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Abstract

We introduce a novel dataset tailored for code
generation, aimed at aiding developers in com-
mon tasks. Our dataset provides examples that
include a clarified intent, code snippets associ-
ated, and an average of three related unit tests.
It encompasses a range of libraries such as
Pandas, Numpy, and Regex, along with more
than 70 standard libraries in Python code de-
rived from Stack Overflow. Comprising 3,409
crafted examples by Python experts, our dataset
is designed for both model finetuning and stan-
dalone evaluation. To complete unit tests eval-
uation, we categorize examples in order to get
more fine grained analysis, enhancing the un-
derstanding of models’ strengths and weak-
nesses in specific coding tasks. The exam-
ples have been refined to reduce data con-
tamination, a process confirmed by the per-
formance of three leading models: Mistral
7B, CodeLLaMa 13B, and Starcoder 15B. We
further investigate data-contamination testing
GPT-4 performance on a part of our dataset.
The benchmark can be accessed at https://
github.com/NathanaelBeau/CodeInsight.

1 Introduction

In the dynamic landscape of software engineering,
developers frequently confront the challenge of
translating conceptual ideas into functional code.
While navigating this process, the gap between
intention and implementation can often be a hur-
dle, even for experienced programmers. Tradition-
ally, developers have turned to online resources like
Stack Overflow, searching for solutions in natural
language to address their specific coding dilemmas.

The emergence of large language models
(LLMs) trained on code has heralded a new era
in this domain. Innovations like Codex (Chen et al.,
2021a) have revolutionized the field by providing
real-time code suggestions in Integrated Devel-
opment Environments (IDEs). Similarly, models
such as ChatGPT and CodeLLAMA (Rozière et al.,

2023) demonstrate the potential for integrating into
IDEs, offering developers context-aware assistance
in initiating and refining code, thereby enhancing
the efficiency of the software development cycle.

However, the ascent of code generation through
LLMs underscores the heightened need for datasets
that emphasize precision, context-awareness, and
syntactic accuracy. While existing datasets have
propelled advancements in this arena, they have
limitations. The shift towards LLM-focused
datasets has led to a decreased emphasis on tra-
ditional training sets, directing attention towards
evaluation sets. This shift challenges the training of
models from scratch or for specific task fine-tuning.
Moreover, while datasets like HumanEval (Chen
et al., 2021b) or APPS (Hendrycks et al., 2021)
provide valuable insights, they often fall short of
mirroring the real-world coding challenges devel-
opers encounter.

Addressing these gaps, this paper introduces the
CodeInsight dataset, a resource specifically tai-
lored for Python code generation. This focus is
anchored in Python’s widespread adoption in key
sectors like data science, machine learning, and
web development. The dataset, comprising 3,409
unique, expert-curated Python examples, spans ba-
sic programming to complex data science chal-
lenges, complete with unit tests for evaluation. The
CodeInsight dataset stands out in its ability to pro-
vide a nuanced balance between breadth and depth,
offering a finely-tuned resource for training and
evaluating LLMs in Python code generation. By
bridging the gap between natural language and
code, CodeInsight presents a tool for understand-
ing and enhancing the capabilities of LLMs in real-
world programming contexts.

The dataset provides three primary innovations,
uniquely combined within this resource:

• It includes a unit test based evaluation, of-
fering a more robust evaluation metric than
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traditional methods such as BLEU score.

• Examples are annotated to facilitate a deeper
analysis of its strengths and weaknesses.

• It provides a training set in addition to a test
set, with each example being manually cu-
rated to ensure high quality, supporting effi-
cient fine-tuning.

Organized as follows, this paper first details the
dataset construction process in Section 2, includ-
ing our sources, selection criteria, and annotation
methods. Section 3 presents astatistical analysis
of the dataset, highlighting its diverse applications.
In Section 4, the dataset’s is tested through eval-
uations using LLM baselines. Lastly, Section 5
situates CodeInsight within the broader landscape
of code generation datasets.

2 Dataset Construction

Our pipeline for building CodeInsight consists of
three pivotal steps. Initially, we identified the
sources to retrieve examples. Subsequently, from
these sources, we filtered the most relevant natu-
ral language-code pairs. The final phase involved
annotating these pairs and crafting associated unit
tests. This section provides a breakdown of each
of these stages.

2.1 Data Sources
To develop a dataset for code generation aimed
at aiding development, we prioritize sources that
closely mirror real-world development challenges,
ensuring a match between natural language and
code. We chose Stack Overflow due to its exten-
sive collection of real-world programming ques-
tions and solutions, featuring balanced complexity
and contributed by a broad and experienced com-
munity.

Despite Stack Overflow’s extensive collection
of developer queries, only 36% of Python-tagged
questions fit the how-to format essential for our
dataset, as identified in Yin et al. (2018). A ’how-
to’ question typically presents a clear, task-oriented
query where the developer seeks a method to ac-
complish a specific programming task.

To address the challenge of identifying relevant
examples, we utilized the CoNaLa dataset (Yin
et al., 2018), a curated collection of Python ’how-
to’ examples from Stack Overflow. This dataset
features 2,379 examples that have been manually
reviewed and corrected by annotators, alongside

approximately 600,000 unrefined examples ranked
by their likelihood of fitting the ’how-to’ criteria.
Our selection encompassed the 2,379 hand-written
examples and the top-ranked 3,121 unrefined ex-
amples.

To broaden the scope and applicability of our
dataset, we have incorporated an additional 600
samples from Stack Overflow, emphasizing the use
of packages like Pandas, Numpy, and Regex. The
integration of these packages is a decision to align
the dataset with the emergent code generation de-
mands in data science, both in academic research
and industry applications. Moreover, Regex’s in-
clusion enhances the dataset’s to accommodate a
wider range of specialized problems.

The sourcing procedure began with the elim-
ination of redundancies and the filtration of is-
sues based on a baseline of community engage-
ment—measured by votes and views—and the pres-
ence of accepted answers. We then prioritized the
problems using a weighted ranking system that ac-
counts for the temporal dimension, recognizing that
older issues may naturally garner more attention
over time.

Finally, from our selection process, we gathered
a total of 7,300 raw examples to serve as the foun-
dation for our dataset.

2.2 Data Filtering

The transition into the data filtering phase necessi-
tates a strategy to select examples from the source,
acknowledging that not all contributions from the
Stack Overflow community are directly amenable
to our goals, as underscored by Yin et al. (2018);
Lai et al. (2023). To illustrate, the most upvoted
question on pandas is ’How to iterate over rows in
a DataFrame in Pandas’, yet the consensus answer
advises against iteration, highlighting the complex-
ity inherent in the selection process.

To navigate these intricacies, we established cri-
teria for inclusion:

Authenticity of Developer Inquiries Only those
questions that present realistic programming sce-
narios are considered, ensuring the dataset’s rele-
vance to the actual needs of developers.

Direct Extractability of Code We require that
the code snippet can be unambiguously identified
and extracted from the accompanying explanatory
text.



Figure 1: Curation Workflow from Stack Overflow to Dataset - The filtering phase (left) screens questions based on
usefulness, code extractability, alignment, and testability, with one example advancing. The labeling phase (right)
details the annotation of this example: extracting and standardizing code, refining the question for clarity with
normalized terms, and developing unit tests to validate the function.

Natural Language and Code Alignment A ro-
bust correspondence between the problem state-
ment and the code solution is necessary for main-
taining semantic integrity.

Executable Code Samples The code must be
functionally valid, capable of running in a desig-
nated environment, which is essential for both veri-
fying its effectiveness and constructing unit tests.
We decide to exclude code where we need to open
or save a file.

After implementing our filtering process, we re-
fined our initial collection of 7,300 examples to
2,707 distinct problems, constituting about 37% of
the original raw examples. This significant reduc-
tion is represented across various sources: from
Stack Overflow’s CoNaLa dataset, we retained
1,993 out of 5,500 examples; in the Pandas, Numpy,
and Regex categories, the numbers were pruned
down to 294, 242, and 178 from their respective
totals of 600.

The low retention rate in our dataset can be at-
tributed to various factors. For instance, some
CoNaLa dataset examples were either non-testable
or too specialized, necessitating extensive mod-
ification for practical use. Additionally, certain
examples offered best practice advice or warnings

rather than direct code solutions. The complexity of
queries involving advanced libraries like Pandas,
Numpy, and Regex also posed challenges. While
these queries provide valuable specialized advice
on Stack Overflow, they often require significant
adaptation for generalization. The second and third
examples on the left of Figure 1 illustrate these chal-
lenges: one involves extracting features from an
image using a library, which is relevant but difficult
to test due to the need for incorporating and process-
ing images. The other example from the Pandas
library focuses on best practices rather than direct
coding solutions, not aligning with the dataset’s
aim for concrete developer tasks. More examples
of what we consider as real-world problems, overly
specialized queries, or edge cases are detailed in
Appendix A.

2.3 Data Annotation

Our data annotation workflow is designed to pre-
vent model memorization and instead cultivate
problem-solving skills within the generated dataset.
Through a multi-stage annotation process presented
on the right of Figure 1, we curate selected ex-
amples from the filtering phase into delineated
instances, which are then tested against specially
crafted unit tests to ensure their correctness. By



refining natural language focusing on the semantic
relationships between functions and their descrip-
tions, we diminish the likelihood of models trained
on massive datasets to merely replicate solutions
seen in their training data, a concern highlighted by
Lai et al. (2023) regarding examples sourced from
Stack Overflow. To maintain focus and efficiency,
annotators are allocated a strict twenty-minute win-
dow per example to ensure timely progression and
a broad coverage of examples. The ensuing steps
show our annotation strategy:

Task 1 - Code Extraction from Stack Overflow
This initial phase entailed the extraction of code
solutions from Stack Overflow in response to devel-
opers’ inquiries. When the question admits more
than one valid response, annotators are expected
to capture alternate solutions as well, creating a
supplementary example for the same intent. Upon
extraction, they transform these snippets into a stan-
dardized Python function named test, systemati-
cally renaming arguments (e.g., vari for variables,
arri for arrays, etc. See Appendix B for all normal-
ized names). This normalization approach aligns
with Yin et al. (2018), recognizing, as pointed out
by Beau and Crabbé (2022), the significant influ-
ence this method has on models performance.

Task 2 - Refinement for Natural Language and
Code Consistency During this stage, annotators
refined the natural language descriptions to pre-
cisely correspond with the test function created
in Task 1. The challenge lay in harmonizing the
language descriptions with the Python code’s logic,
ensuring they are concise yet informative. Anno-
tators were also tasked with incorporating normal-
ized argument names into these descriptions to bol-
ster the dataset’s internal coherence and force the
alignment.

Task 3 - Development of Function Test Cases
The concluding annotation task involved the gener-
ation of 3 unique test cases for each test function,
designed to rigorously assess the function’s opera-
tional integrity and accuracy. These test cases in-
clude a normal scenario, an edge case, and an error
situation, providing comprehensive coverage. This
ensures a thorough yet time-efficient evaluation.
Once the test cases have been passed, annotator
can proceed the next example.

A team of five data science professionals, each
with a minimum of five years of experience, con-
tributed to the labeling of the filtered examples.

They managed to complete the annotation in an av-
erage time of twelve minutes per example, amount-
ing to a collective annotation effort of over 540
hours.

This process yielded a compendium of 3,409 ex-
amples derived from 2,702 distinct problem state-
ments formulated by seasoned developers.

3 Dataset Statistics

This section outlines the statistical framework of
our dataset, highlighting the diversity of program-
ming tasks and the complexity of the included code
samples. We approach the analysis from two an-
gles: the representation of code libraries and differ-
ent labels representing the characteristics of code.
Key metrics such as item count, average words per
natural language problem, and lines per code sam-
ple, alongside the depth of Abstract Syntax Tree
(AST) to complete code analysis, are presented to
give keys of the difficulty of the dataset.

3.1 Packages Statistics

The Table 1 illustrates the scope of CodeInsight,
which encompasses a variety of packages.

A key aspect of CodeInsight is its focus on con-
cise and precise problem descriptions, a departure
from datasets that retain extensive problem con-
texts. This approach is aimed at reducing the word
count in problem descriptions without sacrificing
clarity and specificity, a crucial factor for effective
code generation.

Code complexity is evaluated using two pri-
mary quantitative metrics: the mean line count
of code alongside the depth of ASTs. The lat-
ter, a measure of syntactic structure complexity,
serves to augment the insights gained from line
count data. Analysis of AST depth within our
dataset reveals a trend: more intricate coding struc-
tures, characterized by nested or conditional logic,
are associated with deeper ASTs, whereas sim-
pler, linear code correlates with shallower ASTs.
Notably, across different packages in our dataset,
the AST depth remains relatively consistent, with
minor variations observed in packages like Scipy
and Scikit-learn, potentially attributable to their
smaller sample sizes.

Our dataset is compared with the DS-1000
dataset (Lai et al., 2023), the latter comprising
1,000 evaluation instances and utilizing specialized
data science tools from Stack Overflow, complete
with extensive problem descriptions. Despite sim-



Item Count Avg. Prob Words Avg. Code Lines Avg. Depth AST
Package CodeInsight DS-1000 CodeInsight DS-1000 CodeInsight DS-1000 CodeInsight DS-1000

Full dataset 3,409 1,000 12.6 ± 4.3 140.0 4.6 ± 2.3 3.6 8.6 ± 1.5 8.5

Pandas 819 291 14.1 ± 4.2 184.8 3.59 ± 1.9 5.4 8.7 ± 1.4 10.7
Numpy 591 220 12.2 ± 3.3 137.5 5.3 ± 1.2 2.5 8.0 ± 1.4 8.1
Scikit-learn 19 115 13.8 ± 5.5 147.3 8.1 ± 7.4 3.3 7.6 ± 0.7 7.6
Scipy 8 106 13.0 ± 4.4 192.4 5.5 ± 1.3 3.1 6.5 ± 1.8 8.3

NoImport 415 - 12.1 ± 4.0 - 3.6 ± 1.9 - 8.2 ± 1.2 -
Re 241 - 12.2 ± 2.1 - 5.5 ± 0.8 - 8.1 ± 1.4 -
Other 1309 - 12.5 ± 3.2 - 6.1 ± 2.8 - 8.7 ± 0.9 -

Matplotlib - 155 - 21.1 - 3.0 - 6.5
TensorFlow - 45 - 192.4 - 3.1 - 7.8
Pytorch - 68 - 133.4 - 2.1 - 8.2

Table 1: Comparative Analysis of Package Statistics in CodeInsight and DS-1000 Datasets. Avg. Prob Words
consist into the average length of natural language statement. Standard deviations are reported where applicable.
"-" indicates the package is not included in the dataset. Other contains 78 distinct packages like Itertools,
Collections, Operator, etc. Detailed statistical data can be found in Appendix D.

ilarities in code line counts and complexity, dif-
ferences in AST depths, particularly in Pandas,
indicate nuanced syntactic complexity variances.
CodeInsight features a higher average number of
unit tests per example, suggesting a more thorough
evaluation methodology. Unlike DS-1000, which
lacks detailed analysis of code model failures in
unit tests, we provide a statistical breakdown of
code categories to enhance understanding of model
performance in the next Section.

Figure 2: Ratio of positive (belonging to a specific cat-
egory) to negative (not belonging to the category) ex-
amples for each of the 10 distinct Categories focusing
on item count, average code lines and AST depths. De-
tailed statistical data supporting this analysis can be
found in Appendix D.

3.2 Labels Statistics

In our study, we identified 10 Categories to en-
hance our analysis and gain a better understanding

of our dataset. These predefined categories provide
insights into the conditions under which models
were successful or not. These categories vary from
basic indicators like BUILTIN denoting the use of
Python’s built-in functions, to ASSIGN marking
variable assignments. More complex categories
include COMPLEXTASK for codes with multiple
imports, and >THREEVARS for functions with over
three arguments. Each example in the dataset is bi-
nary annotated—marked as positive if it falls under
a category and negative otherwise. For a precise
definition of all Categories , refer to Appendix C.

Figure 2 illustrates the ratio of positive to neg-
ative examples for each category to highlight the
impact of each category. For example, we compare
the ASSIGN category against all examples that do
not include variable assignments. Our analysis pri-
marily focuses on the most striking ratios, namely
the item count, average code lines and average AST
depth, as we found that the unit tests and average
problem words exhibit minimal variation across
the dataset. Detailed statistical data is provided in
Appendix D.

The blue bars in the chart, representing item
count ratios, significantly highlight the volume and
distribution of data in each category. This show-
cases the prevalence of certain coding practices; for
instance, the BUILTIN category, with nearly twice
as many instances as its counterpart, suggests fre-
quent utilization of built-in functions, indicative
of a Pythonic approach in our dataset. In contrast,
labels like COND and LOOP exhibit more balanced
distributions, reflecting a diverse representation of
these elements. Notably, categories such as COM-



PLEXTASK and >THREEVARS are less represented,
aligning with the expectation of their complexity.

In the context of average code lines, represented
by green bars in the graph, specific categories
such as COMPLEXTASK, MULTIPLETASK, and
>THREEVARS exhibit notably higher ratios. This
finding suggests a more intricate and voluminous
nature of code associated with these tasks. Contrary
to initial expectations, the LOOP category does not
show an increased number of lines. Further investi-
gation indicates that this outcome can be attributed
to the frequent utilization of Python list compre-
hensions in this category, which typically reduces
the number of code lines. In terms of AST depth, it
remains relatively consistent for MULTILINE and
>THREEVARS categories. This observation implies
that longer codes or handling multiple variables do
not necessarily correlate with increased syntactic
complexity. However, in the cases of MULTIPLE-
TASK and COMPLEXTASK, there is a correlation
between the number of code lines and higher syn-
tactic complexity. For other categories, the com-
plexity levels remain to be stable.

Overall, this analysis underscores the diverse na-
ture of coding practices and the value of categoriza-
tion in understanding code complexity and coding
styles in a nuanced manner. This category-based
perspective evaluation on code analysis can be used
in general to understand better model mistakes and
way to improve model development.

4 Baselines

In this section, we test our dataset using state-of-
the-art LLMs for code generation. Considering
the volume and nature of our dataset, we explore
various model evaluation methodologies. Initially,
we employ a zero-shot evaluation framework, aug-
menting it with pre-prompts to align better with
our specialized task. Subsequently, we experi-
ment diverse partitioning strategies of the dataset
for model fine-tuning, followed by evaluation on
the remaining data. Additionally, we conduct a
comparative performance analysis of GPT-4 on a
subset of CoNaLa examples and their modified ver-
sions by our annotators, to understand the impact
of language and code remodeling relatively to data
contamination.

4.1 Experimental Setup

Models We evaluate the following pre-trained
language models: Mistral 7B (Jiang et al., 2023) ;

CodeLLAMA 13B (Rozière et al., 2023) and Star-
coder 15B (Li et al., 2023). These models have
been selected to provide a perspective on the scal-
ability of model performance in relation to their
size and the intricacies of code understanding and
generation.

Evaluation Metrics We follow Lai et al. (2023)
and measure the execution accuracy using the
pass@1 metric i.e. we generate one code and test it
against all unit tests. We also use the BLEU score
(Papineni et al., 2002) and the codeBLEU score
(Ren et al., 2020) to complete our evaluation.

Model input For evaluation, we give to the
model the intent in natural language and its as-
sociated function header with its arguments. Once
the generation is finished, we automatically detect
the end of the function -when it exists- to get the
whole code and test it.

4.2 Prompting Evaluation

Mistral CodeLLAMA Starcoder

Without Prompt 4.7% 44.7% 45.1%
First Prompt 4.9% 40.3% 45.1%
Second Prompt 10.1% 48.1% 46.8%

Table 2: Baselines result varying prompt method. We
report the percentage of all unit tests passed (pass@1
score).

Without prompt Initially, the models were eval-
uated using the entire dataset without any addi-
tional context added to the natural language intent.
The results, as presented in the Table 2, indicate a
contrast in performance. Mistral showed notably
lower efficiency compared to CodeLLAMA and
Starcoder, which both passed nearly 45% of the
unit tests. A key observation was the absence of a
return statement in a significant proportion of the
generated code. While Python allows for scenarios
where not returning an explicit value is acceptable,
such as actions or modifications without a return
value, our dataset did not align with these scenarios.
Mistral particularly exhibited a tendency (25% of
the cases) to end functions with print statements
instead of return statements, affecting its accuracy.

First prompt In an attempt to steer the models
towards generating return statements for develop-
ment aid tasks, a pre-prompt was introduced: “You
are a powerful code generation model. Your job
is to convert a given natural language prompt into



Split Pass@1 BLEU codeBLEU

20-80 48.9± 0.6% 50.0± 0.2 42.5± 0.1
40-60 52.6± 0.8% 58.1± 0.4 48.8± 0.4
60-40 53.4± 1.0% 57.9± 0.8 48.8± 0.7
80-20 53.1± 1.7% 57.9± 1.4 48.6± 1.2

Table 3: Scores for Different Splits of CodeLLaMA over
five different seed. We report the mean and standard
deviation for each metric.

Python function code and return the result.”. Sur-
prisingly, this prompt only marginally improved
Mistral’s performance, with a slight increase in re-
turn statement generation. However, it did not sig-
nificantly affect the performance of CodeLLAMA
and Starcoder. Notably, CodeLLAMA’s perfor-
mance even dropped to 40%, indicating that this
prompting method might not be optimal.

Second prompt Aiming to further encourage the
generation of return statements, a different prompt,

“Return the Result.” was added to the end of the
natural language intent. This change led to an over-
all improvement in performance across all mod-
els, with CodeLLAMA outperforming Starcoder.
Mistral, although still lagging, showed an improve-
ment, successfully passing 10.1% of the unit tests.

4.3 Fine-Tuning Evaluation

This segment delves into fine-tuning configurations
to discern their impact on model efficacy.

Splitting Method For the assembly of our test
subset, we curated a collection of 3,094 unique
problems, each along with at least three unit tests to
ensure an assessment of model performance. This
selection criterion is grounded in the necessity for
test case coverage, which is important in evaluat-
ing model robustness. Out of this repository, we
allocated different subset to evaluate the need of a
train set to perform on test set.

Fine-Tuning Details We finetuned using Lora
with r = 16 and α = 16. The LoRA layer incor-
porated a dropout rate of 0.05 and was configured
without bias adjustments. The batch size was estab-
lished at 128, encompassing a warmup phase of 100
steps and an overall training regimen of 400 steps.
The learning rate was set at 3× 10−5, with the op-
timization executed using the AdamW algorithm.
To optimize computational efficiency, training was
conducted using half-precision computation (FP16)
on an a100 GPU with 40GB memory.

We crafted four distinct training/test splits - 20-
80, 40-60, 60-40, and 80-20 - to fine-tune the
CodeLLaMa model. Each split was evaluated over
five different seeds, and the results are depicted in
the following table.

In our analysis, we noticed that the performance
scores for CodeLLaMa exhibit minimal variation
when the training set ranges between 40% to 80%.
Interestingly, these scores surpass those achieved
through prompting alone. It appears that fine-
tuning with just 20% of the dataset approaches
the performance levels seen with prompting meth-
ods, yet it falls short by approximately 4 percentage
points in the pass@1 metric and at least 6 points in
both BLEU and codeBLEU scores. Given our ob-
jective to maximize the utilization of unit tests, we
have determined that a 40-60 split represents the
most optimal division for the final configuration of
the CodeInsight dataset. This decision is grounded
in achieving a balanced approach between training
efficacy and test coverage.

4.4 Results
Finally, we chose the 40-60 split to perform our
final evaluation on our baselines. We report the
result in Table 5. The Table highlights that fine-
tuning has a varied impact on different models.
Fine-tuning yields comparable outcomes for Star-
coder and CodeLLaMa, each passing slightly over
half of the problems. Notably, Starcoder excels in
complex tasks like COMPLEXTASK and >THREE-
VARS, though it drops to 30% in logical complex
tasks. Regex, being a distinct language, poses chal-
lenges for all models. Interestingly, Mistral shows
significant improvement post-finetuning, adapting
well to the task with 38.4% test pass rate. However,
Mistral struggles with complex tasks and Regex,
likely due to its non-code-specific pre-training, un-
like the other two models.

We provide a deeper error analysis of CodeL-
LaMa in Appendix E.

4.5 Exploring remodeling relatively to data
contamination

In Section 2.3, we detail our approach to mitigate
data contamination by rephrasing natural language
intents and converting code snippets into function
formats. Out of 2,379 CoNaLa handwritten exam-
ples, we annotated 812 for analysis. Considering
the possibility of these examples being included in
GPT-4’s training set—a model not open for fine-
tuning—we evaluated its zero-shot performance on



Dataset Problems Evaluation Avg. Test Cases Avg. P Words Avg. Lines of Code Data Source Train Set

HumanEval 164 Test Cases 7.7 23.0 6.3 Hand-Written No
MBPP 974 Test Cases 3.0 15.7 6.7 Hand-Written No
APPS 5000 Test Cases 13.2 293.2 18.0 Competitions Yes

JulCe 1981 Exact Match + BLEU – 57.2 3.3 Notebooks No
DSP 1119 Test Cases 2.1 71.9 4.5 Notebooks No
CoNaLa 500 BLEU – 13.8 1.1 StackOverflow Yes
Odex 945 Test Cases 1.8 14.5 3.9 Stack Overflow No
DS-1000 1000 Test Cases 1.6 140.0 3.6 StackOverflow No

CodeInsight 1860 Test Cases 3.0 12.6 4.7 StackOverflow Yes

Table 4: Comparison of Test Set Statistics for CodeInsight with recent Code Generation Datasets

Category Total Starcoder CodeLLAMA Mistral
Full Dataset 1860 52.5% 53.1% 38.4%

Labels
MULTILINE 1258 51.8% 50.2% 42.0%
ASSIGN 703 47.0% 48.2% 40.5%
MULTIPLETASK 692 44.5% 42.2% 39.8%
BUILTIN 1292 51.2% 49.8% 41.9%
COND 260 46.7% 47.6% 38.3%
LOOP 573 48.9% 47.8% 40.4%
LIST 408 49.0% 49.5% 41.2%
>THREEVARS 47 53.5% 53.1% 42.3%
COMPLEXTASK 90 35.6% 34.5% 23.1%

Packages
Pandas 458 56.0% 55.2% 44.8%
Numpy 335 53.6% 52.8% 43.2%
NoImport 775 54.1% 53.9% 44.0%
Regex 133 37.5% 38.3% 26.2%

Table 5: Baselines Result on final Test Set split 40-60.
We report the pass@1 for all models.

them, achieving a BLEU score of 58.8.
Further analysis was conducted on the 812 ex-

amples post-annotation to assess the impact of our
modifications. This evaluation resulted in a BLEU
reduction to 47.6. Remarkably, without fine-tuning,
GPT-4 passed 64% of unit tests for these examples,
indicating its effectiveness in understanding natural
language.

The performance of GPT-4, despite a drop in
BLEU score, suggests its coding capabilities rather
than full data leakage from its training phase. The
contrast in BLEU scores before and after annota-
tion suggests our approach’s impact. Appendix F
presents GPT-4’s predictions, illustrating potential
memorization.

5 Related Works

We introduce a comparative analysis, as detailed in
Table 4, to assess our evaluation set against prevail-
ing code generation datasets. This analysis clusters
HumanEval (Chen et al., 2021b), MBPP (Austin
et al., 2021), and APPS (Hendrycks et al., 2021)
due to their emphasis on resolving comprehensive

programming challenges. Our dataset, however, is
distinguished by its focus on development assis-
tance, which is typically characterized by a lower
average line count in the provided code examples,
reflecting a different use case compared to the afore-
mentioned datasets. It is important to note that
many datasets are designed primarily for the pur-
pose of evaluating LLMs, which aligns with the
prevalent trend in the field. However, the CodeIn-
sight dataset sets itself apart by offering an aver-
age number of unit tests per example that exceeds
those found in datasets oriented towards data sci-
ence, such as DSP (Chandel et al., 2022), DS-1000
(Lai et al., 2023), and ODEX (Wang et al., 2022).
This difference is largely due to the specific re-
quirements of data science code generation tasks,
which often necessitate fewer but more complex
test cases, dealing with sophisticated input objects
like square matrices, classifiers, or dataframes.

Featuring three distinct unit tests per example,
a specialized training set, and predefined labels
for in-depth performance analysis, the CodeInsight
dataset represents an unparalleled resource. It sup-
ports fine-tuning and a comprehensive evaluation of
code generation models, offering a novel approach
to enhance their development and assessment.

6 Conclusion

In conclusion, CodeInsight proposes a new frame-
work for testing code generation, specialized in
assisting developers. It adeptly links natural lan-
guage and code in 3,409 problems, providing a
robust platform for model training and evaluation.
The dataset’s strength lies in its diversity, expert
annotation, and focus on practical coding scenar-
ios, making it a valuable asset in the intersection
of computational linguistics and code generation
research. Thanks to its categories, it allows a more
precise comprehension of code generation model
on this task and is completely compatible with



other datasets for development aid.

Limitations

The CodeInsight dataset, while innovative, presents
several limitations. Firstly, its specialized nature
in development aid may not fully represent the
broader spectrum of coding challenges. Expert an-
notations, while valuable, could introduce biases
and may not capture diverse coding methodolo-
gies. Additionally, the dataset’s current scope may
limit its adaptability to evolving programming lan-
guages and practices. Furthermore, its reliance on
Python restricts its applicability across different
programming environments. These limitations sug-
gest areas for future expansion and improvement
to enhance the dataset’s comprehensiveness and
applicability in diverse coding contexts.
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A Detailed overview of filtering phase

We include two tables that analyze the exploitabil-
ity of examples from the CoNaLa dataset. The
Table 6 presents the 10 examples with the high-
est probability of exploitability, highlighting their
votes, titles, and whether they are exploitable. The
Table 7 displays a random selection of 10 exam-
ples from the same dataset, also detailing their ex-
ploitability probability, votes, and titles.

We provide a detailed description of an accepted
example, a rejected example and a borderline case
for passing the filtering phase.

P(expl) Vote Title Exploitability
0.87 +8 Sort a nested list by two elements Yes
0.85 +61 Converting integer to list in python Yes
0.85 +37 Converting byte string in unicode string Yes
0.85 +7 List of arguments with argparse No
0.84 +20 How to convert a Date string to a DateTime object? Yes/No
0.82 +64 Converting html to text with Python Yes
0.81 +8 Ordering a list of dictionaries in python Yes
0.81 +4 Two Combination Lists from One List No
0.80 +4 Creating a list of dictionaries in python No
0.79 +16 get index of character in python list Yes

Table 6: Exploitability of the 10th examples with high-
est P(exploitability) from CoNaLa dataset

P(expl) Vote Title Exploitability
0.75 +11 How can I plot hysteresis in matplotlib? No
0.67 +499 How can I get list of values from dict? Yes
0.71 +7 How do I stack two DataFrames next to each other in Pandas? Yes
0.56 +4 List sorting with multiple attributes and mixed order No
0.10 +7 Set x-axis intervals(ticks) for graph of Pandas DataFrame No
0.26 +6 pandas binning a list based on qcut of another list No
0.05 +1989 Determine the type of an object? Yes
0.03 +11 Saving an animated GIF in Pillow No
0.02 +5 Quiver or Barb with a date axis No
0.018 +6 Can’t pretty print json from python No
0.008 +31 For loop - like Python range function No

Table 7: Exploitability of 10th random from CoNaLa
dataset

Accepted example We detailed the accepted ex-
ample which is the first one on the left of the Figure
1. This particular example, a query about finding
the largest values in a numpy array, demonstrates
a typical developer’s question due to unfamiliar-
ity with specific numpy functions. Its solution,
involving the argpartition function, is directly
responsive to the query and easily testable, making
it a perfect fit for our dataset.

Rejected example The "List sorting with multi-
ple attributes and mixed order" question on Stack
Overflow from Table 7 presents an excessive level
of specificity for inclusion whereas it has a high
P(expl) value. This question delves into sorting
a list by different attributes of a particular class,
emphasizing the specific class’s complexity rather
than a broader understanding of sorting functions.
The high level of detail in both the problem and its
solution complicates the extraction of universally
applicable code examples. Therefore, including it
may not aptly represent the range of coding tasks
and challenges.

Edge example An example such as "How to con-
vert a Date string to a datetime object?" presented
in Table 6 necessitates a more specific reformu-
lation for a precise coding answer, like "How to
compare a date string in ISO format to a datetime
object." This demands the annotator’s understand-
ing of ISO format data. These are considered edge
cases in our dataset and are included based on the
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annotator’s expertise, who are constrained to a max-
imum of 20 minutes per annotation process.

B Normalized variable names

LABEL CONDITION

vari Variable
dicti Dictionary
arri Array
dfi Dataframe
stri String
lsti List
mati Matrix
inti Int

Table 8: List of normalized variable names used in our
dataset

The Table 8 outlines the standardized variable
names utilized in the dataset, such as vari for
’Variable’ and dicti for ’Dictionary’, where i cor-
respond to the number of the element appearing.
This approach also allows for evaluating model
efficacy with or without these normalized names.
Note that vari is employed universally, even when
alternatives might be applicable, without affecting
test outcomes.

C Code Categories

Label Condition Description
ASSIGN Includes variable assignment.
BUILTIN Uses a built-in function.
COND Has conditional statement(s).
LOOP Contains ‘for‘ or ‘while‘ loops.
STR Performs string operation(s).
LIST Uses list method(s).
MULTILINE Code exceeds two lines.
MULTIPLETASK Has ≥3 other Labels.
>THREEVARS Function with >3 parameters.
COMPLEXTASK Has ≥2 imports

Table 9: Detailed Labels for Automated Annotation

D CodeInsight Statistics

The two tables provide a detailed statistical analy-
sis of the CodeInsight dataset, breaking down by
Packages and Labels. The Table 10 covers various
Python packages like Pandas, Numpy, and Regex,
detailing the item count, average problem words,
code lines, and unit tests. The second Table 11 ana-
lyzes different labels presented in Appendix C such

as Builtin, Assign, Cond, and others, also including
their item count and average metrics. Both tables
gives insight on the dataset’s complexity and diver-
sity into the typical problem structure and testing
framework associated with different programming
constructs and packages.

Item Count Avg. Prob Words Avg. Code Lines Avg. Unit Tests

Full dataset 3,409 12.6± 4.3 4.6± 2.3 3.0± 0.4

NoImport 415 12.1± 4.0 3.6± 1.9 3.0± 0.4
Pandas 819 14.1± 4.2 5.4± 1.8 3.0± 0.2
Numpy 591 12.2± 3.3 5.3± 2.0 3.0± 0.2
Re 241 12.2± 2.1 5.5± 0.8 3.0± 0.2
Scikit-learn 19 13.8± 5.5 8.1± 7.4 3.0± 0.0
Scipy 8 13.0± 4.4 5.5± 1.3 3.0± 0.0
Itertools 55 11.8± 3.5 6.4± 3.1 3.0± 0.4
Collections 39 13.1± 3.5 6.8± 2.6 3.0± 0.2
Operator 43 13.4± 3.0 5.0± 1.4 3.2± 0.5
String 8 9.0± 1.8 5.8± 1.1 3.0± 0.0
Random 14 12.0± 2.0 5.4± 2.4 2.9± 0.5
Math 8 13.1± 4.7 6.0± 1.9 2.9± 0.3

Table 10: Statistical analysis of Packages in CodeIn-
sight. We report including Item Count, Average Prob-
lem Words, Code Lines, and Unit Tests with Standard
Deviations.

Item Count Avg. Prob Words Avg. Code Lines Avg. AST depth

Full dataset 3402 12.6± 4.3 4.6± 2.3 3.0± 0.4

BUILTIN 2261 12.7± 3.8 4.7± 2.2 8.7± 1.5
NOBUILTIN 1141 12.4± 3.6 4.6± 1.4 7.7± 1.2
ASSIGN 1269 13.2± 3.9 5.8± 2.4 8.6± 1.4
NOASSIGN 2133 12.3± 3.6 4.0± 1.4 8.2± 1.5
COND 471 13.4± 3.8 5.8± 2.9 9.2± 1.3
NOCOND 2931 12.5± 3.8 4.5± 1.8 8.2± 1.4
STR 885 12.8± 3.5 5.1± 2.0 8.5± 1.6
NOSTR 2517 12.6± 3.9 4.5± 2.0 8.3± 1.5
LIST 685 12.8± 3.8 4.8± 3.0 8.9± 1.3
NOLIST 2717 12.6± 3.8 4.7± 1.6 8.2± 1.5
LOOP 981 12.8± 3.8 4.8± 2.8 9.0± 1.3
NOLOOP 2421 12.5± 3.8 4.6± 1.5 8.2± 1.5

MULTILINE 2232 12.8± 3.7 5.5± 1.9 8.5± 1.5
NOMULTILINE 1170 12.2± 3.9 2.7± 0.5 8.3± 1.4
MULTIPLETASK 1236 13.2± 3.8 5.6± 2.5 8.9± 1.5
NOMULTIPLETASK 2166 12.3± 3.7 4.1± 1.4 7.8± 1.4
COMPLEXTASK 169 13.2± 3.8 7.0± 2.8 10.4± 2.3
NOCOMPLEXTASK 3233 12.6± 3.8 4.6± 1.9 8.3± 1.5
>THREEVARS 82 16.9± 4.2 5.5± 1.2 8.6± 1.4
<=THREEVARS 3320 12.5± 3.7 4.7± 2.0 8.4± 1.5

Table 11: Statistical analysis of Labels in CodeIn-
sight. We report including Item Count, Average Prob-
lem Words, Code Lines, and AST depth with Standard
Deviations.

E Code Error Analysis

We present in Table 12 an error analysis of dif-
ferent CodeLLaMa outputs on our dataset.

For the first scenario, involving scikit-learn, the
task is to generate a textual representation of a
decision tree with specified feature names for read-
ability. Despite providing the model with import
statements and the function signature, the gener-
ated code omits the necessary argument syntax
feature_names=feature_names0, resulting in a
TypeError due to excessive positional arguments.
This minor but pivotal error exemplifies a scenario



Statement Generated Code Reference Code

Extract decision
rules from a scikit-
learn decision
tree tree0 with
feature_names
feature_names0

1 from sklearn.tree import export_text
2 def test(tree0, feature_names0):
3 return export_text(tree0,

feature_names0)

1 from sklearn.tree import export_text
2 def test(tree0, feature_names0):
3 return export_text(tree0,

feature_names=feature_names0)

Split a string str0
and keep the sepa-
rators

1 import re
2 def test(str0: str) -> list:
3 return re.split(r’\W+’, str0)

1 import re
2 def test(str0: str) -> list:
3 return [x for x in re.split(r’(\W

+)’, str0) if x]

Reset index in a
pandas dataframe
df0

1 import pandas as pd
2 def test(df0):
3 df0.reset_index(inplace=True)
4 return df0

1 import pandas as pd
2 def test(df0):
3 return pd.DataFrame(df0.values,

columns=df0.columns)

Table 12: Error analysis of CodeLLaMa outputs on our final evaluation set.

where a developer could struggle with argument
specification.

In the second case, the task is to split a string
while retaining separators, such as punctuation or
special tokens like newline characters. The gener-
ated code, however, omits an essential parenthesis
in the re.split function, leading to a split that ex-
cludes the separators. This highlights the dual com-
plexity of understanding both Python and Regex
syntaxes.

The final example presents an annotation discrep-
ancy. It involves resetting the index of a Pandas
dataframe without specific instructions on handling
the old index. The model correctly employs the
reset_index function, typically retaining the old
index as a new column. However, the reference
code, and consequently the unit tests, do not pre-
serve the old index. Thus, while the generated code
aligns with the stated task, it fails unit tests due to
the discrepancy in index handling. This case under-
scores the need for nuanced dataset analysis and
exemplifies the challenges of borderline scenarios
in dataset construction.

F GPT-4’s prediction

We investigate data contamination within the
CoNaLa and our dataset by examining GPT-4’s
outputs on both dataset. This can offer information

in re-writting example during data annotation
phase to mitigate data contamination.

Discussion This discussion presents an analysis
of GPT-4’s outputs on equivalent examples from
the CoNaLa dataset and our dataset, CodeInsight,
as detailed in Tables 13 and 14.

For the CoNaLa dataset, the analysis of GPT-
4’s predictions reveals interesting observations for
the first and third examples. Specifically, GPT-4
autonomously includes an assignment to variable
r in its prediction for the first example, despite the
absence of such instruction in the original example.
Similarly, in the third example, GPT-4 employs the
k_v variable, an uncommon choice, demonstrating
a potential memorization to variable naming.

Conversely, the second example highlights GPT-
4’s ability to generalize. The model infers the use
of date_string even though the specific datetime
format is not explicitly mentioned in the intent,
showcasing its adeptness at filling in contextual
gaps based on the provided intent.

Regarding the outputs on CodeInsight for the
same rewritten intents, GPT-4’s accuracy remains
consistent for the first example. The second exam-
ple further underscores GPT-4’s precision, where
the model’s prediction aligns exactly with the ref-



Intent Reference
Solution

GPT-4
Prediction

Convert a
list of
integers x
into a single
integer

1 r = int(’’.join
(map(str, x
)))

1 r = int(’’.join
(map(str, x
)))

Convert a
DateTime
string back
to a
DateTime
object of
format
%Y-%m-%d
%H:%M:%S

1 datetime.
strptime
(’2010-11-13
10:33:54’,
’%Y-%m-%d
%H:%M:%S’)

1 datetime.
datetime.
strptime(
date_string
, ’%Y-%m-%d
%H:%M:%S’)

Reverse sort
dictionary d
based on its
values

1 sorted(list(d.
items()),
key=lambda
k_v: k_v
[1],
reverse=
True)

1 sorted(list(d.
items()),
key=lambda
k_v: k_v
[1],
reverse=
True)

Table 13: GPT-4’s Outputs Comparison for CoNaLa

Intent Reference
Solution

Prediction

Convert a
list of
integers
lst0 into a
single
integer.

1 def test(lst0):
2 return int

(’’.join(
map(str,
lst0)))

1 def test(lst0):
2 return int

(’’.join(
map(str,
lst0)))

Convert a
datetime
string str0
back to
datetime
object of
format
%Y-%m-%d
%H:%M:%S.

1 from datetime
import
datetime

2

3 def test(str0):
4 return

datetime.
strptime(
str0, "%Y-%
m-%dT%H:%M
:%S")

1 from datetime
import
datetime

2

3 def test(str0):
4 return

datetime.
strptime(
str0, "%Y-%
m-%dT%H:%M
:%S")

Sort in
reversing
order the
items in
dictionary
dict0 by
their first
values.

1 def test(dict0):

2 return dict
(sorted(
dict0.items
(), key=
lambda item
: item[1],
reverse=
True))

1 def test(dict0):

2 return dict
(sorted(
dict0.items
(), key=
itemgetter
(1),
reverse=
True))

Table 14: GPT-4’s Outputs for CodeInsight



erence, attributed to a more clearly defined intent
or to a memorization from CoNaLa.

The third example diverges in response using
itemgetter instead of lambda function but notably
passes our unit tests, illustrating GPT-4’s capacity
for generating viable alternative solutions. This
indicates that despite potential differences, GPT-
4’s inherent generalization capabilities enable it to
offer valid code solutions, reflecting its understand-
ing of programming concepts without memorizing
data.
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