Benchmarking and Improving Long-Text Translation with Large Language Models
Longyue Wang, Zefeng Du, Wenxiang Jiao, Chenyang Lyu, Jianhui Pang, Leyang Cui, Kaiqiang Song, Derek Wong, Shuming Shi, Zhaopeng Tu
Abstract
Recent studies have illuminated the promising capabilities of large language models (LLMs) in handling long texts. However, their performance in machine translation (MT) of long documents remains underexplored. This paper aims to shed light on how LLMs navigate this complex task, offering a comprehensive evaluation of their capabilities and limitations in long-text MT. First, we collect and construct an instruction-based benchmark dataset, specifically designed for the finetuning and evaluation of LLMs, encompassing multilingual, multi-domain, and document-level parallel data. Second, we conduct a comprehensive comparison between MT and LLM models concerning document-level translation. Our analysis uncovers that LLMs exhibit shortcomings in long-text domains, and their performance diminishes as document size escalates. By exploiting various extrapolation strategies, we enhance the capacity of LLMs to translate longer texts. We release data, code, and models at https://github.com/longyuewangdcu/Document-MT-LLM.- Anthology ID:
- 2024.findings-acl.428
- Volume:
- Findings of the Association for Computational Linguistics ACL 2024
- Month:
- August
- Year:
- 2024
- Address:
- Bangkok, Thailand and virtual meeting
- Editors:
- Lun-Wei Ku, Andre Martins, Vivek Srikumar
- Venue:
- Findings
- SIG:
- Publisher:
- Association for Computational Linguistics
- Note:
- Pages:
- 7175–7187
- Language:
- URL:
- https://aclanthology.org/2024.findings-acl.428
- DOI:
- Cite (ACL):
- Longyue Wang, Zefeng Du, Wenxiang Jiao, Chenyang Lyu, Jianhui Pang, Leyang Cui, Kaiqiang Song, Derek Wong, Shuming Shi, and Zhaopeng Tu. 2024. Benchmarking and Improving Long-Text Translation with Large Language Models. In Findings of the Association for Computational Linguistics ACL 2024, pages 7175–7187, Bangkok, Thailand and virtual meeting. Association for Computational Linguistics.
- Cite (Informal):
- Benchmarking and Improving Long-Text Translation with Large Language Models (Wang et al., Findings 2024)
- PDF:
- https://preview.aclanthology.org/nschneid-patch-4/2024.findings-acl.428.pdf