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Abstract

In many practical scenarios, contents from dif-
ferent modalities are not semantically aligned;
for instance, visual and textual information
may conflict with each other, resulting in non-
compositional expression effects such as irony
or humor. Effective modeling and smooth in-
tegration of multimodal information are cru-
cial for achieving good understanding of the
contrast across modalities. Being focusing on
image-text matching, most current studies face
challenges in identifying such contrast, lead-
ing to limitations in exploring the extended se-
mantics when images and texts do not match.
In this paper, we propose an LLM-based ap-
proach for learning multimodal contrast follow-
ing the encoding-decoding paradigm, enhanced
by a memory module with reinforced contrast
recognition, and use a series of tasks that have
the nature of multimodal contrast to verify our
approach. The memory module learns the in-
tegration between visual and textual features
with trainable memory vectors and the rein-
forced contrast recognition uses self-rejection
sampling to optimize the memory to further
enhance learning multimodal contrast. The re-
sulted information, accompanied with visual
and text features, is finally fed into the LLM
to predict corresponding labels. We experi-
ment our approach on four English and Chi-
nese benchmark datasets, where it outperforms
strong baselines and state-of-the-art studies.1

1 Introduction

Multimodal information have become a widespread
form of expression in many real-world applications,
such as news feeding, social media, and instance
messaging, etc., (Kiela et al., 2020; Gomez et al.,
2020; Sharma et al., 2020; Suryawanshi et al., 2020;
Li et al., 2022), where in most cases they are fused
with image and text pairs. In order to enhance

†Corresponding author.
1Materials related to the paper is available at https://

github.com/synlp/MemRCRHMD.

the expressive effect, images and texts are not al-
ways semantically aligned, resulting in irony or
humor expressions, causing hateful or joyful emo-
tions spreading around groups of people. Such
misalignment has the non-compositional effect that
similar to idioms, where the overall meaning is not
the combination of the meanings from its compo-
nents.2 For example, Figure 1 shows three multi-
modal memes: (a) is a hateful meme; (b) and (c)
are not. Note that meme (a) has the same image as
(c) and the same text as (b). In other words, a meme
can be hateful even when neither its image nor its
text is. This example demonstrates the importance
of understanding the relationship between image
and text, as the hateful attitude in a meme arises
from the multimodal contrast3, which allows the
integrated information from different modalities to
convey a message (e.g., hateful information) that
cannot be expressed by any single modality alone.

Existing approaches for multimodal understand-
ing mainly focus on image-text matching (Vinyals
et al., 2016; Li et al., 2019; Chen et al., 2020;
Qin and Song, 2022; Park and Paik, 2023; Ramos
et al., 2023; Wang et al., 2023a) and utilize ad-
vanced visual and text encoders (such as CLIP
(Radford et al., 2021), Flamingo (Alayrac et al.,
2022), FLAVA (Singh et al., 2022), and SLIP (Mu
et al., 2022), etc.) to extract multimodal features,
and subsequently align or fuse them by vector
concatenation, outer production, or attentions to
perform downstream tasks, such as hateful meme
detection (HMD) (Kiela et al., 2019; Li et al.,
2019; Radford et al., 2021; Goyal et al., 2022; Ku-
mar and Nandakumar, 2022; Koutlis et al., 2023).
These HMD models are good at identifying hateful

2For example, the idiom “crossing the Rubicon” means
“passing a point of no return”, where every word in this idiom
does not present such meaning.

3The term contrast in this work represents the aforemen-
tioned non-compositional effect when combining information
from multiple modalities.

6561

https://github.com/synlp/MemRCRHMD
https://github.com/synlp/MemRCRHMD


Figure 1: Three memes: (a) is hateful; (b) and (c) are not. Here, (a) and (b) share the same text, and (a) and (c)
share the same image. This example shows that a meme can be hateful even when neither of its image nor text is.

memes when images or text present explicit biases,
but are unable to effectively recognize hateful in-
formation that is derived from the contrast between
image and text. Although there are efforts in utiliz-
ing additional resources or using model ensemble
to improve tasks like HMD (Muennighoff, 2020;
Lippe et al., 2020; Velioglu and Rose, 2020; Zhu,
2020; Cao et al., 2023b), they mainly enhance the
generalization ability through more training data or
ensemble of multiple models, overlooking the con-
trast between multiple modalities that lead to better
understanding of the non-compositional effect of
cross-modal information fusion.

In this paper, we propose an approach with LLM
to learn multimodal contrast through cross-modal
memory and reinforced contrast recognition (RCR).
The cross-modal memorizing module learns how
to capture the information from multiple modal-
ities, and the reinforced contrast recognition uti-
lizes self-rejection training to enhance the memory
in learning the contrast by further optimizing the
loss function. We use a series of representative
tasks that require to understand the contrast from
multimodalities to verify our approach.4 Evalu-
ations on four benchmark datasets show that our
approach outperforms strong baselines and existing
approaches, demonstrating the benefits of memory
and reinforcement learning with self-rejection train-
ing for all the tasks.

2 The Approach

Figure 2 illustrates the framework of our approach,
which follows the encoding-decoding paradigm to
perform multimodal classification, which predicts
a label Ŷ based on the image V and embedded
text T in a given pair (V, T ). It contains three

4Our approach is able to be applied to other similar tasks
depending on modeling the contrast among multimodalities.

essential components: the backbone model, the
cross-modal memory, and the RCR. The memory
module is inserted in between the visual encoding
and LLM decoding in the backbone, illustrated
at the top of Figure 2. The RCR, demonstrated
at the bottom of Figure 2, enhances the memory
by enhancing the memory module with contrast
information via self-rejection training, where an
additional term is added to the loss function. In
the following subsections, we firstly illustrate the
backbone model, then the cross-modal memory,
and finally presents the RCR.

2.1 The Backbone Model
The encoding and decoding processes are two es-
sential components in the backbone model. Specif-
ically, the visual encoding process (fve) extracts
salient features from the input image and LLM de-
coding (fd) utilizes the multimodal information to
predict the final classification label Ŷ .

Visual Encoding Our visual encoder, following
the procedure of BLIP2 (Li et al., 2023), has three
components: the vision Transformer fv (Dosovit-
skiy et al., 2021), the Q-Former fq (Li et al., 2023),
and a linear projection layer. The three modules are
sequentially interconnected to extract visual feature
v from the input meme V through

v = fve(V) = Linear(fq(fv(V))) (1)

The vision Transformer fv extracts crucial visual
features from the meme. The Q-Former fq trans-
lates these features into a textual semantic space.
Finally, the linear projection layer transforms the
resulted representation into latent vector v that is
used in the subsequent processes.

LLM Decoding Existing studies on LLM have
demonstrated the significant impact of prompting
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Figure 2: The overall architecture of our approach using HMD as a demonstration example. The top part illustrates
our backbone model with cross-modal memory, and bottom part shows the RCR process. The workflow of collecting
data and training the reward model is illustrated in orange arrows in the RCR part. Then the trained reward model is
used in the self-rejection training to optimize the model, illustrated at the right bottom part. Visual encoding and
cross-modal memory are shared by the backbone model in the main process and the reward model training process,
which is marked by the boxes with dashed black lines.

on model performance (Brown et al., 2020; Lester
et al., 2021; Ouyang et al., 2022; Liu et al., 2022).
For better prompting, we use the visual feature v
and the contrast vector mx obtained from cross-
modal memorizing as soft prompts to instruct our
LLM for final classification. Specifically, we feed
v, mx, as well as the original text T , into the
LLM to determine the label Ŷ , e.g., hateful or non-
hateful if the task is HMD. A prompt P is required
to instruct the LLM to process the input and pre-
dict the label. For example, we design a simple
prompt, i.e., “The meme is __” for HMD, which
instructs LLM to fill in the blank with “hateful” or
“non-hateful”.5 We feed v,mx, T , P into our LLM
(e.g., Vicuna (Chiang et al., 2023)) and obtain the
hidden vector h from its last layer by

h = LLM(v,mx, T , P ) (2)

Afterwards, we use a projection layer to map h into
the output label space and use a softmax classifier
to predict the class label Ŷ of the input image-text
pair following the standard classification process.
In training, we compare the prediction Ŷ with the

5The prompt may change for different tasks.

gold standard Y∗ and compute the cross-entropy
loss LCE to optimize the model.

2.2 Cross-modal Memory

Memory mechanism is demonstrated to be effective
in modeling task-related information (Song et al.,
2018; Nie et al., 2020; Tian et al., 2022, 2023a)
The memory module is designed to better fusing
mutlimodal features, where we use a memory ma-
trix M, stacked with N memory vectors (denoted
by M = [m1, · · · ,mN ]) to record such feature
fusion. Each memory vector is interpreted as a po-
tential aspect in multimodal fusion that results in
a particular type of information, e.g., hateful infor-
mation for the HMD task or contrast that causes
humor. This module has three main components:
text encoding, memory ranking, and sampling.

Text encoding obtains text representations to fa-
cilitate subsequent processes. We follow the stan-
dard approach to use a word embedding matrix to
map all words in the text T into their corresponding
word embeddings. Then, we compute the average
of the embeddings of all words in the input text and
denote the resulted vector t as the text features.

Memory ranking locates relevant memory vec-
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tors according to the encoded multimodal informa-
tion and assigns appropriate scores to them. We
concatenate visual and text features and obtain the
multimodal feature xvt = v⊕t. Then, we compute
the score sn that measures the semantic similarity
between the n-th memory vector mn and xvt by

sn =
exp(xvt ·WM ·mn)∑N
n=1 exp(xvt ·WM ·mn)

(3)

where WM is a trainable parameter matrix to align
mn and xvt. Finally, we rank all memory vectors
in descending order based on their scores and select
the top N ′ vectors (denoted as mn1 · · ·mnN′ ) as
the relevant vectors for later processing.

Memory sampling further processes memory
vectors and outputs a vector mx that carries the
essential multimodal fusion information between
visual and text features for later steps. In detail, we
normalize the scores of the relevant vectors and ran-
domly select K vectors from mn1 · · ·mnN′ (repe-
tition of the same vector is allowed) based on their
scores, where higher scores lead to better chance
to be selected. We then average the select vectors
and obtain the output contrast vector mx by

mx =
1

K

K∑

k=1

snk
mnk

(4)

where snk
is the score for mnk

obtained by Eq. (3)
and mx is used as input in LLM decoding.

2.3 Reinforced Contrast Recognition
The goal of RCR is to help the cross-modal mem-
ory module in producing a better mx. However,
we do not have a gold standard for mx. Therefore,
we need to create a silver standard m∗

x and add the
difference between mx and m∗

x to the loss function.
To create m∗

x, we propose to use a reward model
to select m∗

x from a candidate list m1
x, · · · ,mL

x . In
order to generate the candidate list, we repeat the
sampling and averaging process illustrated in Eq.
(4) for L times and obtain a list of different vec-
tors m1

x · · ·mL
x . Specifically, there are three main

steps in RCR: reward model training data collec-
tion, reward model training, and self-rejection train-
ing. In the first and second steps, we collect data
and train a reward model to rank m1

x · · ·mL
x based

on their effectiveness in representing the contract
information between multiple modalities. Then we
perform self-rejection training by using the most
effective contrast vector m∗

x to optimize mx so
that mx is trained to be closer to m∗

x. Details are
presented as follows.

Reward Model Training Data Collection The
goal of the reward model is to assess whether the
encoded vectors from the memory module contain
contrast information, and we collect positive and
negative examples to train it. Therefore, we rely
on the training examples for a running task that is
based on such contrast (e.g., HMD) to serve as pos-
itive examples; then take the ordinary (image, cap-
tion) pairs from image captioning tasks as negative
examples since the images and their corresponding
captions generally share similar semantics. As a re-
sult, we randomly select instances, i.e., image-text
pairs (Vr, Tr), from the training data of particular
tasks as a positive examples. Then we generate
captions Cr for images Vr using an off-the-shelf
image captioning toolkit and combine with their
image to form negative examples (Vr, Cr).

Reward Model Training In training the reward
model, we apply the same visual encoding and
the memory module in our approach to compute
the contrast vectors for the positive and negative
samples by vpos

m = fm(fve(Vr), T ) and vneg
m =

fm(fve(Vr), C), where vpos
m and vneg

m denote the
positive and negative contrast vectors, respectively,
and fm means the memory module. Finally, we
feed vpos

m and vneg
m to the reward model fr, which

is a multi-layer perceptron, and compute the re-
ward (denoted as rpos and rneg, respectively) for
the vectors by rpos = sigmoid(fr(v

pos
m )) and

rneg = sigmoid(fr(v
neg
m )), and compute the loss

Lr to optimize the reward model by

Lr = −log(rpos)− log(1− rneg) (5)

Self-rejection Sampling In this step, we use
the reward model to reject ineffective vectors and
choose the best one m∗

x to improve mx, which
is similar to the process used in Touvron et al.
(2023b). In doing so, we feed all memory sam-
pled vectors m1

x · · ·mL
x to the reward model fr and

compute the reward for each of them, and select the
vector m∗

x with the highest reward score and use it
as the gold standard to assess whether a sampled
vector from the memory module is good enough
to carry essential task-specific contrast information
for final classification. Finally, we compute the loss

LSRT = |m∗
x −mx| (6)

and add it to LCE to get the final loss L = LCE +
LSRT to update the entire framework.
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HMC Memotion7k MultiOFF Memeplate
Train Dev Test Train Test Train Dev Test Train Dev Test

# of Meme 8,500 500 1,000 6,992 1,879 445 149 149 3,746 700 738
Avg. Tokens Per Meme 11.7 10.2 10.4 14.7 15.7 41.4 45.2 47.0 20.3 20.4 20.0

Table 1: Statistics of experiment datasets, where the number of meme and the average number of tokens (i.e., words
for English and characters for Chinese) for each meme are reported.

3 Experiment Settings

3.1 Datasets
For our experiments, we employ three English
datasets, namely, hateful meme challenge (HMC)
dataset (Kiela et al., 2020), Memotion7K (Sharma
et al., 2020), and MultiOFF (Suryawanshi et al.,
2020), and one Chinese dataset named Memeplate
(Li et al., 2022). These datasets cover a wide range
of tasks that require modeling of contrasts. Specif-
ically, HMC is for HMD. Memotion7k contains
three tasks: sentiment classification (T1), humor
classification (T2), and scales of semantic classes
(T3). MultiOFF is designed for detecting offen-
sive content from image-text pairs. Memeplate is
for multimodal humor recognition. We use the
official training, development, and test data split
of all datasets. Herein, for HMC, we follow the
convention of most existing studies (Radford et al.,
2021; Singh et al., 2022; Cao et al., 2023b; Koutlis
et al., 2023) to evaluate model performance on the
development set. The statistics of the datasets are
reported in Table 1, where the number of memes
and the average number of tokens (i.e., words for
English and characters for Chinese) for each meme
are presented.

3.2 Baselines
We run baselines with small language models and
LLMs as the backbones following the BLIP2 (Li
et al., 2023) architecture. For small language mod-
els, we employ GPT-2 (Radford et al., 2019). For
LLMs, we use MiniGPT-4 (which is demonstrated
to be effective in many multimodal tasks) for En-
glish and use Ziya-BLIP2-Visual (Zhang et al.,
2022a) for Chinese processing. Based on small and
large models, our experiments include three base-
lines. The first is the vanilla BLIP2 with small and
large language models. The second baseline (i.e.,
“+M”) adds the proposed memory module on top of
the first one. The third baseline (i.e., “+RCR”) adds
reinforced contrast recognition (RCR) on top of the
first one. We concatenate visual and text features
and use the resulting vector (i.e., xvt) to represent
the contrast vector (i.e., mx) and randomly set 33%

values in mx to zero to facilitate RCR training.

3.3 Implementation Details

We use the default settings of BLIP2 (with GPT-
2), MiniGPT-4, or Ziya-BLIP2-Visual, which con-
tain visual encoding and LLM decoding processes.
For the visual encoding process, we follow the
standard architecture using visual transformer and
Q-Former, which contain 40 and 12 layers of multi-
head attentions, respectively. For the LLM decod-
ing process, the LLMs in BLIP2 (with GPT-2),
MiniGPT-4, and Ziya-BLIP2-Visual utilize 12, 32,
and 40 layers of Transformers, respectively.

In training our approach, we alternate between
the following two procedures for every 100 steps:
(1) updating the parameters of different compo-
nents in visual encoding, memory module, and
LLM using the cross-entropy loss from compar-
ing the predicted labels with gold standards and
(2) updating the reward model and the memory
module through RCR.6 For evaluation, we follow
existing studies (Kiela et al., 2020; Li et al., 2022;
Cao et al., 2023b; Koutlis et al., 2023) to use ac-
curacy and AUROC for HMC, accuracy and F1
for MultiOFF, F1 for Memotion7K, and accuracy
and F1 for Memeplate. For the hyper-parameters,
we set the numbers of memory vectors (i.e., N ) to
200 for HMC and 150 for other datasets. For all
datasets, we use 20 as the memory sampling size
(i..e., K), and 4 as the sampling time L. We set
learning rate to 1 × 10−6 with a batch size of 32.
For other hyper-parameters, we tune them on the
development set7 and select the ones with the best
performance to train models and evaluate them on
the test sets. We run all models five times using
different random seeds and report the average and
standard deviation of their performance.

6For the third baseline with RCR (i.e., +RCR), we update
the parameters of visual encoding and the token embeddings
of the input text during training, so as to appropriately work
with the absence of the memory module.

7For HMC, we randomly select 10% of the training data
and use it to tune hyper-parameters.
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HMC MEMOTION7K MULTIOFF MEMEPLATE

ACC AUROC T1 T2 T3 ACC F1 ACC F1

GPT-2 73.28±0.20 83.01±0.22 35.09±0.24 47.58±0.20 32.10±0.19 68.32±0.24 61.67±0.23 53.37±0.19 47.09±0.23

+M 74.00±0.25 83.81±0.20 35.50±0.20 48.11±0.23 32.85±0.26 68.94±0.20 62.48±0.21 54.37±0.26 47.76±0.22

+RCR 74.52±0.22 84.56±0.20 36.12±0.19 48.64±0.19 33.48±0.23 69.53±0.21 63.05±0.21 55.10±0.26 48.86±0.24

+M+RCR ∗75.08±0.23
∗84.91±0.20

∗38.06±0.21
∗50.01±0.21

∗34.57±0.22
∗71.58±0.25

∗64.02±0.19
∗55.86±0.22

∗49.75±0.25

LLM 76.20±0.26 84.44±0.23 37.48±0.21 49.75±0.21 33.76±0.23 71.51±0.20 64.87±0.23 54.38±0.25 47.97±0.22

+M 76.56±0.22 84.84±0.25 38.82±0.20 50.80±0.23 34.83±0.25 72.11±0.20 65.94±0.23 55.12±0.21 48.70±0.28

+RCR 77.01±0.22 85.40±0.25 40.82±0.23 51.40±0.22 35.61±0.25 73.18±0.26 67.72±0.22 55.86±0.23 49.39±0.20

+M+RCR ∗77.88±0.24
∗86.34±0.23

∗41.56±0.21
∗52.73±0.21

∗35.88±0.24
∗74.09±0.20

∗68.43±0.21
∗56.52±0.20

∗50.21±0.21

Table 2: The average and standard deviation of the performance from various models on benchmark datasets.
“GPT-2” and “LLM” stand for BLIP2 baseline models use small and large language models, respectively. “+M”
and “+RCR” refer to that the memory module and the RCR are used on top of the baselines, respectively. Results
marked by ∗ means that the improvements are statistically significant at p ≤ 0.05 level over all baselines.

ACC AUROC

Muennighoff (2020) - 81.56
Velioglu and Rose (2020) 70.93 75.21
Lippe et al. (2020) - 77.39
Radford et al. (2021) - 77.30
Goyal et al. (2022) - 73.40
Kumar and Nandakumar (2022) - 81.55
Singh et al. (2022) - 76.70
Cao et al. (2023a) 72.28 80.87
Koutlis et al. (2023) 73.60 80.10
Cao et al. (2023b) 72.98 82.45
†△Liu et al. (2023) 76.20 84.57

Ours 77.88 86.34

Table 3: Comparison of the average performance of our
approach with the existing studies on the development
set of HMC. “†” means the results are our own runs
using their multimodal approaches. “△” indicates that
LLMs are used to predict labels. The markups are the
same for following tables.

4 Results and Analysis

4.1 Overall Performance

The average performance with standard deviations
of baselines and our approach for all datasets under
different settings are reported in Table 2, with fol-
lowing observations. First, overall, our approach
(i.e., +M+RCR) outperforms the vanilla BLIP2
(GPT-2), MiniGPT-4, and Ziya-BLIP2-Visual base-
lines, which indicates the effectiveness of our ap-
proach to learning contrast information for different
tasks. Second, when the memory (i.e., “+M”) or
the RCR module (i.e., “+RCR”) is added to the
vanilla baseline, improvements are all observed,
which is the evidence for the effectiveness of each
individual module in capturing contrast between
visual and textual data, thereby enhancing model

T1-F1 T2-F1 T3-F1

Keswani et al. (2020) 35.5 - -
Vlad et al. (2020) 34.5 51.8 31.7
Guo et al. (2020) 35.2 51.5 32.3
Kumari et al. (2021) 36.8 - -
†Ouaari et al. (2022) 35.3 - -
Zhang et al. (2022b) 36.6 46.9 -
Zhong et al. (2022) 37.0 - -
Koutlis et al. (2023) 39.6 51.9 34.3

Ours 41.56 52.73 35.88

Table 4: Performance comparison of different models
on the test set of three tasks on Memotion7k dataset.

ACC F1

Lee et al. (2021) - 64.6
Zhong et al. (2022) - 67.1
Koutlis et al. (2023) 68.5 62.5

Ours 74.09 68.43

Table 5: Comparison of different models on the test set
of MultiOFF dataset.

performance.8 Third, when comparing “+M” and
“+RCR”, we find that RCR consistently exhibits su-
perior performance across various configurations,
underscoring the advantage of discriminatively
learning the contrast information. Fourth, our full
model that integrates both the memory and RCR
outperforms all baseline models, demonstrating the
effectiveness of complementing each other.

We further compare our approach with exist-
ing studies for HMC, Memotion7K, MultiOFF,
and Memeplate in Table 3-6, where the results
demonstrate state-of-the-art performance. Particu-

8With the training data from particular tasks that contains
such contrast, the memory module is also able to learn that
information as that performed in the RCR process.
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Figure 3: Curves of model performance on HMC and Memeplate with respect to different numbers of memory
vectors used in the memory module.

ACC F1

†Yang et al. (2022) 52.57 46.21
†△Yang et al. (2023) 55.43 48.80
†△Hu et al. (2023) 55.08 48.97
†△University (2023) 55.76 49.49

Ours 56.52 50.21

Table 6: Performance comparison of different models
on the test set of Memeplate dataset.

larly, our approach outperforms the ones that use
advanced pre-trained models for image and text
processing (Kumar and Nandakumar, 2022; Singh
et al., 2022; Koutlis et al., 2023). The reason is
that, these multimodal models generally perform
the HMD, multimodal sentiment analysis, offen-
sive content detection, and humor recognition in
the same way as image captioning, therefore not
focus on the contrast across modalities whereas
image captioning emphasizes the content shared by
these modalities. Compared with these studies, the
performance of our approach on all tasks confirm
the validity of explicitly learning contrast rather
than shared semantics.

4.2 Effect of the Memory Module

Since the memory module serves as a key compo-
nent that records essential multimodel features and
the pivot receiving optimized signal from RCR, it
is of great importance to investigate its effect on
model performance. Specifically, we explore the
effect of the number of memory vectors N and
run LLM-based models on HMC and Memeplate
datasets9. The performance (y-axis) of models with
respect to the value of N (x-axis) is illustrated in
Figure 3. There are several observations. First,

9We select the two representative datasets for different
languages and tasks, one for English HMD and the other for
Chinese humor recognition.

for both datasets, when the value of N is small,
increasing its value brings significant enhancement
to model performance. This observation is intuitive
in that more memory vectors provide a larger pa-
rameter space to comprehensively accommodate
enough information between multiple modalities
and thus lead to better performance. Second, when
the value of N is high, the performance improve-
ment brought by the increase of N is moderate.
This indicates that when the number of memory
vectors reaches a certain point, no more useful con-
trast information for the task is leveraged and thus
results in less improvements.

In addition, we investigate the effect of the mem-
ory module when it works with RCR by replacing
the memory module with other widely used archi-
tectures, namely, outer product operation (OP) and
co-attention (Co-Att) (Lu et al., 2016). Specifically,
for OP, we firstly obtain the visual feature v and
text features t using the same process as our ap-
proach. Then, we compute the outer product of v
and t, and flatten the resulting matrix into a vector
to represent the contrast vector mx. For Co-Att,
we apply co-attention to fuse v and t and regard
the output as mx. The results for different datasets
are reported in Table 7. It is observed that their
performance is worse than the performance of our
approach with memory, which confirms the effec-
tiveness of our approach in leveraging the memory
and RCR for multimodal classification tasks that
require contrast information modeling.

4.3 Case Study

We also investigate three similar memes for quali-
tative analysis for multimodal sentiment analysis.
The images and texts with their predictions from
different models, as well as the gold standard, are
illustrated in Figure 4, where (a) and (b) have the
same texts; (a) and (c) use the same image. As
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HMC MEMOTION7K MULTIOFF MEMEPLATE

ACC AUROC T1-F1 T2-F1 T3-F1 ACC F1 ACC F1

OP 76.44±0.18 84.86±0.22 39.42±0.22 50.67±0.21 34.68±0.22 71.97±0.20 65.90±0.18 55.11±0.18 48.62±0.22

CO-ATT 76.63±0.21 84.98±0.22 39.67±0.20 50.93±0.22 34.77±0.21 72.20±0.22 66.12±0.24 55.21±0.20 48.89±0.22

M ∗77.88±0.24
∗86.34±0.23

∗41.56±0.21
∗52.73±0.21

∗35.88±0.24
∗74.09±0.20

∗68.43±0.21
∗56.52±0.20

∗50.21±0.21

Table 7: Experiment results of different models using LLMs and RCR, where the memory module in our approach
is replaced by two widely used approaches for multimodal feature fusion, namely, outer product operation (OP) and
Co-attention mechanism (Co-Att). The performance of memory (M) with RCR is also presented for reference.

Figure 4: Demonstration of three memes for multimodal sentiment analysis with the polarities predicted by different
models. The gold standard sentiment labels of all memes are also presented. The model produced labels that match
the gold standard and the labels that do not match are highlighted in green and red colors, respectively.

a result, (a) conveys a negative sentiment polar-
ity, while (b) and (c) have positive polarities. The
predictions that match and do not match the gold
standard are highlighted in green and red colors, re-
spectively. By investigating the results, we observe
that the three baselines struggle to predict senti-
ment labels that match the gold standards for all
memes, whereas our approach is able to accurately
identify sentiment polarities of all memes. A pos-
sible reason is the following. Negative sentiment
polarities are generally derived from the contrast
between multiple modalities. The baselines have
limitations that prevent them from learning such
contrast, either lacking a particular mechanism to
do so or being equipped without effective guidance.
In contrast, RCR or Memory+RCR provide enough
information to learn such contrast and thus help our
approach to correctly analyze its sentiment polarity.

5 Related Work

Recent studies for image-text understanding gener-
ally utilize advanced pre-trained visual and text en-

coders, such as ViLBERT (Lu et al., 2019), Visual-
BERT (Li et al., 2019), MMBT (Kiela et al., 2019),
FLAVA (Singh et al., 2022), Flamingo (Alayrac
et al., 2022), SLIP (Mu et al., 2022), BLIP2 (Li
et al., 2023), etc. With LLMs demonstrating strong
language modeling capabilities and achieving state-
of-the-art results on many NLP tasks (Qin et al.,
2021; Song et al., 2021; Achiam et al., 2023; Tou-
vron et al., 2023a,b; Taori et al., 2023; Chiang et al.,
2023; Tian et al., 2023b, 2024), there are studies
that combines visual encoder and LLMs, such as
MiniGPT-4 (Zhu et al., 2023) and LLaVA (Liu
et al., 2023). These studies mainly train the mod-
els to align image and text features, focusing on
image-text matching and achieving satisfying per-
formance accordingly (Park and Paik, 2023; Ramos
et al., 2023; Wang et al., 2023a; Ma et al., 2024).
Although there are some studies modeling the con-
trast between multiple modalities (Radford et al.,
2021; Lee et al., 2022; Wang et al., 2024), their
focus is still on the alignment of image and text fea-
tures. However, besides image-text matching, there
are multimodal tasks that rely on the contrast rather
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than the shared content between multiple modali-
ties, such as HMD, multimodal sentiment analysis,
offensive content detection, and humor recognition
(Suryawanshi et al., 2020; Sharma et al., 2020; Pra-
manick et al., 2021a,b; Kocoń et al., 2021; Sharma
et al., 2022a,b; Hakimov et al., 2022). To perform
these tasks, most existing studies still follow the
paradigm of simply aligning and fusing image and
text features with a particular module or opera-
tion, such as vector concatenation, attentions, and
contrastive learning (Goyal et al., 2022; Xu et al.,
2022; Liang et al., 2022; Pramanick et al., 2022;
Kumar and Nandakumar, 2022; Hee et al., 2023;
Qu et al., 2023; Wang et al., 2023b; Ayetiran and
Özgöbek, 2023; Kumari et al., 2023). To further
enhance these tasks, there are studies that ensem-
bles models to benefit from the outputs of different
models from various aspects (Lippe et al., 2020;
Sandulescu, 2020; Muennighoff, 2020) or utilize
additional training data and features to enhance the
capability of models to capture multimodal infor-
mation (Velioglu and Rose, 2020; Zhu, 2020).

Compared with existing studies, our approach
differs from them by explicitly modeling the con-
trast between multiple modalities rather than mod-
eling how well images and texts are aligned. Partic-
ularly, we design a memory module with RCR to
learn the contrast, where a reward model is trained
to assess how well the memory module learns the
contrast and an effective learning approach with
self-rejection sampling is applied, which, to our
best knowledge, is not used before in previous stud-
ies for similar tasks.

6 Conclusion

In this paper, we propose an LLM-driven approach
for learning contrast with cross-modal memory and
RCR, which learns and enhances the contrast infor-
mation between visual and text features that helps
final classification results. We perform several
tasks that require modeling multimodal contrast,
including HMD, multimodal sentiment analysis,
offensive content detection, and humor recognition,
etc. Experimental results on English and Chinese
benchmark datasets confirm the validity of the pro-
posed approach, which outperforms strong base-
lines and existing studies and achieves state-of-the-
art performance. Further analysis also confirms that
the combination of memory and RCR demonstrates
their superiority in learning contrast between multi-
modalities and thus facilitating downstream tasks.
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