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Abstract

For multilingual training, we present CrossInit,
an initialization method that initializes em-
beddings into similar geometrical structures
across languages in an unsupervised manner.
CrossInit leverages a common cognitive lin-
guistic mechanism called Zipf’s law, which in-
dicates that similar concepts across languages
have similar word ranks or frequencies in their
monolingual corpora. Instead of consider-
ing point-to-point alignments based on ranks,
CrossInit considers the same span of consec-
utive ranks in each language as the Positive
pairs for alignment, while others out of the
span are used as Negative pairs. CrossInit then
employs Contrastive Learning to iteratively re-
fine randomly initialized embeddings for sim-
ilar geometrical structures across languages.
Our experiments on Unsupervised NMT, XNLI,
and MLQA showed substantial gains in low-
resource and dissimilar languages after apply-
ing CrossInit 1.

1 Introduction

Zipf’s law suggests that words with similar mean-
ings and senses in different languages may have a
similar word rank or frequency in the individual
language 2. The starting point is how Zipf’s law
reflects on the multilingual corpus we use. To ob-
serve it from an inspiring example, we counted
words appearing in Wikipedia dumps † 3 and
ranked them in order of frequency, presenting the
result in Figure 1. In a short conclusion, as sup-
ported by the literature, languages are motivated
by common cognitive mechanisms to form similar
structural patterns across languages, thus conform-
ing to Zipf’s law (Zipf, 1949, 2013; Divjak and
Caldwell-Harris, 2019).

1https://github.com/baridxiai/crossInit_trial
2Suppose f is the frequency of a word in the corpus and r

is the rank. Zipf’s law indicates f = k
rβ

, where k and β are
constants for the corpus.

3Sources, scripts, and tools marked with † are listed in
Table 8. Source code will be publicly available.

Figure 1: Word Ranks of Wikipedia dumps. Words
representing the meaning "and" are in a similar rank
across languages.

One idea we can derive from Zipf’s law is how to
align words in different languages before multilin-
gual training, e.g., aligning words in initialization.
However, directly aligning words across languages
based on word ranks is still challenging because
it is impossible to use point-to-point alignments
based on word ranks in practice. On multilingual
corpus, although we use a shared vocabulary for all
the languages, each language has a different local
vocabulary, and words with similar concepts and
meanings only have a similar rank (not identical)
in different languages, as observed in Figure 1. To
tackle these challenges, we can approximately sep-
arate irrelevant words to some extent. Intuitively,
we can consider Positive pairs between the same
spans of consecutive word ranks and Negative pairs
between different ones in different languages. In
this way, the multilingual model is encouraged to
understand possible and impossible alignments be-
tween words across languages.

Another motivation comes from self-inference
multilingual models (Ai and Fang, 2023b). Exist-
ing works have shown that a pre-trained multilin-
gual model can infer translations for input words,
where translations and input words have similar
word ranks or frequencies on their monolingual
corpora. If the model is more likely to under-



stand words with similar ranks across languages
as cross-lingual transferable entries, we can align
these words in the initialization phase to provide
meta-learning supervision.

In this work, we present CrossInit, a method to
iteratively initialize an embedding space for a multi-
lingual model before formal training or pre-training
on a multilingual corpus. In each initialization step,
according to word ranks in each language, we ran-
domly sample a span of consecutive ranks and use
all words in this span across languages for Positive
pairs. In contrast, we create Negative pairs between
words inside and outside this span across languages.
We show the idea in Figure 2. We experimented
with Contrastive Learning to train these Positive
and Negative pairs in each initialization step, but
we believe there is a significant potential for the
development of new alternatives. Our experimental
results demonstrated that CrossInit can improve
results in low-resource and dissimilar languages on
unsupervised NMT, XNLI, and MLQA. We sum-
marize contributions and findings as follows:

• We introduce CrossInit, a method for initializ-
ing embeddings to form similar geometrical
structures across languages in an unsupervised
manner.

• Previous works like (K et al., 2020) have pro-
vided some evidence that word frequencies
alone do not contain enough information for
cross-lingual learning. However, we found
that words with similar frequencies might
help the model in forming a similar geometric
structure across languages.

• We observed that CrossInit was able to predict
a possible geometric structure of the embed-
ding space for cross-lingual transfer during
the initialization phase.

• In experiments, CrossInit improved zero-shot
cross-lingual transfer for low-resource and dis-
similar languages.

2 Cross-lingual Initialization

CrossInit aims to iteratively initialize random em-
beddings before any multilingual pre-training for
downstream tasks.

2.1 Step 1: Sorting
CrossInit requires word ranks in order of their fre-
quencies/counts in each target language. To obtain

these resources, we count the occurrences of each
word on each monolingual corpus and sort word
counts in descending order. For our implementa-
tion, we collected word counts from the monolin-
gual Wikipedia dumps.

2.2 Step 2: Pairing

When creating Positive and Negative pairs, we ran-
domly sample a span of consecutive ranks. We
create Positive pairs inside this span using words
in different languages on both sides. For Negative
pairs, we use words in different languages inside
and outside this span on each side. Suppose the
span width is n, the language id is Li, and the word
ranks for each language are V Li . We zip pairs:

• Positive: ∀i, j : {V Li
span, V

Lj
span}

• Negative: ∀i, j : {V Li
span, V

Lj

/∈span}

where V Li
k stands for the word with rank k in

V Li , span is a span of consecutive ranks [(k −
n/2), . . . , (k + n/2)]. In our experiments, we con-
sidered a quick dev experiment to find the key
hyper-parameter n. We will discuss this later.

2.3 Step 3: Contrastive Learning

CrossInit follows the random initialization of em-
bedding space for a multilingual model. For ex-
ample, in our experiments with XLM (Lample and
Conneau, 2019), we randomly initialized XLM and
then ran CrossInit. In each CrossInit step, we exe-
cute Step 2: Pairing to acquire Positive and Neg-
ative pairs for Contrastive Learning. We compute
dot products for paired word embeddings in Posi-
tive and Negative pairs, respectively. The two dot
products are classified using labels {1, 0} (Positive
and Negative) with a binary cross-entropy loss. Let
EV L

k
denote the embedding of word V L

k . In prac-
tice, if word V L

k is split into 1+ sub-tokens, we
average all embeddings for this word. CrossInit



Figure 2: Example of CrossInit in each step. We assign labels 1 and 0 to Positive and Negative pairs, respectively.
Then, we leverage Supervised Contrastive Learning (SCL) to train embeddings from these pairs. We suggest
frequent words in creating Positive pairs because frequencies across languages differ significantly in long tails.

requires an initialization objective:
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Additionally, in each CrossInit step, we randomly
select the span center k in Step 2: Pairing for dif-
ferent spans and i and j for different languages. We
refine embeddings until the flatness of LCrossInit.

3 Analysis and Discussion

3.1 Word Ranks and Conceptions
Before analyzing CrossInit, we attempted to under-
stand the correspondence and relevance between
word ranks and conceptions. Concretely, we calcu-
lated word ranks on En and De Wikipedia dumps †
and downloaded conception mappings from CLLD

Figure 3: Relevence between word ranks and concep-
tions. We map words to conceptions via conception
mappings from CLLD (List et al., 2022)†.

(List et al., 2022)† s. These conception mappings
associate words to conceptions or semantics, e.g.,
"Etwas" (De), "Wenig" (De), "bit", and "little" are
associated with the same ID 2949, and the shared
conception is "A LITTLE". Our results, presented
in Figure 3, demonstrated similar patterns across
en and de, supporting Zipf’s law.

3.2 Analysis Setup

To analyze CrossInit quickly, we configured an
XLM model (Lample and Conneau, 2019) and
made 3 significant modifications:

• trained the model on 3 languages
{En,De,Hi}.



Figure 4: LCrossInit with different span settings.

• adjusted the number of layers to 6.

• ran CrossInit for the randomly initialized em-
beddings.

Other settings were identical to the XLM model. In
this scenario, the model is not overly parameterized
for these three languages, allowing for successful
unsupervised cross-lingual transfer. Additionally,
Hi is distant from {En,De}, which can be poten-
tially used to test the effectiveness of distant and
low-resource languages. We used Adam optimizer
with learning rate 1e− 4 for CrossInit. We marked
these settings as XLM-tiny-3 in our work.

3.3 Hyper-parameter
In Step 2: Pairing, there are two important hy-
perparameters. The first one is the random bound
of the span center k. As shown in Figure 2, we
observed that word frequencies are divergent and
not ideally comparable in the long tail area. There-
fore, in our experiments, we only considered the
first 20k most frequent words in each language as
candidates for Positive pairs, i.e., words ranked be-
tween 1 and 20k in each language. Those words
contribute to over 80% of total word frequency in
the training corpus. Note that Negative pairs are
still generated from all the ranks. The second one
is the width of span n in Eq. 1. We experimented
with 4 settings span = {1000, 2000, 3000, 4000}
for LCrossInit. As shown in Figure 4, we found
that LCrossInit can converge for all settings.

3.4 Initialized Structure
We examined the embedding space structures
CrossInit initializes in an unsupervised manner.
We demonstrated PCA visualizations in Figure 5.

We found that compared to Random initialization,
CrossInit successfully formed some consistent pat-
terns across languages, showing different distribu-
tions while sharing a similar geographic structure.
Note that for shared tokens, we randomly chose
colors for the scattered points. We observed that
CrossInit was inclined to move shared tokens into
a dense area.

3.5 Cross-lingual Analogy Test
Ai and Fang (2023a) used the classic analogy test:
"English: King - Man + Woman = Queen and Ger-
man: König-Mann+Frau = Königin" to observe
cross-lingual analogical phenomenon. We show the
results of 3 runs in Table 1. Compared to Random
initialization, CrossInit obtained positive scores
for mixed languages multi, indicating the potential
for enhancing cross-lingual transferability. This
test suggested that CrossInit might improve cross-
lingual transferability due to cross-lingual analogy.

In addition to the above toy example, we devel-
oped more cross-lingual analogy tests using state-
ments from mLAMA (Kassner et al., 2021). Specif-
ically, mLAMA offers triples in the form of (ob-
ject, relation, subject), e.g., (Paris, capital, France).
Similar to the toy example, we created analogy
tests in the form of objectlang1 − subjectlang1 +
subjectlang2 = objectlang2. As shown in Table
2, we observed that CrossInit can initialize cross-
lingual analogy information.

3.6 Fast XNLI Experiment
So far we have analyzed CrossInit from the perspec-
tive of cross-lingual analogies. Before applying it
to standard multilingual experiments, we rendered
an analysis of XNLI. We pre-trained XLM-tiny-3
for 200k steps with batch size 128 on Wikipedia
dumps. We used Adam optimizer with learning
rate 1e − 4. For temperature sampling (Lample
and Conneau, 2019), we set α = 0.5 . After pre-
training, we evaluated XLM-tiny-3 on the XNLI
dataset with zero-shot settings (only fine-tuning on
the English dataset). We ran experiments 3 times
and showed the average results in Table 3. Due to
language diversities (i.e., Hi is distant), the model
is difficult to learn zero-shot cross-lingual transfer-
ability in zero-shot settings because of "the curse of
multilinguality" (Conneau et al., 2020). However,
we still observed significant gains for the distant
and low-resource language in all settings, which
means the gain is independent of shared tokens and
language similarities. We attributed this to a similar



(a) XLM-3-tiny.

(b) XLM.

(c) Bi-mBART-enro.

(d) mBART-ennehi .

Figure 5: PCA visualization for "CrossInit vs After Multilingual Pre-training". CrossInit is derived from the fact
that languages are motivated by common cognitive mechanisms and results in Zipf’s law with similar structural
patterns, as reported in the literature (Zipf, 1949, 2013; Divjak and Caldwell-Harris, 2019). This might be the
main reason that CrossInit predicts a possible structure of the embedding space for multilinguality and shows a
long-lasting effect from beginning to ending.

X cos (X , Queen) cos(X , Königin)
Random span=1000 span=2000 span=3000 Random span=1000 span=2000 span=3000

mono: King-Man+Woman 0.00 0.90 0.90 0.93 -0.04 0.92 0.93 0.91
mono: König-Mann+Frau -0.05 0.93 0.96 0.95 0.24 0.92 0.93 0.91
multi: King-Man+Frau -0.08 0.85 0.85 0.91 -0.10 0.92 0.93 0.93
multi: King-Mann+Woman 0.04 0.97 0.98 0.96 0.24 0.91 0.91 0.89
multi: King-Mann+Frau -0.05 0.96 0.97 0.96 0.16 0.92 0.93 0.91
multi: König-Man+Woman 0.00 87 0.87 0.92 0.04 0.92 0.93 0.92
multi: König-Man+Frau -0.09 -0.78 0.80 0.89 -0.03 0.89 0.91 0.93
multi: König-Mann+Woman 0.04 0.96 0.98 0.96 0.32 0.91 0.92 0.90

Table 1: Word analogy: King - Man + Woman = Queen (German: König-Mann+Frau = Königin).



CrossInit Lang1, 2=En, Hi Lang1, 2=En, De Lang1, 2=Hi, De avg.
span=1000 0.323/4.427 0.638/3.036 0.400/4.043 0.453/3.835
span=2000 0.323/5.080 0.641/3.473 0.408/4.518 0.457/4.357
span=3000 0.341/4.060 0.650/2.795 0.411/3.686 0.467/3.514
span=4000 0.346/4.503 0.652/3.088 0.431/3.967 0.476/3.853

Table 2: Word analogy from mLAMA statements. We create analogy tests in the form of objectlang1−subjectlang1+
subjectlang2 = objectlang2 and objectlang2 − subjectlang2 + subjectlang1 = objectlang1 from triples (object,
relation, subject) in 3 languages. We report cos(lang1, lang2) and L2(lang1, lang2). This is our dev test in
searching for an optimum span.

CrossInit en de hi avg.
Random initialization 72.69 54.05 41.99 56.24
CrossInit 74.17 58.66 47.58 60.14

Table 3: Fast XNLI Experiment. Results are reported
by averaging 3 runs.

geometric structure that CrossInit forms in initial-
ization across languages. We skip the introduction
of both XLM and XNLI here and will introduce
them properly in §Experiment.

3.7 Predictable Structure
Recall that, in §Introduction, we justified our mo-
tivation for CrossInit from cognitive mechanisms
and statistics on Wikipedia. However, if there is
a sufficient amount of training corpora available,
the effectiveness of well-organized embeddings
in initialization might be washed out due to ex-
tensive mappings between these trainable embed-
dings throughout training. There is an interesting
question: Can we predict a possible structure for
the embedding space? To answer this question,
we compared the embedding space at CrossInit
with the one after multilingual training. The idea
is, if the two structures are similar, it is possible
to predict an optimal structure for embeddings at
initialization. To set up experiments, we consid-
ered XLM (encoder-based) and mBART (encoder-
decoder-based). Figure 5 demonstrates the differ-
ence between "CrossInit" and "After Multilingual
Training", showing that the embedding space keeps
its shape throughout training. This suggests that
CrossInit has a long-lasting effect and predicts a
possible structure of the embedding space for all
the languages at initialization.

4 Experiment

Our analysis, including fast XNLI experiments,
demonstrated the effectiveness of CrossInit. In
scaled experiments, we evaluated our method in
larger-scale settings.

Model Card

XLM facebook/xlm-mlm-xnli15-1024
mBART facebook/mbart-large-en-ro
Wiki wikimedia/wikipedia (version: 20231101)
CC cc100
wmt16 wmt/wmt16
XNLI facebook/xnli
MLQA facebook/mlqa
FLoRes facebook/flores

Table 4: List of model cards.

4.1 Model and dataset cards

We used pre-configured models (including the to-
kenizers) and training datasets from Huggingface.
Model cards are listed in Table 4.

4.2 Multilingual Training with CrossInit

Following the previous work, we set up identical
XLM and mBART using the model cards and the
same corpora. Instead of using pre-trained weights,
we randomly initialized these models and applied
our CrossInit to embeddings. For pre-training,
we used the Adam optimizer (Kingma and Ba,
2015) with hyperparameters β1 = 0.9,β2 = 0.99,
ϵ = 10−6,lr = 1e− 4, and learning warm-up step
30k. We set dropout regularization with a drop rate
rate = 0.1. The batch size was 256. We trained
the model until no improvements were observed in
the dev sets.

4.3 Multilingual Task

XNLI We experimented with the cross-lingual
classification task on XNLI † (Conneau et al., 2018)
including all 15 languages to test the general cross-
lingual capabilities our method could impact. The
model with an additional layer deployed on top
is only fine-tuned on the En NLI dataset for the
English classification, aiming at making zero-shot
classification for other languages.

MLQA We experimented with MLQA† (Lewis
et al., 2020) for a cross-lingual question-answering



task. Given a question and a passage containing the
answers, the goal is to predict the answer text span
in the passage. This task involves identifying the
answer to a question as a span in the corresponding
paragraph. Similar to XNLI, the model is fine-
tuned on the English dataset and makes zero-shot
predictions for 6 other languages.

Unsupervised NMT UNMT (Lample and Con-
neau, 2019; Lample et al., 2018b; Liu et al., 2020)
tackles bilingual translation (Bahdanau et al., 2015;
Vaswani et al., 2017) on non-parallel bilingual cor-
pora without access to any parallel sentence. In
the pre-training phase, UNMT models are trained
on monolingual corpora for the two languages. In
the training phase, on-the-fly back-translation (Sen-
nrich et al., 2016) performs to generate synthetic
parallel sentences that can be used for training of
translation as NMT (neural machine translation)
is trained on genuine parallel sentences in a super-
vised manner.

5 Result

5.1 XNLI

Setup and Fine-tuning After multilingual train-
ing with CrossInit, we fine-tuned the models on
the English NLI dataset with mini-batch size 8.
We used Adam optimizer (Kingma and Ba, 2015)
with lr = 5e − 6. Categorical cross-entropy was
employed with three labels: entailment, contradic-
tion, and neutral. Following fine-tuning, we made
zero-shot predictions for the other 14 languages.

Performance We report the result in Table 5. Our
method consistently improved baseline models by
1.8% (Avg). As discussed in previous models (Con-
neau et al., 2018; K et al., 2020; Wu and Dredze,
2019; Pires et al., 2019; Dufter and Schütze, 2020),
multilinguality is crucial for this task. Therefore,
we obtained some evidence that CrossInit can en-
hance multilinguality, helping cross-lingual trans-
fer. Additionally, the result was consistent with
our fast experiment on XNLI as we observed more
gains in low-resource and dissimilar languages than
in rich-resource languages. For rich-resource lan-
guages, the result was slightly improved. In this
way, CrossInit is suitable for low-resource and
dissimilar languages, which improves the fairness
of multilingual models when considering all lan-
guages.

5.2 MLQA

Setup and Fine-tuning The setup was similar to
the experiment on XNLI. We used Adam optimizer
(Kingma and Ba, 2015) with lr = 5e−5 and linear
decay of lr. Meanwhile, as suggested, we fine-
tuned the model on the SQuAD v1.1 (Rajpurkar
et al., 2016) dataset and then made zero-shot pre-
dictions for the 7 languages of MLQA.

Performance The results are represented in Ta-
ble 6. CrossInit substantially improved the overall
performance (Avg) in terms of both F1 and EM
metrics, respectively. In addition, CrossInit yielded
more improvements for low-resource and dissim-
ilar languages, which was consistent with fast ex-
periments and XNLI. Meanwhile, answers across
languages are most likely to consist of analogous
nouns and terms with comparable frequencies in
Wikipedia. CrossInit can prompt similar embed-
dings for them at initialization, which could be
observed from our word analogy tests in Table 2.

5.3 UNMT

Setup and Training We considered 2 language
families. Specifically, we considered low-resource
language pairs Ro ↔ En on newstest2016. Mean-
while, we shared the FLoRes† (Guzmán et al.,
2019) task to evaluate a dissimilar language pair
Ne ↔ English. In the translation training phase,
we used Adam optimizer (Kingma and Ba, 2015)
with parameters β1 = 0.9,β2 = 0.997, ϵ = e− 9,
warm_up = 8000 and lr = 7e − 4 (Vaswani
et al., 2017). We set dropout regularization with
a drop rate rate = 0.1 and label smoothing with
gamma = 0.1 (Mezzini, 2018). On-the-fly back-
translation (Sennrich et al., 2016) (the inference
mode of the model) performed to generate syn-
thetic parallel sentences that can be used for trans-
lation training as NMT (neural machine transla-
tion) is trained on genuine parallel sentences in a
supervised manner. We reported scareBLEU† with
default rules.

Performance In Table 7, we report sacreBleu †
to compare with mBART (Liu et al., 2020). Given
Ne’s extremely low resources, we additionally in-
cluded its similar language Hi in our multilingual
training. We observed that CrossInit substantially
improved translation for low-resource and dissimi-
lar languages. These findings were consistent with
results from other experiments. CrossInit initializes
geometrical alignments and multilingual analogies,



Model en fr es de el bg ru tr ar vi th zh hi sw ur Avg

mBERT (Devlin et al., 2019) 81.4 74.3 70.5 62.1 63.8 58.3
XLM 83.1 76.4 76.3 74.2 73.1 74.0 73.1 67.6 68.3 71.1 69.1 71.6 65.6 64.5 63.4 71.5
+ CrossInit 83.2 77.1 76.6 74.6 73.7 74.8 73.7 70.7 70.6 73.2 71.2 73.7 69.1 68.6 67.6 73.3

Table 5: Performance of cross-lingual classification on XNLI. Models are initialized by CrossInit and trained on 15
languages.

Model en es de ar hi vi zh Avg

mBERT 77.7 / 65.2 64.3 / 46.6 57.9 / 44.3 45.7 / 29.8 43.8 / 29.7 57.1 / 38.6 57.5 / 37.3 57.7 / 41.6
XLM 74.9 / 62.4 68.0 / 49.8 62.2 / 47.6 54.8 / 36.3 48.8 / 27.3 61.4 / 41.8 61.1 / 39.6 61.6 / 43.5
+CrossInit 75.2 / 63.1 68.8 / 50.4 63.7 / 48.1 57.5 / 39.1 51.5 / 29.4 64.5 / 42.5 63.9 / 41.2 63.4 / 44.8

Table 6: Performance of cross-lingual question answering on MLQA. We report the F1 and EM (exact match) scores
for zero-shot prediction. Models are initialized by CrossInit and trained on 15 languages.

helping the model preserve language characteris-
tics based on a similar geometric spatial structure
across languages (Vulić et al., 2020). As a result,
we suspected that translation might be more fluent
due to the initialized language characteristics and
dependencies of each language.

6 Related Work and Other Inspiration

Structural Similarity and Zipf’s Law Zipf’s
law (Zipf, 1949, 2013; Søgaard, 2020) indicated
that words or phrases appear with different fre-
quencies, and one may suggest analogical words or
phrases appear with relatively similar frequencies
in other languages. In multilingual training, Wu
et al. (2020); K et al. (2020); Pires et al. (2019); K
et al. (2020); Sinha et al. (2021) studied structural
information and found that structural similarities
across languages are essential for multilinguality,
where in this paper, structural similarities referred
to similar ranks as Zipf’s law indicated. Another
interesting work was from Ai and Fang (2023a).
They used translation pairs to show that phrases
with similar meanings have similar (not identical)
frequencies in comparable corpora. We considered
spans of word ranks to alleviate the non-identical
problem reported by Ai and Fang (2023a) with Con-
trastive Learning. Moreover, Artetxe et al. (2020)
demonstrated that monolingual models trained in-
dividually on monolingual corpora eventually re-
sult in a similar structure including the embedding
space. In our case, due to Positive and Negative
pairs used for Contrastive Learning, embeddings
were refined to a similar geometric structure in the
embedding space across languages.

6.1 Language Adaptation
Lample et al. (2018a) demonstrated that bi-lingual
embedding space could be obtained by merging
all high-frequent words in two languages through
domain-adversarial training (Ganin et al., 2016).
Our method differs from these that we dynamically
search for principled words available to merge and
separate based on Zipf’s law. Some existing works
leveraged principled information from multiple
words, such as dynamic cross-lingual prototypes
with multiple target words (Ai and Fang, 2023b),
information theory with word context (Chi et al.,
2021), language domain adaptation with language-
specific words (Ai and Fang, 2022).

6.2 Pre-trained Embeddings for Initialization
Qi et al. (2018) showed an effective initialization
from pre-trained embeddings for downstream mul-
tilingual tasks. (Dufter and Schütze, 2020; Ai and
Fang, 2023b) considered pre-trained embeddings
in initialization for multilingual training with the
MLM objective. We shared the same goal. Com-
pared to those existing works, which considered
embedding similarity, CrossInit used word ranks as
implicit signals to align and refine embeddings. An-
other interesting line was initializing embeddings
for transfer learning (Minixhofer et al., 2022; Kim
et al., 2019), where new embeddings were properly
initialized in order to be merged with pre-trained
embeddings. In contrast, we focused on initializing
embeddings before training. However, CrossInit
might be further explored for a similar application.

7 Conclusion

We present CrossInit, a method for initializing
embeddings to create similar geometric struc-
tures across languages in an unsupervised man-



Language pair Ro ↔ En Ne ↔ En

mBART25 30.5 35.0 10.0 (+cc25 ) 4.4 (+cc25 )
bi-mBART ⋆ 31.5 32.9 2.3 (+Hi) 0.9 (+Hi)
bi-mBART + CrossInit 32.2 35.1 4.2 (+Hi) 2.1 (+Hi)

Table 7: Performance of UNMT. Models are initialized by CrossInit and trained on monolingual corpora in paired
languages. Given Ne’s extremely low resources, we use its similar language Hi in our multilingual training (+Hi ).
⋆ denotes models we reimplement with model cards. +cc25 stands for using cc25 corpora.

ner. CrossInit is based on Zipf’s law, a common
cognitive mechanism, indicating similar concepts
across languages have similar word ranks or fre-
quencies in their monolingual corpora. To address
the issue of non-identical ranks across languages,
CrossInit considers a span of consecutive ranks
in each language as the Positive pairs for align-
ment, while words inside and outside the span are
Negative pairs. CrossInit further employs Con-
trastive Learning for Positive and Negative pairs to
refine embeddings. In our analysis, we observed
that CrossInit can predict a possible structure of
the embedding space for cross-lingual transfer and
show a long-lasting effect throughout multilingual
training. In our experiments on UNMT, XNLI,
and MLQA, we observed significant gains in low-
resource languages and dissimilar languages after
applying CrossInit.

8 Limitation

We did not conduct experiments on incomparable
corpora. Incomparable corpora across languages
might have different domains, which results in sig-
nificant differences in word ranks as Zipf’s law
might be satisfied only for similar domains in prac-
tice. This might limit the scope of our method.
However, multilingual models are commonly pre-
trained on comparable corpora, e.g., Wikipedia and
CC.
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