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Abstract

With promising yet saturated results in high-
resource settings, low-resource datasets have
gradually become crucial benchmarks (e.g.,
BigBench Hard, superGLUE) for evaluating
the learning ability of advanced neural net-
works. In this work, we find that there exists
a set of “hard examples” in low-resource set-
tings that challenge neural networks but are not
well evaluated, which causes over-estimated
performance. We first give a theoretical anal-
ysis on which factors bring the difficulty of
low-resource learning. It then motivates us
to propose a challenging benchmark Achilles-
Bench to better evaluate the learning ability,
which covers 11 datasets, including 8 natural
language process (NLP) datasets and 3 com-
puter vision (CV) datasets. Experiments on
a wide range of models show that neural net-
works, even pre-trained language models, have
sharp performance drops on our benchmark,
demonstrating the effectiveness of evaluating
the weaknesses of neural networks. On NLP
tasks, we surprisingly find that despite better
results on traditional low-resource benchmarks,
pre-trained networks, does not show perfor-
mance improvements on our benchmarks. there
is still a large robustness gap between existing
models and human-level performance, high-
lighting the need for robust low-resource learn-
ing models. 1

1 Introduction

Large-scale models have shown strong capabilities
in learning from a handful of examples (Scao et al.,
2022; Touvron et al., 2023a; OpenAI, 2023), re-
sulting in an increased demand for low-resource
benchmarks. Numerous research studies have high-
lighted the rapid adaptability of such models to
new tasks, utilizing techniques like in-context learn-
ing (Dong et al., 2022). Consequently, the evalua-

*Equal Contribution
1Code and data are available on https://github.com/

Qian2333/Achilles-Bench.

Tr
an

sf
or

m
er

BE
RT

GP
T2

Ro
BE

RT
a T5

Hu
m

an

0

25

50

75

100

Te
st

 A
cc

. (
%

)

Random Set

Tr
an

sf
or

m
er

BE
RT

GP
T2

Ro
BE

RT
a T5

Hu
m

an

0

25

50

75

100

Te
st

 A
cc

. (
%

)

Hard Set

Figure 1: Results on sentiment classification (SST-2).
The left figure shows average results on a randomly-
sampled set as the test set. The right figure shows av-
erage results on a hard set as the test set. The hard test
set is selected with smaller loss margins given a weak
classifier. Although it is widely-accepted that neural
networks can handle sentiment classification well with
near-human accuracy (as shown in the left figure), the
large drop on hard examples demonstrate that existing
models still have generalization issues.

tion of large-scale pre-trained models has shifted
towards assessing their ability to quickly learn new
downstream tasks with limited available samples,
including superGLUE (Wang et al., 2019) and BIG-
Bench Hard (Suzgun et al., 2022b).

However, many low-resource datasets usually
use random or manual selection methods to sam-
ple data from the cleaned and balanced training
data. They struggle to capture the data biases and
increased difficulty commonly encountered in real-
world scenarios. Consequently, these benchmarks
fall short in evaluating the true learning gap be-
tween existing models and human-level models.
While some models can surpass human perfor-
mance on these benchmarks (e.g., SST-2) (Yang
et al., 2019; Nangia and Bowman, 2019; He et al.,
2021), many studies have revealed that these ro-
bust models still face challenges such as spurious
correlation (Sagawa et al., 2020; Hu et al., 2023a)
or bias (Bolukbasi et al., 2016), which are rela-
tively uncommon in human learning. As depicted
in Figure 1, models on a randomly sampled low-
resource set demonstrate performance comparable
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to human-level in sentiment analysis. However,
their performance significantly deviates from hu-
man level when confronted with challenging ex-
amples. It motivates us to propose a challenging
low-resource benchmark.

In this work, we aim to find challenging exam-
ples given any tasks. This approach differs sig-
nificantly from existing challenging benchmarks,
which are either focused on complex tasks such as
Big-Bench-Hard (Suzgun et al., 2022a) or specific
to extremely few-shot settings like fewGLUE. In
contrast to these previous studies (Hu et al., 2024),
our proposed benchmark aims to generate difficult
examples for any given task2. In addition, real-
world low-resource data samples often exhibit bi-
ases towards specific domains, such as blank back-
grounds in image detection or short sentences in
handwritten hate speech. Therefore, our evalua-
tion also includes a bias assessment. Specifically,
we consider two dimensions: misleading examples
with smaller classification margins for performance
evaluation, and biased examples for robust evalu-
ation. We begin by conducting a comprehensive
analysis of how these two dimensions impact low-
resource learning. Based on the insights derived
from our analysis, we present an empirical solution
to construct a challenging low-resource benchmark.
The final benchmark encompasses 3 computer vi-
sion datasets and 8 natural language processing
datasets.

To prove the effectiveness of the constructed
benchmark, we evaluate 13 models, including 8
pre-trained models, such as T5 (Raffel et al., 2020),
Llama (Touvron et al., 2023a), etc. All these
models struggle to handle our benchmarks, with a
large performance gap compared with randomly-
sampled low-resource benchmarks. On NLP tasks,
we surprisingly find that despite better results on
traditional low-resource benchmarks, pre-trained
networks, do not show performance improvements
on our benchmarks. The contribution of this pa-
per is summarized as: 1) We propose Achilles-
Bench, a challenging benchmark designed to ex-
pose Achilles’ heel (weaknesses) of neural net-
works. This benchmark provides a reflective view
of the current progress in the field of low-resource
learning. 2) We conduct a comprehensive anal-
ysis to identify the factors that particularly exac-
erbate the difficulty of low-resource learning. 3)

2To ensure the exclusion of mislabelled examples, we have
implemented a human-check process in our work.

Experimental results demonstrate that our proposed
benchmark effectively challenges existing models,
including robust pre-trained networks and large
language models.

2 Related Work

Low-resource Evaluation Learning on low-
resource datasets has recently come into the spot-
light with the introduction of more powerful mod-
els (Radford et al., 2019; Brown et al., 2020).
Recent low-resource benchmarks use a transfer
learning setting (Dumoulin et al., 2021; Zheng
et al., 2021) as well as in-context learning (Schick
and Schütze, 2020; Bragg et al., 2021), and they
have also added up on dataset difficulty (Wang
et al., 2018). Among these, there are two ma-
jor types of low-resource benchmark: natural
low-resource datasets, and sampled low-resource
datasets. The former requires additional dataset
curation (Wang et al., 2018; Koh et al., 2021;
Srivastava et al., 2022) and currently, most low-
resource benchmarks are uniformly sampled from
larger datasets (Kolesnikov et al., 2020; Schick and
Schütze, 2020; Brown et al., 2020; Logan IV et al.,
2021; Alayrac et al., 2022).

Challenging Benchmark Previous approaches
in constructing challenging benchmark mainly cu-
rate from natural data (Schick and Schütze, 2020;
Zheng et al., 2021; Xu et al., 2021; Koh et al.,
2021). These methods require heavy annotation
and faces misalignment between human-perceived
difficulty and samples hard for models. Our meth-
ods, however, create an annotation-free framework
for building challenging training sets, which has
the potential to quickly apply to any available task.
Other work involved benchmarking a more com-
prehensive and challenging list of tasks (Ye et al.,
2021; Mukherjee et al., 2021; Hu et al., 2023b),
which deviates from our focus in finding model
weakness on common tasks.

Data Pruning Our approach is similar to data
pruning literature in that we both hope to find a
difficult subset in a large dataset. Previously, data
pruning methods (Toneva et al., 2018; Hacohen and
Weinshall, 2019; Paul et al., 2021; Sorscher et al.,
2022; Zhang et al., 2024) use data difficulty met-
rics including GradNorm and Loss Score to rank
and prune datasets. However, we approach dataset
sampling from a drastically different goal as we
hope to challenge low-resource learning models.

2
2058



Figure 2: Plot of the perceptron model under hard low-
resource learning (left) and biased low-resource learn-
ing setting (right). The green area shows the region
where few-shot samples are sampled. (a) Under the
hard low-resource learning setting, data samples are se-
lected within a small margin to the decision boundary.
(b) Under the biased low-resource learning setting, data
samples are selected to satisfy the spurious classifier.

3 Understanding the Difficulty of
Low-Resource Learning

To better understand the challenges of low resource
learning, we first look at the teacher-student set-
ting in learning perceptrons. Consider a large cu-
rated dataset of N examples D = {xi, yi}i∈[N ]

where xi ∈ Rd are i.i.d. random Gaussian inputs
xi ∼ N (0, Id), with labels generated by a teacher
perceptron T ∈ Rd as yi = sign(Txi). The num-
ber of samples N → ∞ but sample per parameter
α = N

d = O(1) to remain trainable. Now we
consider the low resource scenario where the num-
ber of training samples available P is much less
than N , where αlow = P

d → 0. For convenience,
we sample the data for low resource learning from
dataset D such that Dlow = {xµ, yµ}µ∈[P ] ⊂ D.
Learning on Dlow, we obtain a new student percep-
tron J that has generalization error ϵg.

Intuitively, three dimensions amount to the diffi-
culty of learning perceptron J : (1) the number of
training samples P (here we base the study of data
scarity on the sample per parameter variable αlow);
(2) the classification difficulty of the data samples,
denoted by the margin m = minµ J(xµyµ); (3)
the bias of the training dataset: here we look at a
specific type of bias, spurious correlation, which
draws correlation based on peripheral attributes
of data items with a target variable, denoted as a
student perceptron Jbias. We explore the difficulty
of low-resource learning by altering our selection
procedure for Dlow and explore how ϵg changes.
Specifically, we look at three settings and use sim-
ulation experiments for analysis. 1) Low-resource
learning, where Dlow is uniformly sampled from
D. 2) Hard low-resource learning, where the mar-
gin of each sample is calculated mµ = T (xµyµ)
and the samples with the smallest margins are se-

lected from D, as shown in Figure 2. 3) Biased
low-resource learning, where a biased probe Jbias
with θ angle to T is chosen as the spurious classi-
fier. Then data that satisfies both yi = sign(Jbiasxi)
and yi = sign(Txi) is uniformly sampled from D,
as shown in Figure 2.

We elaborate on simulation settings in the Ap-
pendix.

Difficult data especially challenges low re-
source learning. We first compare the setting that
increases data difficulty to the random-sampled
version of Low-resource Learning. We vary our
dataset size from 1% to 500% trainable parame-
ters. As shown in Figure 3, the dark blue line
corresponds to the setting where data is uniformly
selected, and lighter lines range in data difficulty
from margin 0.1 to 1. The functions of ϵg to α
yield a crossover between the function for random-
sampled training data and the one for increased
difficulty training data, showing that increased data
difficulty affects low resource settings more than
sufficient data settings. Also, the increase in gen-
eralization error is more distinct for slightly larger
training sets. As when the low-resource training set
only has a few samples, it requires model to have
strong generalization ability to beat the rule of gen-
eralization ϵ ∝ α−1 and the task is challenging
enough.

Low resource learning is more sensitive to spu-
rious correlations. In the biased learning scenario
as shown in Figure 4, we compare students trained
on biased datasets (red lines) to students trained
on random-sampled datasets (blue lines). When
the bias probe is more distinct from the teacher
(larger θ), the drop in performance is more distinct.
This is in line with the phenomenon that when a
model overfits on spurious features that contain in-
formation distant from semantics, the model tends
to suffer on generalization. Also, for smaller bias,
low resource learning sees a larger drop in gener-
alization while models with abundant data barely
suffer. This show that low-resource learning is
sensitive to even small biases.

Theoretical perspective Here we use theoreti-
cal analysis in addition to simulations to study the
scenario that results in failed generalization in low
resource learning. Again, we focus on the scenario
where we have a large dataset D that represents
the natural task distribution P . We sample a low
resource dataset Dlow from D that form the distri-
bution Plow. We theoretically show that the gen-
eralization error for the model trained on the low-
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Figure 3: Plot of the generalization error with regard to
data difficulty and the number of samples per parameter.
Lighter lines represent more difficult data, and the dark
blue line represents data uniformly selected.

(a) (b) (c)

Figure 4: Plot of generalization error with regard to the
number of samples per parameter. Red lines represent
biased training set. Blue lines represent unbiased set.

resource dataset is bounded by a function of data
difficulty and the distribution bias of low-resource
dataset.

Theorem 3.1. (Low-resource Generalization Mea-
sured by Distribution Shift and Data difficulty) Let
H be the hypothesis space X → R

d. flow is the
empirical risk ϵPlow

(f) minimizer, and f is the hy-
pothesis that minimizes expected risk ϵQ(f), m is
the smallest margin of D to decision boundary of
f . MMD(Plow, P ) describes the Maximum Mean
Discrepancy (Gretton et al., 2012) between the
sampled distribution and the original distribution.
Then with probability over 1-δ,

ϵQ(flow) ≤ ϵQ(f) + c

√
|H| lnm+ ln

(
2
δ

)

m

+ MMD(Plow, P ) + ϵα + ϵH
(1)

where ϵα, and ϵH are small constants describing
the error that occurred in training and the hypoth-
esis space complexity, while c is the constant de-
scribing the scale of the effect of margin on gener-
alization. Details are shown in Appendix.

The value of the Equation 1 right-hand side
increases when m decreases and the term
MMD(Plow, P ) increases, corresponding to the in-
crease in data difficulty and the presence of data
bias. This theorem applies not only to our simu-

lated scenario of perceptron learning but also to
deeper models. In our biased learning setting, the
distribution gap between low resource data distri-
bution is larger for biased training set than random-
sampled training set, i.e., MMD(P θ

low, P ) >
MMD(P random

low , P ), since data samples forming
P random
low are sampled uniformly from P .
Based on our simulation experiments and theo-

retical results in the previous section, we find that
low-resource learning is more likely to suffer from
performance drop due to data difficulty and dataset
bias. However, these scenarios are not covered in
previous low-resource benchmarks. This motivates
us to propose a challenging benchmark Achilles-
Bench for better evaluation.

4 Achilles-Bench Challenge

We propose a new challenging benchmark that el-
evates low-resource learning difficulty on some
well-known datasets. Unlike previous low-resource
datasets that are randomly sampled from a train-
ing set, we curate the benchmark by selecting one
of the most challenging low-resource training sets
from GLUE, CIFAR10, CIFAR100, and ImageNet.

Following our theoretical analysis, we introduce
the simple yet effective approach to build hard-
Bench: First, we train a predictor for only one
epoch on a large benchmark, obtaining a biased
predictor; then, we score each sample on data diffi-
culty for this stage of training. For each label, we
pick the top k samples as our selected low-resource
training set. We elaborate on the data difficulty
metrics and the biased predictor respectively in
section 4.1.

4.1 Metrics Measuring Data Difficulty

Previous literature in curriculum learning (Hacohen
and Weinshall, 2019), data pruning (Paul et al.,
2021), and continual learning (Toneva et al., 2018)
propose metrics for data sample difficulty based
on loss or gradient norms. Here we restate three
metrics: Loss score, GradNorm score and explain
how they can be applied in our problem scenario.

Loss Score Paul et al. (2021) and Sorscher et al.
(2022) state this metric in the EL2N method, which
intuitively measure data samples difficulty by look-
ing at whether they can be learned correctly. Data
samples with a higher loss score after training
are more likely to be near the decision boundary.
Therefore, we can select the hardest samples by
ranking the loss score on the dataset. We call
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Figure 5: Plot of the perceptron model under both hard
and biased low-resource learning setting. Compared to
the no-bias setting on the left, , the resulting bias is γ

2
when the gap between Jbias and teacher is γ.

datasets constructed via loss scores as Achilles-
Bench (Loss). Examples with higher losses are
selected as hard examples.

Gradient Norm Score Paul et al. (2021) dis-
cussed using gradient norm as an indicator of data
importance. Samples with larger gradient norms
shape the training geometry. However, there is lit-
tle discussion on the connection between gradient
norm and data difficulty. Here we give a brief and
casual explanation. Based on previous analysis, we
can find hard samples by checking their margin to
the decision boundary of our model f , f(x0) = 0.
Therefore, we can define the Lp norm margin as,

m(x) = min
x0

||x− x0||p, s.t.f(x0) = 0 (2)

We use Taylor’s approximation for an approximate
solution, following Elsayed et al. (2018).

m(x) ≈ |f(x)|
∥∇xf(x)∥q

, (3)

When the numerator is constrained (For a classifica-
tion problem, we can constraint logits f(x) within
1 using sigmoid function), we can maximize the
gradient norm to minimize margin. We call datasets
constructed via gradient norm scores as Achilles-
Bench (GradNorm). Examples with higher gradi-
ent norm scores are selected as hard examples.

4.2 Introducing Bias with Early Stopping
As shown in the above sections, we need to train
a student predictor to estimate the decision bound-
ary and thereby calculate the data difficulty score.
However, we find that we can easily introduce bias
into our selected benchmark dataset if we early
stop training on the student predictor. We will give
an explanation based on the Loss Score.

The Loss Score effectively estimates the diffi-
culty of data examples to be classified correctly
when the student predictor is exactly the same
as the teacher model, i.e. θ = 0. However,

when the student model is undertrained, there
would exist a gap γ between student g(x) =
sgn(Jx) and teacher f(x) = sgn(Tx). For any
x, the loss function would be L(x) = g(x) −
f(x) = (J−T )x. Therefore, the resulting selected
dataset Dlow = {(xi, yi)|xi = maxi=1,2,...P

x (J −
T )x, yi = sgn(Txi)} is isotropic in the nullspace
of J − T , inducing a bias of γ

2 .
This intuitively explains that we can use an early

stopped predictor as well as data difficulty metrics
to select a biased and difficult low-resource dataset
that mimics the real-world setting. In the follow-
ing sections, we use this approach to curate our
Achilles-Bench.

5 Experiments

5.1 Benchmark Metric

Traditional low-resource benchmarks usually ran-
domly choose a subset from the full-size training
data as the training set. In this paper, we also follow
this setting and extract hard examples from the full-
size data as the training data in our benchmark. To
be specific, we implement three benchmarks in this
work, which are described as follows. Random-
Bench. For each label, we randomly select k exam-
ples as the training set. We randomly select 3 sub-
sets and report the average results. Achilles-Bench
(Loss). For each label, we choose top-k hard ex-
amples based on losses scores. Achilles-Bench
(GradNorm). For each label, we choose top-k
hard examples based on gradient norm scores.

5.2 Benchmark Settings

Our framework is not limited to specific tasks, al-
lowing for flexibility across various tasks. We
benchmark on from-scratch models, pre-trained
models, as well as large language models. In our
implementation, we have chosen 11 tasks to gener-
ate a comprehensive and challenging benchmark.
NLP Tasks We choose 8 datasets from
GLUE (Wang et al., 2018), a collection of
understanding datasets. We select a subset of the
full-size training set as a training set. Following
previous studies, we use the validation set as the
test set considering the hidden test set. For the
convenience of the demonstration, we show all the
results with accuracy scores. For all NLP datasets,
we implement BERT trained with one epoch as a
biased predictor to select hard examples. For all
NLP datasets, we extract 500 examples for each
label (except for WNLI with 100 examples) as
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Models SST-2 COLA MNLI QNLI MRPC QQP RTE WNLI Average

Random-Bench

Transformer (Vaswani et al., 2017) 68.16±1.46 69.15±0.04 36.42±0.58 55.45±0.94 68.58±0.39 67.18±0.67 53.65±1.04 56.34±0.00 59.37
BERT (Devlin et al., 2018) 88.68±0.73 79.00±0.59 57.60±1.30 76.02±1.26 77.65±1.38 75.53±0.48 60.58±2.01 48.45±3.63 70.44
GPT-2 (Radford et al., 2019) 88.08±0.72 70.35±1.76 58.35±1.65 74.11±2.56 75.93±0.47 76.22±0.86 65.49±2.62 56.90±3.40 70.68
RoBERTa (Liu et al., 2019) 91.54±0.61 80.98±0.56 75.40±0.52 84.47±0.53 88.24±0.27 80.93±0.56 73.00±1.98 54.93±2.82 78.69
T5 (Raffel et al., 2020) 88.73±0.97 78.62±0.58 64.53±2.48 82.56±0.83 74.56±1.71 80.13±0.44 56.46±1.95 52.39±7.74 72.25

Achilles-Bench (GradNorm)

Transformer (Vaswani et al., 2017) 51.88±0.46 69.15±0.04 35.11±0.67 50.59±0.04 68.38±0.00 62.41±1.06 54.01±0.96 56.34±0.00 55.98
BERT (Devlin et al., 2018) 47.94±2.11 45.77±8.19 33.96±0.47 46.24±2.35 56.08±1.43 52.60±3.01 51.12±0.96 49.30±1.99 47.88
GPT-2 (Radford et al., 2019) 51.44±0.77 51.93±7.92 35.98±1.95 48.62±5.12 65.98±2.33 55.40±4.05 57.76±4.60 56.06±2.25 52.90
RoBERTa (Liu et al., 2019) 51.01±0.65 66.10±6.01 38.42±1.51 48.61±1.50 82.55±1.04 56.69±3.93 60.36±2.88 54.93±2.18 57.33
T5 (Raffel et al., 2020) 52.34±2.35 55.09±6.16 34.27±0.39 48.99±1.51 55.88±3.80 55.72±1.62 48.88±1.54 54.37±4.14 50.69

Achilles-Bench (Loss)

Transformer (Vaswani et al., 2017) 51.38±0.40 69.11±0.04 34.98±0.69 50.57±0.04 65.64±5.49 48.17±7.69 53.43±0.40 56.34±0.00 53.70
BERT (Devlin et al., 2018) 45.64±5.32 40.92±4.29 30.55±0.88 40.11±3.69 38.24±2.52 35.55±2.57 47.44±1.22 53.52±3.67 41.50
GPT-2 (Radford et al., 2019) 49.79±2.06 56.18±9.92 31.41±1.19 51.01±3.89 50.54±8.02 40.33±5.57 54.73±3.67 55.49±1.44 48.69
RoBERTa (Liu et al., 2019) 50.55±0.62 48.32±11.78 31.66±2.49 41.79±5.62 38.14±2.54 31.74±2.44 55.09±1.97 55.77±1.91 44.13
T5 (Raffel et al., 2020) 49.86±2.85 55.32±6.06 32.76±0.23 47.15±1.76 53.19±5.12 48.84±5.38 48.45±1.20 53.52±4.45 48.64

Table 1: Results on NLP datasets. Achilles-Bench (Loss) brings higher performance drops than Achilles-Bench
(GradNorm). Surprisingly, pre-trained networks does not show better generalization results than randomly-initialized
models on our benchmark.

the training set for our main results. Regarding
large language models, we adopted the in-context
learning paradigm, details can be find in Appendix
E. We also build more variants with less training
data. More results can be found at Appendix F.
CV Tasks We also explore 3 widely-used im-
age classification datasets, CIFAR-10 (Krizhevsky
et al., 2009), CIFAR-100 (Krizhevsky et al., 2009),
and ILSVRC-2012 ImageNet (Deng et al., 2009)
to demonstrate the generality of our approach. For
each dataset, we select a subset as the training set
in our benchmark, with 500 examples in CIFAR-
10, 50 examples in CIFAR-100, 100 examples in
ImageNet-1K. results can be found at Appendix F.

5.3 Results
Achilles-Bench challenges neural networks As
Table 1, Table 2 and Table 3 illustrate, Achilles-
Bench can mislead neural networks with worse
generalization errors. We re-implement strong un-
derstanding models, which have shown promis-
ing results in various low-resource tasks. For ex-
ample, in Random-Bench, RoBERTa shows the
near-human performance on SST-2 with 91% accu-
racy, which drops sharply on Achilles-Bench with
only 51.01% accuracy on Achilles-Bench (Grad-
Norm) and 50.55% accuracy on Achilles-Bench
(Loss), nearly random-guessing results. Similar
results are observed on CV datasets. For exam-
ple, DenseNet-121 trained on a random sampling
set achieves high test results with 71.33% accu-
racy on CIFAR-10. The accuracy drops to 59.87%
on Achilles-Bench (GradNorm) and to 44.81% on
Achilles-Bench (Loss). For LLMs, LLaMA-7B
and LLaMA2-7B consistently demonstrate the low-

est performance on Achilles-Bench. Regarding
BLOOM-1.1B’s performance on QQP, it is note-
worthy that the model’s results are subpar com-
pared to the label distribution, where "not dupli-
cate" constitutes 63.2% of the dataset. The large
performance drop also indicates that there is still
a large gap between existing models and human-
level models. All these drops demonstrate that our
benchmark poses a great challenge.

Pre-trained networks show strong generation
results on CV benchmarks, but still suffer from
handling NLP tasks Compared with randomly-
initialized models, pre-trained networks show bet-
ter generalization results in CV datasets, as shown
in Table 3. For example, ViT-B/16 does not yield
obvious performance drops on Achilles-Bench. As
a comparison, pre-trained networks have much
worse results on NLP tasks. On Random-Bench
, pre-trained networks bring large performance
improvements over random-initialized baseline
(Transformer). However, on our benchmark, all
pre-trained networks yield surprising performance
drops. These results demonstrate that the results of
pre-trained models on NLP tasks are more easily
over-estimated.

Achilles-Bench (Loss) is more challenging than
Achilles-Bench (GradNorm) We implement
two metrics to select hard examples, including loss
and gradient norm. Despite similar motivation,
Achilles-Bench (loss) is more challenging than
Achilles-Bench (GradNorm) according to our ex-
perimental results. On NLP tasks, Achilles-Bench
(loss) also witnesses the worst results. Loss is the
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Models SST-2 COLA MNLI QNLI MRPC QQP RTE WNLI Average

Random-Bench

BLOOM-1.1B (Scao et al., 2022) 50.5 60.4 35.4 50.5 66.2 51.8 52.7 42.3 51.2
Llama-7B (Touvron et al., 2023a) 60.2 63.1 33.1 48.3 67.4 47.9 51.0 47.9 52.4
Llama2-7B (Touvron et al., 2023b) 95.4 68.9 53.7 58.0 68.1 73.7 79.4 63.4 68.5
Llama2-13B (Touvron et al., 2023b) 85.1 80.5 49.5 54.9 70.5 78.1 75.3 68.5 70.3
Llama2-70B (Touvron et al., 2023b) 90.3 78.8 61.7 49.8 68.4 42.4 79.2 85.5 69.5

Achilles-Bench (Loss)

BLOOM-1.1B (Scao et al., 2022) 50.1 46.4 35.42 50.0 65.9 60.8 47.3 43.7 50.0
Llama-7B (Touvron et al., 2023a) 40.7 61.4 30.6 46.3 68.1 40.4 49.1 42.3 47.4
Llama2-7B (Touvron et al., 2023b) 64.6 53.2 46.4 59.7 68.1 79.5 76.5 64.8 63.0
Llama2-13B (Touvron et al., 2023b) 48.4 78.6 43.0 47.4 69.6 76.8 74.7 66.2 63.1
Llama2-70B (Touvron et al., 2023b) 48.4 71.0 43.8 47.0 68.4 37.2 76.1 90.1 60.3

Table 2: The in-context learning results of LLMs on NLP datasets. Achilles-Bench (Loss) consistently preserve its
challenges for LLMs.

most direct signal to see how neural networks un-
derstand an example. These difficult examples con-
fuse neural networks, which barely learn core fea-
tures. This learning weakness is not covered by
existing low-resource benchmarks. Achilles-Bench
provides a new perspective for understanding the
learning abilities of different models.

Data augmentation slightly improves results
Table 4 shows the results on CIFAR-10 with data
augmentation techniques, cutmix (Yun et al., 2019).
We can see that data augmentation brings slight
performance improvements, but also faces the chal-
lenges of generalization on our benchmarks.

Models CIFAR10 CIFAR100 ImageNet

Random-Bench

FFN 48.91±0.87 14.95±0.29 5.12±0.30
VGG-16 62.15±0.71 26.55±0.20 16.02±0.27
ResNet-18 65.47±0.84 25.49±0.60 29.34±0.31
DenseNet-121 71.33±0.56 33.66±1.48 35.20±0.41
ViT-B/16 97.20±0.22 83.93±0.43 -
EfficientNetV2-S 91.41±0.60 70.41±0.74 -

Achilles-Bench (GradNorm)

FFN 29.64±0.88 8.75±0.28 3.13±0.18
VGG-16 55.11±0.89 17.22±0.44 9.51±0.20
ResNet-18 46.87±2.41 15.50±0.85 23.81±0.76
DenseNet-121 59.87±0.66 20.96±0.94 28.96±0.67
ViT-B/16 97.39±0.10 82.36±0.94 -
EfficientNetV2-S 92.51±0.24 69.56±0.49 -

Achilles-Bench (Loss)

FFN 17.26±0.82 3.18±0.21 2.66±0.02
VGG-16 27.58±0.62 7.14±0.24 7.27±0.24
ResNet-18 33.20±1.00 6.96±0.32 13.34±0.19
DenseNet-121 44.81±2.30 11.59±0.98 22.00±0.46
ViT-B/16 96.85±0.11 80.87±0.58 -
EfficientNetV2-S 89.88±0.63 60.42±1.85 -

Table 3: Results on CV datasets. ViT and
efficientNetV2-S are pre-trained on ImageNet. So we
do not report their results on ImageNet to avoid data
leak issues.

Models Random-Bench Achilles-Bench (GradNorm) Achilles-Bench (Loss)

FFN 53.99±0.39 30.36±1.26 19.29±0.36
VGG-16 66.76±0.59 47.85±0.97 33.64±0.25
ResNet-18 68.94±0.66 52.73±1.54 37.96±1.12
DenseNet-121 75.44±0.34 63.23±0.42 47.70±1.38
ViT-B/16 97.71±0.17 97.79±0.08 97.09±0.12
EfficientNetV2-S 93.25±0.65 92.83±0.63 91.41±0.69

Table 4: Results with cutmix. Models with data aug-
mentation still face the challenges of generalization on
our benchmarks.

Models Random-Bench Achilles-Bench (Loss) FewGLUE

RoBERTa 57.8± 3.62 52.0 62.8
GPT-2 58.8± 2.65 47.3 47.7

Table 5: Results compared with FewGLUE on 32-shot
RTE.

Models Achilles-Bench (Loss) Forget Statistic
Accuracy Gap Accuracy Gap

FFN 16.17 30.33 33.11 13.39
VGG-16 26.78 33.03 43.00 16.81
ResNet-18 32.10 30.64 45.77 16.97
DenseNet-121 41.45 28.80 59.63 10.62
ViT 96.70 0.25 97.48 -0.53
EfficientNet-V2 89.17 0.54 91.10 -1.39

Table 6: The comparison between Achilles-Bench
(Loss) and Forget Statistic on CIFAR-10. “Gap” repre-
sents the test accuracy gap with Bench-Random.

Achilles-Bench (Loss) demonstrate greater chal-
lenges compared to FewGLUE (Schick and
Schütze, 2020) Table 5 presents a performance
comparison between RoBERTa and GPT-2 on the
32-shot RTE task. The performance of GPT-2 un-
der both the Achilles-Bench (Loss) and FewGLUE
approaches tends to resemble random selection. Re-
garding RoBERTa, FewGLUE does not seem sig-
nificantly more challenging than Random-Bench
, whereas Achilles-Bench (Loss) demonstrates a
higher level of difficulty.

Results on different metrics Table 6 presents
the outcomes obtained on the 500-shot datasets
from CIFAR-10 using the forget statistic tech-
nique (Toneva et al., 2018). Achilles-Bench (Loss)
surpasses the forget statistic approach in all models,
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including pre-trained models. The forget statistic
technique does not appear to be more challenging
than Random-Bench for pre-trained models.

5.4 Ablation Studies
Massive sampling fails to find a challenging
benchmark In Random-Bench, we report the av-
erage results over 3 random samplings. In this part,
we conduct 100 samplings and report the worst re-
sult in Figure 6 to figure out whether our methods
can be replaced with massive sampling. As we
can see, there is still a large gap between the worst
results on Random-Bench and Achilles-Bench, in-
dicating that the proposed method is an effective
method to build challenging benchmarks.

Results on the selected set as the test set Fig-
ure 7 shows results on the selected set as the test set.
As we can see, these “hard examples” capture the
weakness of neural networks. If neural networks
has not seen these examples, they fail on them.

Ablation studies on different models as predic-
tors In our framework, we introduce a weak clas-
sifier as a biased predictor. For simplification, we
choose FFN for CV datasets and BERT for NLP
datasets. We conduct experiments on more net-
works to see whether the choice of predictors af-
fects our conclusions. Table 7 and Table 8 show the
attack results on SST-2 and CIFAR-10. For SST-
2, we test two more models: randomly-initialized
Transformer and GPT2, as predictors. For CV mod-
els, we test two more models: ResNet-18 and ViT-
B/16, as predictors. All models show consistent

Achilles-Bench (GradNorm) Achilles-Bench (Loss)Random-Bench 

Figure 6: The worst performances among all the
performances on CIFAR-10.

Achilles-Bench (GradNorm) Achilles-Bench (Loss)Random-Bench 

Figure 7: Results on the selected set as the test set.

performance drops, indicating that our method is a
universal model to generate challenging datasets to
attack various models.

Models Transformer Predictor GPT-2 Predictor
Accuracy Gap Accuracy Gap

Transformer 51.17± 0.17 16.99 50.55± 0.73 17.61
BERT 51.06± 2.51 37.62 48.30± 2.00 40.38
GPT-2 50.46± 3.20 37.62 48.88± 4.00 39.20
RoBERTa 54.72± 3.04 36.82 48.33± 2.19 43.21
T5 60.48± 3.88 28.25 56.03± 2.62 32.70

Table 7: Results of Achilles-Bench (Loss) on SST-2
based on a random initialized Transformer and GPT-
2. “Gap” represents the test accuracy gap with Bench-
Random.

Models ResNet Predictor ViT Predictor
Accuracy Gap Accuracy Gap

FFN 40.69± 0.69 8.32 39.82± 0.61 9.19
VGG-16 51.83± 0.39 16.80 48.19± 0.64 20.44
ResNet-18 53.93± 0.72 11.58 50.59± 0.98 14.92
DenseNet-121 61.70± 0.23 9.72 58.05± 0.80 13.37
ViT-B/16 97.07± 0.19 0.00 96.92± 0.32 0.15
EfficientNet-V 89.70± 0.32 2.12 87.26± 1.01 4.56

Table 8: Results of Achilles-Bench (Loss) on CIFAR10
based on ResNet-18 and ViT-B/16. “Gap” represents
the test accuracy gap with Bench-Random.

5.5 Explaining the Effectiveness of
Achilles-Bench with Visualization

In this section, we compare samples selected by
our Achilles-Bench with samples from Random-
Bench to demonstrate our approach reaches the
goal of building difficult low-resource training set
with shifted distributions. To make our observation
more straightforward, we show visualizations in the
Appendix G. We make the following observations
based on these visualization results:
Achilles-Bench induces bias in the low-resource
training set From visualizations, we can see that
both GradNorm and Loss variations of Achilles-
Bench construct training sets that are drastically
different from the data distribution. For SST2 task,
specifically, Random-Bench exhibits ordinary state-
ments containing words with clear emotional ex-
pressions. In contrast, both GradNorm and the
Loss variations of Achilles-Bench opt for shorter
sentences, incorporating statements with implicit
emotional nuances. Similar biases are evident in
other classes, showing that our approach success-
fully induces bias in the low-resource training set.

Achilles-Bench find challenging samples The
method selects tough examples from datasets using
difficulty metrics, notably in GradNorm and Loss.
In the SST2 task, it favors terse, uninformative
samples or input sentences that use sophisticated
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vocabularies.

6 Conclusion

This paper proposes a challenging benchmark for
low-resource learning. We first analyze which fac-
tors affect the difficulty of low-resource learning.
We prove that low-resource generalization results
in worse performance with more difficult and bi-
ased datasets. Hence we choose two metrics for
measuring data difficulty, which result in two vari-
ants, Achilles-Bench (Loss) and Achilles-Bench
(GradNorm) . Experiments show that both can bet-
ter tell the learning gap between existing models
than randomly-sampled low-resource datasets.
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A Limitation and Future Work

The method proposed in this paper can be extended to a wider range of tasks and datasets. In future
studies, we aim to expand the tasks to more challenging datasets, such as superGLUE.

Furthermore, we did not test the results on the latest models, such as GPT-4. We intend to extend the
tasks to include the latest large-scale models in the future.

B Perceptron Model of Low Resource Learning

In this section, notations are defined as follows. We look at the teacher-student setting in learning
perceptrons. Consider a large curated dataset of N examples D = {xi, yi}i∈[N ] where xi ∈ Rd are
i.i.d. random Gaussian inputs xi ∼ N (0, Id), with labels generated by a teacher perceptron T ∈ Rd as
yi = sign(Txi). The number of samples N → ∞ but sample per parameter α = N

d = O(1) to remain
trainable. Now we consider the low resource scenario where the number of training samples available
P is much less than N , where αlow = P

d → 0. For convenience, we sample the data for low resource
learning from dataset D such that Dlow = {xµ, yµ}i∈[P ] ⊂ D. Learning on Dlow, we obtain a new student
perceptron J that has generalization error ϵg.

In the basic low-resource learning scenario, we use a uniform sampling strategy to obtain Dlow from D.
We model ϵg as a function of αlow. The results are as follows.

Lemma B.1. (Low-resource Learning, Seung et al. (1992)) For student perceptron J learned on high
dimension dataset Dlow, the generalization error satisfies,

ϵg ∝ α−1
low (4)

For other settings, the generalization error is only related to the angle between teacher model T and
learned student model J . ϵg = arccosR/π, R = JT

|J ||T | . Based on different low-resource dataset sampling
strategies, we calculate the teacher-student overlap R with the geometry of each dataset distribution.
Sorscher et al. (2022) has proved similar results in data pruning with our hard and biased learning setting.
Here we only cite their results and don’t elaborate on proofs. Note that despite the proofs being similar,
we use a different setting in perceptron learning. Their main objective is to understand how data-pruning
can improve data efficiency, while we take an inverse stand, trying to understand challenging settings of
low-resource learning.

Lemma B.2. (Hard Low-resource Learning, Sorscher et al. (2022)) Dlow is sampled from D such that
∀xµ ∈ Dlow,∀xγ ∈ D/Dlow, their margins satisfy |Txµ| ≥ |Txµ|. Let J be the student perceptron
learned on high dimension dataset Dlow, and κ be the minimum margin minµ J(x

µyµ). If the perceptron
is trained to maximum margin, the generalization error of J satisfies,

ϵg = arccosR/π (5)

where R satisfies the saddle point equation,

R =
2α

f
√
2π

√
1−R2

∫ κ

−∞
Dt exp

(
− R2t2

2(1−R2)

)

·
[
1− exp

(
− γ(γ − 2Rt)

2(1−R2)

)]
(κ− t)

(6)

in which γ = H−1(N−P
2N ), p(z) = e−

z2

2 N√
2πP

Θ(γ − |z|)
The proof for this lemma can be found in Sorscher et al. (2022) A.5.1 and is omitted here for brevity.

C Low-Resource Generalization

C.1 Proof for Theorem 3.1
Lemma C.1. Define ϵS(h, f) := Ex∼S |δ(h(x))− δ(f(x))|. For any hypothesis h, h′ ∈ H, there exists
ϵH > 0 which satisfies,
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|ϵPlow
(h, h′)− ϵP (h, h

′)| ≤ MMD(H, Plow, P ) +
ϵH
2

(7)

ϵH is a constant for the complexity of hypothesis space.

Lemma C.2. Let flow be the trained classifier on the low resource distribution Plow, and f be the trained
classifier on distribution P . Since Plow is formed by a subset of the training examples, when training
error ϵP (f) → 0 and ϵPlow

(flow) → 0, ϵPlow
(flow, f) ≤ ϵα, where ϵα is a constant approaching zero.

Proof.
∣∣∣ϵPIk

(
h, h′

)
− ϵP

(
h, h′

)∣∣∣ ≤ sup
h,h′∈H

∣∣∣ϵPIk

(
h, h′

)
− ϵP

(
h, h′

)∣∣∣

= sup
h,h′∈H

∣∣∣Px∼PIk

[
δ(h(x)) ̸= δ(h′(x))

]
−Px∼P

[
δ(h(x)) ̸= δ(h′(x))

]∣∣∣

= sup
h,h′∈H

∣∣∣Px∼PIk

[
h(x) ̸= h′(x)

]
−Px∼P

[
h(x) ̸= h′(x)

]∣∣∣

= sup
h,h′∈H

∣∣∣∣
∫

X
1h(x)̸=h′(x)dµPIk

−
∫

X
1h(x)̸=h′(x)dµP

∣∣∣∣
(8)

Lemma C.3. Let f be the trained classifier on dataset D that is drawn i.i.d. from distribution P . f is
tested on a test dataset S that is also drawn i.i.d. from the distribution P . Let m be the maximum margin
of classifier f . Then with probability at least 1− δ,

ϵS(f) ≤ ϵD(f) + c

√
|H| lnm+ ln

(
1
δ

)

m
(9)

where ϵD(f) is the error on training set, and ϵS(f) be the error on test set.

Following Ben-David et al. (2010), we use Lemma C.1 and C.2 to prove Theorem 3.1.
Proof

ϵQ(flow) ≤ ϵQ(f) + ϵQ(flow, f)

= ϵQ(f) + ϵPlow
(flow, f) + (ϵQ(flow, f)− ϵP (flow, f)) + (ϵP (flow, f)− ϵPlow

(flow, f))

≤ ϵQ(f) + ϵPlow
(flow, f) + |ϵP (flow, f)− ϵQ(flow, f)|+ |ϵPlow

(flow, f)− ϵP (flow, f)|
≤ ϵQ(f) + ϵα + |ϵP (flow, f)− ϵQ(flow, f)|+ MMD(Plow, P ) + ϵH

(10)
In which,

|ϵP (flow, f)− ϵQ(flow, f)| =
∣∣∣∣
∫

X
1flow(x)̸=f(x)dµP −

∫

X
1flow(x)̸=f(x)dµQ

∣∣∣∣

= |
n∑

i=1

1flow(xi) ̸=f(xi) − EQ1flow(x)̸=f(x)|
(11)

Here suppose test set Q matches the distribution of data for this classification task, and P is constructed
by sampling n i.i.d. samples from the distribution Q. Using Lemma C.3 we have,

P (|ϵP (flow, f)− ϵQ(flow, f)| > c

√
|H| lnm+ ln

(
2
δ

)

m
) ≤ δ (12)

Therefore, with a probability over 1− δ, we have

ϵQ(flow) ≤ ϵQ(f) + MMD(Plow, P ) + ϵα + ϵH + c

√
|H| lnm+ ln

(
2
δ

)

m
(13)
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Table 9: Hyper-parameter settings. The Linear refers LinearLR scheduler in Pytorch. OneCycle refers 1-cycle
learning rate policy (Smith and Topin, 2019).

Models Datasets Batch Size Epochs Optimizer Learning Rate

FFN
CIFAR-10 128 50 Adam [1e-3, 5e-4, 2.5e-4]
CIFAR-100 128 50 Adam [1e-3, 5e-4, 2.5e-4]
ImageNet-1K 32 30 SGD [0.01, 0.001, 0.0001]

VGG
CIFAR-10 128 50 Adam [1e-4, 5e-5, 2.5e-5]
CIFAR-100 128 50 Adam [1e-4, 5e-5, 2.5e-5]
ImageNet-1K 32 30 SGD [0.01, 0.001, 0.0001]

ResNet
CIFAR-10 128 50 Adam [1e-3, 5e-4, 2.5e-4]
CIFAR-100 128 50 Adam [1e-3, 5e-4, 2.5e-4]
ImageNet-1K 32 30 SGD [0.1, 0.01, 0.001]

DenseNet
CIFAR-10 128 50 Adam [1e-3, 5e-4, 2.5e-4]
CIFAR-100 128 50 Adam [1e-3, 5e-4, 2.5e-4]
ImageNet-1K 32 30 SGD [0.1, 0.01, 0.001]

ViT-B/16
CIFAR-10 32 10 Adam 5e-5 (Linear)
CIFAR-100 32 10 Adam 5e-5 (Linear)

EfficientNetV2-S
CIFAR-10 32 10 AdamW 1e-3 (OneCycle)
CIFAR-100 32 10 AdamW 1e-3 (OneCycle)

D Models and Hyperparameters

We implement the following models for experiments in this paper.
1) FFN, a feed-forward neural network with two convolution and pooling layers and three feed-

forward layers. 2) VGG (Simonyan and Zisserman, 2014), a classical convolutional neural network.
We use the VGG-16 with 13 convolution layers and three fully connected layers as implementation. 3)
ResNet (He et al., 2016), a residual neural network. We use the ResNet-18 with 16 residual blocks,
one convolution layer, and one fully connected layer as implementation. 4) DenseNet (Huang et al.,
2017). We use DenseNet-121 with 121 layers, one convolution layer, and one fully connected layer as re-
implementation.3 Besides, to verify the attack ability Gradon the pre-trained models, we also re-implement
two pre-trained models: 1) Transformer-based ViT (Dosovitskiy et al., 2021)4 and 2) Convolutional-based
EfficientNetV2 (Tan and Le, 2021)5. For FFN, VGG, ResNet, ResNeXt, and DenseNet on ImageNet, we
resize all the images into 256× 256 and then center-crop them into 224× 224. For ViT on CIFAR, we
resize all the images into 224× 224, while 384× 384 for EfficientNetV2.

We list hyper-paramters in Table 9. All the SGD optimizers are with a momentum of 0.9. For
Adam/AdamW, we set β = (0.9, 0.999). We employed the torch.optim.lr_scheduler.MultiStepLR module
to dynamically adjust the learning rate during training. Specifically, we set the milestones at epochs 20 and
40 (for ImageNet-1K, epochs 10 and 20 respectively) to adaptively update the learning rate based on the
progress of training. The corresponding learning rate values used during three periods in our experiments
are provided in Table 9. We conduct all the experiments on a single A100 GPU. We use Adam as the
optimizer for all the NLP tasks with a learning rate of 2e− 5 and a linear scheduler.

3For VGG, ResNet, ResNeXt, and DenseNet on CIFAR and MNIST, we use the implementation from https://github.
com/kuangliu/pytorch-cifar. As for ImageNet, we use the implementation from torch.models.

4We use the implementation from https://huggingface.co/google/vit-base-patch16-224
5We use the implementation from torch.models.
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E Details of ICL and LLMs

Considering the sentence length of different tasks and limitations of the GPU, we tested SST2 and COLA
with 16-shots, MNLI, QNLI, MRPC, RTE, WNLI with 8-shots each, and QQP with 4-shots.

We generate the prompt refer to lm-eval, the results of the prompt with zero-shots are shown below.

Models SST-2 COLA MNLI QNLI MRPC QQP RTE WNLI Average

Llama2-7B 86.70 38.70 50.10 62.00 58.09 63.30 72.56 61.97 61.68

Table 10: The zero-shot results of LLaMA2 on NLP datasets.

F Results with Different Shots

To better explore the effectiveness of Achilles-Bench (GradNorm) and Achilles-Bench (Loss) , we
demonstrate the results with different shots. The results are shown in the following tables.

Based on the results presented in Table 11 and Table 12, as compared to the findings discussed in
Section 5.4, it is evident that all the model demonstrates a notable decline in performance when trained
on a more limited dataset (20, 50-shot) in Achilles-Bench (Loss) and Achilles-Bench (GradNorm) , as
compared to Random-Bench . This observation suggests that Achilles-Bench (Loss) and Achilles-Bench
(GradNorm) pose greater challenges with fewer shots. While the pretrained model exhibits some level of
robustness in Section 5.4, its performance still suffers when faced with more limited data. This highlights
the significance of employing challenging benchmarks that incorporate scenarios with limited training
data.

The results in NLP, as shown in Table 14, Table 15, Table 16, are generally consistent with the previous
findings presented in Section 5.4. Nonetheless, a few specific models, characterized by inadequate
few-shot learning capabilities, exhibited poor performance across all three benchmarks.

Table 11: Results on CIFAR-10.

shots Models Random-Bench Achilles-Bench (GradNorm) Achilles-Bench (Loss)
Accuracy Accuracy Gap Accuracy Gap

20-shot

FFN 27.28± 1.51 13.68± 0.57 13.60 10.74± 1.38 16.54
VGG-16 31.73± 1.26 14.76± 0.86 16.97 10.27± 0.32 21.46
ResNet-18 30.54± 1.82 14.80± 0.56 15.74 10.79± 0.35 19.75
DenseNet-121 34.69± 1.51 15.25± 0.29 19.44 10.15± 0.61 24.54
ViT-B/16 79.84± 1.70 62.92± 1.97 16.92 57.62± 2.46 22.22
EfficientNetV2-S 61.59± 4.36 40.67± 3.38 20.92 31.44± 3.86 30.15

50-shot

FFN 33.31± 1.01 14.15± 0.71 19.16 9.94± 0.98 23.37
VGG-16 38.95± 0.61 17.47± 0.96 21.48 10.36± 0.45 28.59
ResNet-18 39.18± 1.19 17.78± 0.62 21.40 10.64± 0.64 28.54
DenseNet-121 43.64± 0.68 18.56± 0.43 25.08 10.15± 0.79 33.49
ViT-B/16 87.92± 0.45 82.77± 1.76 5.15 81.05± 2.08 6.87
EfficientNetV2-S 74.75± 1.05 59.92± 3.84 14.83 56.17± 3.56 18.58

200-shot

FFN 41.98± 0.79 21.05± 0.28 20.93 13.11± 0.73 28.87
VGG-16 52.87± 0.78 25.29± 0.46 27.58 15.35± 0.91 37.52
ResNet-18 53.67± 0.95 25.58± 0.42 28.09 15.87± 0.51 37.80
DenseNet-121 61.69± 0.36 33.06± 1.57 28.63 19.48± 0.86 42.21
ViT-B/16 95.30± 0.14 95.77± 0.19 -0.47 95.22± 0.26 0.08
EfficientNetV2-S 88.25± 0.23 83.61± 1.24 4.64 82.28± 1.95 5.97

2000-shot

FFN 58.83± 1.44 46.19± 0.66 12.64 44.56± 1.86 14.27
VGG-16 78.50± 0.59 77.58± 0.40 0.92 76.34± 0.55 2.16
ResNet-18 79.40± 0.35 79.00± 0.37 0.40 78.14± 0.17 1.26
DenseNet-121 84.65± 0.34 84.70± 0.17 -0.05 83.58± 0.30 1.07
ViT-B/16 97.86± 0.09 98.06± 0.12 -0.20 98.01± 0.08 -0.15
EfficientNetV2-S 95.30± 0.18 95.79± 0.09 -0.49 95.07± 0.16 0.23
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Table 12: Resuls on CIFAR100.

shots Models Random-Bench Achilles-Bench (GradNorm) Achilles-Bench (Loss)
Accuracy Accuracy Gap Accuracy Gap

20-shot

FFN 10.48± 0.32 5.69± 0.11 4.79 1.90± 0.20 8.58
VGG-16 18.87± 0.46 10.42± 0.17 8.45 2.77± 0.16 16.10
ResNet-18 17.20± 0.57 9.01± 0.34 8.19 2.61± 0.11 14.59
DenseNet-121 21.48± 0.80 10.84± 0.88 10.64 3.24± 0.23 18.24
ViT-B/16 68.23± 1.68 61.45± 4.99 6.78 54.99± 2.04 13.24
EfficientNetV2-S 55.10± 0.18 51.87± 1.43 3.23 40.68± 1.30 14.42

200-shot

FFN 23.67± 1.00 16.83± 0.46 6.84 12.91± 1.45 10.76
VGG-16 45.52± 0.45 41.41± 0.77 4.11 36.22± 0.34 9.30
ResNet-18 44.37± 0.70 41.03± 1.03 3.34 36.95± 1.02 7.42
DenseNet-121 53.75± 0.39 51.80± 0.61 1.95 48.04± 0.37 5.71
ViT-B/16 88.89± 0.24 89.00± 0.21 -0.11 88.86± 0.40 0.03
EfficientNetV2-S 79.63± 0.64 80.36± 0.45 -0.73 78.32± 0.43 1.31

Table 13: Results on ImageNet.

shots Models Random-Bench Achilles-Bench (GradNorm) Achilles-Bench (Loss)
Accuracy Accuracy Gap Accuracy Gap

50-shot

FFN 3.93± 0.51 1.59± 0.09 2.34 1.72± 0.04 2.21
VGG-16 6.94± 0.43 2.11± 0.23 4.83 2.97± 0.23 3.97
ResNet-18 18.84± 0.46 11.67± 0.27 7.17 9.46± 0.24 9.38
DenseNet-121 22.96± 0.44 13.89± 0.45 9.07 10.29± 0.20 12.67
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Table 14: The results on GLUE with 16-shots.

Datasets Models Random-Bench Achilles-Bench (GradNorm) Achilles-Bench (Loss)
Accuracy Accuracy Gap Accuracy Gap

SST2

Transformer 52.64± 2.16 52.89± 0.56 -0.25 52.34± 0.26 0.30
BERT 68.39± 7.14 56.86± 4.88 11.53 50.28± 0.88 18.11
GPT-2 55.62± 4.12 52.52± 2.00 3.10 51.54± 1.22 4.08
RoBERTa 76.67± 3.44 58.12± 1.47 18.55 50.25± 0.96 26.42
T5 55.94± 3.74 51.95± 1.90 3.99 51.19± 2.26 4.75

COLA

Transformer 68.95± 0.44 68.74± 0.86 0.21 68.88± 0.50 0.07
BERT 66.94± 3.55 64.99± 6.39 1.95 58.16± 13.44 8.78
GPT-2 66.40± 5.50 66.19± 5.92 0.21 66.56± 5.19 -0.16
RoBERTa 69.66± 1.02 65.23± 5.14 4.43 49.38± 11.73 20.28
T5 55.82± 8.92 59.54± 4.84 -3.72 56.80± 6.79 -0.98

MNLI

Transformer 35.40± 0.09 35.45± 0.00 -0.05 35.28± 0.21 0.12
BERT 36.21± 0.96 34.21± 0.54 2.00 34.03± 0.96 2.18
GPT-2 37.63± 1.29 34.40± 1.39 3.23 33.88± 1.31 3.75
RoBERTa 43.13± 2.07 35.48± 0.82 7.65 33.38± 1.10 9.75
T5 33.98± 0.50 33.44± 0.21 0.54 33.39± 0.18 0.59

QNLI

Transformer 53.48± 2.46 50.95± 0.55 2.53 51.22± 0.38 2.26
BERT 53.75± 0.69 50.79± 0.31 2.96 50.10± 0.66 3.65
GPT-2 55.16± 3.26 53.65± 2.94 1.51 52.49± 2.08 2.67
RoBERTa 63.52± 3.92 50.80± 0.37 12.72 49.78± 0.40 13.74
T5 54.03± 2.36 50.85± 1.02 3.18 49.69± 0.94 4.34

MRPC

Transformer 68.63± 0.31 68.38± 0.00 0.25 68.33± 0.10 0.30
BERT 66.47± 3.22 63.19± 6.52 3.28 54.61± 16.68 11.86
GPT-2 67.75± 1.53 66.23± 4.44 1.52 63.87± 8.90 3.88
RoBERTa 69.26± 1.48 57.60± 7.79 11.66 33.33± 0.83 35.93
T5 58.58± 5.94 59.90± 4.06 -1.32 56.32± 8.15 2.26

QQP

Transformer 63.75± 0.55 63.23± 0.08 0.52 63.19± 0.02 0.56
BERT 64.81± 2.15 59.19± 2.86 5.62 57.27± 4.69 7.54
GPT-2 62.57± 1.34 54.64± 4.89 7.93 56.84± 3.40 5.73
RoBERTa 65.55± 1.36 63.18± 0.00 2.37 63.10± 0.10 2.45
T5 55.49± 3.35 56.61± 3.44 -1.12 56.14± 2.58 -0.65

RTE

Transformer 53.72± 0.90 54.95± 1.01 -1.23 54.80± 0.42 -1.08
BERT 55.02± 1.56 53.43± 2.41 1.59 50.40± 2.59 4.62
GPT-2 58.77± 3.98 58.84± 2.84 -0.07 52.71± 1.69 6.06
RoBERTa 55.16± 1.73 53.14± 0.42 2.02 52.56± 0.37 2.60
T5 51.05± 2.44 49.03± 1.76 2.02 49.10± 0.97 1.95

WNLI

Transformer 58.03± 2.07 56.62± 0.56 1.41 57.46± 1.05 0.57
BERT 56.34± 6.96 54.37± 4.51 1.97 56.62± 2.87 -0.28
GPT-2 56.34± 0.00 56.62± 1.38 -0.28 56.90± 2.61 -0.56
RoBERTa 57.75± 3.09 56.90± 1.13 0.85 56.34± 1.54 1.41
T5 58.31± 0.69 53.52± 5.12 4.79 52.11± 5.42 6.20
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Table 15: Results on GLUE with 32-shots.

Datasets Models Random-Bench Achilles-Bench (GradNorm) Achilles-Bench (Loss)
Accuracy Accuracy Gap Accuracy Gap

SST2

Transformer 55.96± 1.33 52.50± 0.58 3.46 52.27± 0.48 3.69
BERT 77.20± 4.97 54.70± 4.07 22.50 50.28± 0.85 26.92
GPT-2 68.46± 5.20 57.73± 1.01 10.73 51.72± 0.72 16.74
RoBERTa 83.81± 2.25 57.36± 2.45 26.45 50.09± 0.97 33.72
T5 63.10± 3.97 54.06± 2.86 9.04 51.06± 2.38 12.04

COLA

Transformer 69.36± 0.37 69.13± 0.00 0.23 69.15± 0.04 0.21
BERT 67.56± 3.19 62.05± 9.21 5.51 60.44± 10.81 7.12
GPT-2 66.94± 3.91 66.06± 5.77 0.88 66.04± 6.22 0.90
RoBERTa 72.23± 1.32 66.27± 3.90 5.96 59.85± 12.56 12.38
T5 59.50± 4.25 58.39± 5.32 1.11 57.81± 6.12 1.69

MNLI

Transformer 35.46± 0.03 35.45± 0.00 0.01 35.42± 0.04 0.04
BERT 39.21± 2.50 34.45± 0.76 4.76 33.41± 0.63 5.80
GPT-2 39.81± 0.88 34.75± 1.47 5.06 34.00± 1.28 5.81
RoBERTa 45.44± 2.02 36.55± 0.97 8.89 33.81± 1.18 11.63
T5 34.45± 0.50 33.87± 0.24 0.58 33.13± 0.24 1.32

QNLI

Transformer 53.96± 0.92 51.36± 0.40 2.60 50.78± 0.09 3.18
BERT 57.07± 2.02 50.85± 0.40 6.22 50.08± 0.35 6.99
GPT-2 57.97± 2.83 53.70± 3.03 4.27 52.86± 2.50 5.11
RoBERTa 71.64± 1.99 50.67± 0.62 20.97 49.61± 0.31 22.03
T5 60.41± 4.20 50.74± 1.29 9.67 49.50± 1.04 10.91

MRPC

Transformer 68.63± 0.27 68.43± 0.10 0.20 68.48± 0.20 0.15
BERT 66.96± 2.36 61.72± 7.05 5.24 54.80± 16.04 12.16
GPT-2 69.07± 1.82 67.11± 2.33 1.96 63.97± 8.95 5.10
RoBERTa 73.73± 2.79 55.34± 6.31 18.39 35.39± 4.57 38.34
T5 62.21± 3.44 58.04± 5.53 4.17 55.78± 8.91 6.43

QQP

Transformer 64.06± 0.30 63.26± 0.09 0.80 63.18± 0.00 0.88
BERT 65.49± 1.73 61.12± 1.72 4.37 54.83± 5.47 10.66
GPT-2 63.37± 3.21 56.03± 4.17 7.34 55.00± 5.30 8.37
RoBERTa 70.10± 0.98 61.82± 2.73 8.28 62.81± 0.45 7.29
T5 61.44± 4.99 56.21± 2.96 5.23 54.53± 4.05 6.91

RTE

Transformer 53.72± 0.98 55.38± 0.49 -1.66 55.02± 0.74 -1.30
BERT 55.02± 3.83 52.85± 1.96 2.17 49.46± 2.45 5.56
GPT-2 58.77± 2.65 60.36± 2.96 -1.59 52.85± 3.15 5.92
RoBERTa 57.76± 3.62 54.95± 2.37 2.81 52.78± 0.58 4.98
T5 51.48± 1.13 52.06± 1.77 -0.58 49.17± 1.60 2.31

WNLI

Transformer 58.59± 2.76 56.34± 0.00 2.25 58.31± 1.44 0.28
BERT 54.08± 3.94 54.93± 4.27 -0.85 55.21± 2.87 -1.13
GPT-2 58.03± 2.25 57.46± 1.87 0.57 56.34± 1.99 1.69
RoBERTa 56.62± 0.56 56.90± 1.13 -0.28 57.18± 1.44 -0.56
T5 53.80± 3.92 57.18± 3.03 -3.38 53.24± 5.52 0.56
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Table 16: Results on GLUE with 100-shots.

Datasets Models Random-Bench Achilles-Bench (GradNorm) Achilles-Bench (Loss)
Accuracy Accuracy Gap Accuracy Gap

SST2

Transformer 59.50± 1.52 52.41± 0.64 7.09 51.74± 0.38 7.76
BERT 86.22± 0.39 51.38± 1.86 34.84 49.33± 2.12 36.89
GPT-2 83.00± 1.43 53.46± 1.76 29.54 51.22± 1.85 31.78
RoBERTa 88.37± 1.08 51.93± 0.73 36.44 50.57± 0.75 37.80
T5 83.35± 4.21 52.25± 1.54 31.10 51.01± 2.49 32.34

COLA

Transformer 69.19± 0.08 69.17± 0.05 0.02 68.78± 0.69 0.41
BERT 74.84± 1.36 61.25± 7.11 13.59 57.09± 12.93 17.75
GPT-2 66.62± 3.15 65.77± 5.94 0.85 64.60± 6.87 2.02
RoBERTa 77.28± 1.09 62.84± 6.71 14.44 59.64± 5.95 17.64
T5 75.24± 1.07 57.49± 5.44 17.75 56.72± 7.18 18.52

MNLI

Transformer 35.61± 0.22 35.25± 0.32 0.36 35.11± 0.41 0.50
BERT 43.98± 2.71 34.74± 0.62 9.24 33.13± 0.60 10.85
GPT-2 48.69± 1.80 34.77± 1.12 13.92 33.86± 1.24 14.83
RoBERTa 61.44± 2.69 36.87± 1.00 24.57 33.64± 0.98 27.80
T5 40.63± 4.32 34.27± 0.36 6.36 32.98± 0.29 7.65

QNLI

Transformer 56.23± 0.86 50.68± 0.15 5.55 50.54± 0.00 5.69
BERT 63.82± 4.63 49.98± 1.01 13.84 47.26± 2.17 16.56
GPT-2 62.52± 4.58 53.34± 2.93 9.18 51.80± 2.02 10.72
RoBERTa 78.44± 2.05 50.08± 0.51 28.36 50.23± 0.46 28.21
T5 73.75± 2.43 49.99± 1.01 23.76 48.91± 1.36 24.84

MRPC

Transformer 69.02± 0.69 68.43± 0.10 0.59 66.67± 3.43 2.35
BERT 69.41± 0.95 58.77± 5.61 10.64 48.24± 11.18 21.17
GPT-2 71.76± 1.91 65.34± 2.14 6.42 64.07± 5.23 7.69
RoBERTa 77.16± 2.77 60.34± 4.15 16.82 41.47± 6.42 35.69
T5 65.64± 1.33 57.79± 5.58 7.85 56.52± 5.77 9.12

QQP

Transformer 65.27± 0.61 63.45± 0.32 1.82 60.54± 1.67 4.73
BERT 69.62± 1.85 60.11± 1.68 9.51 47.14± 5.08 22.48
GPT-2 70.13± 2.28 55.04± 4.57 15.09 51.27± 6.85 18.86
RoBERTa 75.33± 1.24 63.02± 1.13 12.31 48.10± 12.34 27.23
T5 73.02± 1.75 57.54± 4.38 15.48 53.35± 4.40 19.67

RTE

Transformer 53.72± 0.90 56.10± 0.71 -2.38 53.07± 0.23 0.65
BERT 54.66± 2.65 52.56± 1.06 2.10 47.44± 1.49 7.22
GPT-2 59.35± 3.23 57.76± 2.33 1.59 51.26± 2.40 8.09
RoBERTa 63.39± 2.49 53.94± 0.67 9.45 51.05± 2.19 12.34
T5 53.72± 3.97 51.19± 1.59 2.53 48.59± 1.32 5.13
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G Visualization

G.1 Selected Sentences by Achilles-Bench for NLP tasks

Table 17: Sentences of the set random selected on SST2. We sample randomly 10 examples for each label.

sentence label

inconsistent , meandering , and sometimes dry plot

negative

made a great saturday night live sketch , but a great movie it is not
an mtv , sugar hysteria ,
was only
it ’s been 13 months and 295 preview screenings since i last walked out on a movie ,
but resident evil really earned my indignant , preemptive departure
act weird
humbuggery ...
90 punitive minutes of eardrum-dicing gunplay , screeching-metal smashups , and flaccid odd-couple sniping .
of screenwriting cliches that sink it faster than a leaky freighter
sit still for two hours and change watching such a character ,
especially when rendered in as flat and impassive a manner as phoenix ’s

a smart , solid , kinetically-charged spy flick worthy of a couple hours of summertime and a bucket of popcorn

positive

great acting
have ever seen , constantly pulling the rug from underneath us , seeing things from new sides , plunging deeper ,
getting more intense
is a film in which the talent is undeniable
come away with a greater knowledge of the facts of cuban music
shows how deeply felt emotions can draw people together across the walls that might otherwise separate them .
the crazy things that keep people going in this crazy life
appeal to asian cult cinema fans and asiaphiles interested to see what all the fuss is about .
potentially interesting
thrusts the audience

Table 18: Sentences of the set searched by Achilles-Bench (GradNorm) for SST2. We choose top 10 examples for
each label.

sentence label

is well below expectations .

negative

make it sting
is well below expectations
huge sacrifice
best spent elsewhere
few ‘ cool ’ actors
laughably
below is well below expectations .
spare dialogue
temperamental

to winger fans who have missed her since 1995 ’s forget paris

positive

rocky and
becomes compulsively watchable
particularly balk , who ’s finally been given a part worthy of her considerable talents
balk , who ’s finally been given a part worthy of her considerable talents
clearly a manipulative film
entertainingly nasty
busts out of its comfy little cell
fascinate me
rediscovers his passion in life
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Table 19: Sentences of the set searched by Achilles-Bench (Loss) for SST2. We choose top 10 examples for each
label.

sentence label

a damn fine and a truly distinctive and a deeply pertinent film

negative

provides an invaluable service
is an undeniably worthy and devastating experience
gain the unconditional love she seeks
unfolds as one of the most politically audacious films of recent decades from any country ,
but especially from france self-deprecating , biting and witty feature
reasonably creative eighth-grader
chilling tale
noble end
from sharing the awe in which it holds itself

fails to have a heart , mind or humor of its own

positive

terminally bland ,
’s not a brilliant piece of filmmaking
after next spreads them pretty thin
an admittedly middling film
the movie is silly beyond comprehension ,
just a bunch of good actors flailing around in a caper that ’s neither original nor terribly funny
, incoherence and sub-sophomoric
he script is n’t up to the level of the direction
an overcooked souffl
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G.2 Visualization of the “Average Examples (Random)”

Figure 8: Visualization of the set random selected on CIFAR-10. We sample randomly 50 examples for each label.
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G.3 Visualization of the Searched “Hard Examples (GradNorm)”

Figure 9: Visualization of the set searched by Achilles-Bench (GradNorm) on CIFAR-10. We choose top 50
examples for each label.
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G.4 Visualization of the Searched “Hard Examples (Loss)”

Figure 10: Visualization of the set searched by Achilles-Bench (Loss) on CIFAR-10. We choose top 50 examples
for each label.
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