’-’
B. ’+’ = ’-’ > ’*’
C. ’-’ > ’+’ > ’*’
D. ’+’ > ’*’ > ’-’

[Answer]:
Using the precedence rule in the correct
answer choice, the expression 3 * 9 + 4
- 9 should evaluate to 22. We test four
options one by one.
For A: The value of 3 * 9 + 4 - 9 can
be calculated as follows: Based on
the precedence rules of this answer
choice ’*’ = ’+’ = ’-’, *, +, and
- have the same priority,so we can
evaluate the expression from left to
right Step1: Firstly, we calculate ’*’:
3 * 9 = 27, so the expression becomes
27 + 4 - 9. Step2: Then we calculate
’+’: 27 + 4 = 31, so the expression
becomes 31 - 9. Step3: Finally, 31 - 9 =
22, so this answer choice evaluates to 22.

Similarly, we evaluate the expres-
sions in B, C, and D in the same way as
we evaluate the expression in A.
For B: using the precedence rule of
choice B: ’+’ = ’-’ > ’*’, the expression
3 * 9 + 4 - 9 evaluates to 12
For C: using the precedence rule of
choice C: ’-’ > ’+’ > ’*’, the expression
3 * 9 + 4 - 9 evaluates to 12
For D: using the precedence rule of
choice D: ’+’ > ’*’ > ’-’, the expression
3 * 9 + 4 - 9 evaluates to 30
Given above, only with choice A, the
expression evaluates to 22, so the correct
answer should be [A]

For the expression 8 - 4 * 4 + 9, the
precedence of the operators is redefined.
If 8 - 4 * 4 + 9 = 52, what is the
redefined precedence of the operators?
Please choose the correct answer from
A, B, C, and D, and put the final answer
choice in brackets, for example, [B].
A. ’+’ = ’-’ = ’*’
B. ’-’ = ’*’ > ’+’
C. ’+’ > ’*’ = ’-’
D. ’-’ = ’+’ = ’*’

F.4 1-shot-CoT-full
[Example Question]:

For the expression 3 * 9 + 4 - 9, the
precedence of the operators is redefined.
If 3 * 9 + 4 - 9 = 22, what is the
redefined precedence of the operators?
Please choose the correct answer from
A, B, C, and D, and put the final answer
choice in brackets, for example, [B].
A. ’*’ = ’+’ = ’-’
B. ’+’ = ’-’ > ’*’
C. ’-’ > ’+’ > ’*’
D. ’+’ > ’*’ > ’-’

[Answer]:
Using the precedence rule in the correct
answer choice, the expression 3 * 9 + 4
- 9 should evaluate to 22. We test four
options one by one.
For A: The value of 3 * 9 + 4 - 9 can
be calculated as follows: Based on
the precedence rules of this answer
choice ’*’ = ’+’ = ’-’, *, +, and
- have the same priority,so we can
evaluate the expression from left to
right Step1: Firstly, we calculate ’*’:
3 * 9 = 27, so the expression becomes
27 + 4 - 9. Step2: Then we calculate
’+’: 27 + 4 = 31, so the expression
becomes 31 - 9. Step3: Finally, 31 - 9 =
22, so this answer choice evaluates to 22.

For B: The value of 3 * 9 + 4 - 9
can be calculated as follows: Based
on the precedence rules of this answer
choice ’+’ = ’-’ > ’*’, ’+’ and ’-’ have
the same priority, which is higher than
that of ’*’ Step1: Since ’+’ and ’-’ have
the same priority over *, we evaluate ’+’
and ’-’ from left to right. In this case,

’+’ comes before ’-’, so we calculate
’+’ first: 9 + 4 = 13, so the expression
becomes 3 * 13 - 9. Step2: ’-’ has
priority over ’*’. Now we calculate

’-’: 13 - 9 = 4, so the expression
becomes 3 * 4. Step3: Finally, 3 * 4 =
12, so this answer choice evaluates to 12.

For C: The value of 3 * 9 + 4 - 9
can be calculated as follows: Based
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on the precedence rules of this answer
choice ’-’ > ’+’ > ’*’, ’[0]’ has the
highest priority, followed by ’+’. ’*’
has the lowest priority. Step1: Since ’-’
has the highest priority, we calculate

’-’ first: 4 - 9 = -5, so the expression
becomes 3 * 9 + -5. Step2: Since ’+’
has priority over ’*’, we then calculate

’+’: 9 + -5 = 4, so the expression
becomes 3 * 4. Step3: Finally, 3 * 4 =
12, so this answer choice evaluates to 12.

For D: The value of 3 * 9 + 4 - 9
can be calculated as follows: Based
on the precedence rules of this answer
choice ’+’ > ’*’ > ’-’, ’[0]’ has the
highest priority, followed by ’*’. ’-’ has
the lowest priority. Step1: Since ’+’
has the highest priority, we calculate

’+’ first: 9 + 4 = 13, so the expression
becomes 3 * 13 - 9. Step2: Since ’*’
has priority over ’-’, we then calculate

’*’: 3 * 13 = 39, so the expression
becomes 39 - 9. Step3: Finally, 39 - 9 =
30, so this answer choice evaluates to 30.

Given above, only with choice A,
the expression evaluates to 22, so the
correct answer should be [A]

For the expression 8 - 4 * 4 + 9, the
precedence of the operators is redefined.
If 8 - 4 * 4 + 9 = 52, what is the
redefined precedence of the operators?
Please choose the correct answer from
A, B, C, and D, and put the final answer
choice in brackets, for example, [B].
A. ’+’ = ’-’ = ’*’
B. ’-’ = ’*’ > ’+’
C. ’+’ > ’*’ = ’-’
D. ’-’ = ’+’ = ’*’

G Example prompts for Task 3

In this appendix, we present the complete set of
four distinct prompt types utilized in Task 3.

G.1 0-shot

The following are the linguistic rules
of Language A.

In Language A, the canonical word
order of sentences follow a Subject-
Object-Verb structure.

Example: ’The cat eats the mouse’
should be ordered as ’The cat the mouse
eats’.

Prepositional phrases that modify a
verb remain positioned after the verb.

Similarly,adverbs that modify a verb
still maintain their position after the
verb.

Prepositional phrases that modify a
noun remain positioned after the noun.

In Language A, the morphological
rule for nouns involves indicating a sin-
gular noun by adding ’S_’ as a prefix to
its lemma, and indicating a plural noun
by adding ’P_’ as a prefix to its lemma.

Example: ’These cats in the park’ is
expressed as ’These P_cat in the park’ to
represent plural and ’A cat in the park’
is expressed as ’A S_cat in the park’ to
represent singular.

For anything not explicitly specified,
Language A follows the same word order
as English.

Here are the translated pairs of En-
glish lemmas into lemmas in language
A: (the, tgt_the), (across, tgt_across),
(field, tgt_field), (a, tgt_a), (farmer,
tgt_farmer), (carefully, tgt_carefully),
(bright, tgt_bright), (., .), (smile,
tgt_smile), (basket, tgt_basket), (carry,
tgt_carry), (heavy, tgt_heavy), (with,
tgt_with) .

Translate the following simple sen-
tence into Language A: T̈he farmer with
a bright smile carries the heavy basket
carefully across the field .̈.

Please put the final translated re-
sult in brackets [] at the end of your
response, for example, [tgt_the tgt_cat
tgt_the tgt_dog tgt_chases].
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G.2 0-shot-CoT

The following are the linguistic rules
of Language A.

In Language A, the canonical word
order of sentences follow a Subject-
Object-Verb structure.

Example: ’The cat eats the mouse’
should be ordered as ’The cat the mouse
eats’.

Prepositional phrases that modify a
verb remain positioned after the verb.

Similarly,adverbs that modify a verb
still maintain their position after the
verb.

Prepositional phrases that modify a
noun remain positioned after the noun.

In Language A, the morphological
rule for nouns involves indicating a sin-
gular noun by adding ’S_’ as a prefix to
its lemma, and indicating a plural noun
by adding ’P_’ as a prefix to its lemma.

Example: ’These cats in the park’ is
expressed as ’These P_cat in the park’ to
represent plural and ’A cat in the park’
is expressed as ’A S_cat in the park’ to
represent singular.

For anything not explicitly specified,
Language A follows the same word order
as English.

Here are the translated pairs of En-
glish lemmas into lemmas in language
A: (the, tgt_the), (across, tgt_across),
(field, tgt_field), (a, tgt_a), (farmer,
tgt_farmer), (carefully, tgt_carefully),
(bright, tgt_bright), (., .), (smile,
tgt_smile), (basket, tgt_basket), (carry,
tgt_carry), (heavy, tgt_heavy), (with,
tgt_with) .

Translate the following simple sen-
tence into Language A: T̈he farmer with
a bright smile carries the heavy basket
carefully across the field .̈.

Please put the final translated re-
sult in brackets [] at the end of your
response, for example, [tgt_the tgt_cat
tgt_the tgt_dog tgt_chases].

Please think step by step.

G.3 1-shot

The following are the linguistic rules
of Language A.

In Language A, the canonical word
order of sentences follow a Subject-
Object-Verb structure.

Example: ’The cat eats the mouse’
should be ordered as ’The cat the mouse
eats’.

Prepositional phrases that modify a
verb remain positioned after the verb.

Similarly,adverbs that modify a verb
still maintain their position after the
verb.

Prepositional phrases that modify a
noun remain positioned after the noun.

In Language A, the morphological
rule for nouns involves indicating a sin-
gular noun by adding ’S_’ as a prefix to
its lemma, and indicating a plural noun
by adding ’P_’ as a prefix to its lemma.

Example: ’These cats in the park’ is
expressed as ’These P_cat in the park’ to
represent plural and ’A cat in the park’ is
expressed as ’A S_cat in the park’ to rep-
resent singular.. Prepositional phrases
that modify a verb remain positioned af-
ter the verb.

Adverbs that modify a verb remain
positioned after the verb.

For anything not explicitly specified,
Language A follows the same word order
as English.

Here’s an example that demonstrates
how to translate an English sentence into
Language A.

Example sentence: The black cat
with a small tail eats the food quietly
in the room .

Below, you’ll find the translated
pairs of English lemmas into lemmas in
language A for the example sentence:
[(’the’, ’tgt_the’), (’black’, ’tgt_black’),
(’cat’, ’tgt_cat’), (’with’, ’tgt_with’), (’a’,
’tgt_a’), (’small’, ’tgt_small’), (’tail’,
’tgt_tail’), (’eats’, ’tgt_eats’), (’food’,
’tgt_food’), (’quietly’, ’tgt_quietly’), (’in’,
’tgt_in’), (’room’, ’tgt_room’), (’.’, ’.’)]
Translated example sentence: tgt_the
tgt_black S_tgt_cat tgt_with tgt_a
tgt_small S_tgt_tail tgt_the S_tgt_food
tgt_eats tgt_quietly tgt_in tgt_the
S_tgt_room .

Here are the translated pairs of En-
glish lemmas into lemmas in language
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A: (the, tgt_the), (across, tgt_across),
(field, tgt_field), (a, tgt_a), (farmer,
tgt_farmer), (carefully, tgt_carefully),
(bright, tgt_bright), (., .), (smile,
tgt_smile), (basket, tgt_basket), (carry,
tgt_carry), (heavy, tgt_heavy), (with,
tgt_with) .

Translate the following simple sen-
tence into Language A: "The farmer with
a bright smile carries the heavy basket
carefully across the field .".

Please put the final translated re-
sult in brackets [] at the end of your
response, for example, [tgt_the tgt_cat
tgt_the tgt_dog tgt_chases].

G.4 1-shot-CoT
The following are the linguistic rules

of Language A.
In Language A, the canonical word

order of sentences follow a Subject-
Object-Verb structure.

Example: ’The cat eats the mouse’
should be ordered as ’The cat the mouse
eats’.

Prepositional phrases that modify a
verb remain positioned after the verb.

Similarly,adverbs that modify a verb
still maintain their position after the
verb.

Prepositional phrases that modify a
noun remain positioned after the noun.

In Language A, the morphological
rule for nouns involves indicating a sin-
gular noun by adding ’S_’ as a prefix to
its lemma, and indicating a plural noun
by adding ’P_’ as a prefix to its lemma.

Example: ’These cats in the park’ is
expressed as ’These P_cat in the park’ to
represent plural and ’A cat in the park’ is
expressed as ’A S_cat in the park’ to rep-
resent singular.. Prepositional phrases
that modify a verb remain positioned af-
ter the verb.

Adverbs that modify a verb remain
positioned after the verb.

For anything not explicitly specified,
Language A follows the same word order
as English.

Here’s an example that demonstrates
how to translate an English sentence into
Language A step by step.

Example sentence: The black cat
with a small tail eats the food quietly
in the room .

Below, you’ll find the translated
pairs of English lemmas into lemmas
in language A for the example sentence:
[(’the’, ’tgt_the’), (’black’, ’tgt_black’),
(’cat’, ’tgt_cat’), (’with’, ’tgt_with’), (’a’,
’tgt_a’), (’small’, ’tgt_small’), (’tail’,
’tgt_tail’), (’eats’, ’tgt_eats’), (’food’,
’tgt_food’), (’quietly’, ’tgt_quietly’), (’in’,
’tgt_in’), (’room’, ’tgt_room’), (’.’, ’.’)]

To change the word order of the sen-
tence to Subject-Object-Verb, we first
identify the root verb, which is ’eats’.

Next, we find the subject of the
sentence, ’cat’, and its related tokens:
[’The’, ’black’, ’with’, ’a’, ’small’,

’tail’]. Then, we locate the object of the
sentence, ’food’, and its related tokens:
[’the’].

We then move the object and its re-
lated tokens behind the subject and its
related tokens.

Now, the sentence is in Subject-
Object-Verb word order as applied in
Language A: ’The black cat with a small
tail the food eats quietly in the room .’.

We translate the English sentence
into Language A using the lemma pairs
between English and Language A:

tgt_the tgt_black tgt_cat tgt_with
tgt_a tgt_small tgt_tail tgt_the tgt_food
tgt_eat tgt_quietly tgt_in tgt_the
tgt_room . To apply the morphological
rule for nouns, add ’S_’ as a prefix for
singular nouns and ’P_’ as a prefix for
plural nouns in their lemmas:

First identify singular nouns: tgt_cat,
tgt_tail, tgt_food, tgt_room.

Then add ’S_’ as a prefix to each
singular noun: S_tgt_cat, S_tgt_tail,
S_tgt_food, S_tgt_room

There is no plural noun in the sen-
tence.

Now, the sentence follows the singu-
lar and plural noun rule in Language
A: ’tgt_the tgt_black S_tgt_cat tgt_with
tgt_a tgt_small S_tgt_tail tgt_the
S_tgt_food tgt_eat tgt_quietly tgt_in
tgt_the S_tgt_room .’.

Lastly, we have the translated
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example sentence: tgt_the tgt_black
S_tgt_cat tgt_with tgt_a tgt_small
S_tgt_tail tgt_the S_tgt_food tgt_eats
tgt_quietly tgt_in tgt_the S_tgt_room .

Here are the word pairs between En-
glish and the language A:Here are the
translated pairs of English lemmas into
lemmas in language A: (the, tgt_the),
(across, tgt_across), (field, tgt_field), (a,
tgt_a), (farmer, tgt_farmer), (carefully,
tgt_carefully), (bright, tgt_bright), (., .),
(smile, tgt_smile), (basket, tgt_basket),
(carry, tgt_carry), (heavy, tgt_heavy),
(with, tgt_with) .

Translate the following simple sen-
tence into Language A: "The farmer with
a bright smile carries the heavy basket
carefully across the field .".

Please put the final translated re-
sult in brackets [] at the end of your
response, for example, [tgt_the tgt_cat
tgt_the tgt_dog tgt_chases].
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