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Abstract
Owing to the scarcity of labeled training data,
Spoken language understanding (SLU) is still
a challenging task in low-resource languages.
Therefore, zero-shot cross-lingual SLU attracts
more and more attention. Contrastive learning
is widely applied to explicitly align representa-
tions of similar sentences across different lan-
guages. However, the vanilla contrastive learn-
ing method may face two problems in zero-shot
cross-lingual SLU: (1) the consistency between
different languages is neglected; (2) each ut-
terance has two different kinds of SLU labels,
i.e. slot and intent, the utterances with one dif-
ferent label are also pushed away without any
discrimination, which limits the performance.
In this paper, we propose Cyclical Contrastive
Learning based on Geodesic (CCLG), which in-
troduces cyclical contrastive learning to achieve
the consistency between the different languages
and adopts geodesic to measure the similarity to
construct the positive pairs and negative pairs.
Experimental results demonstrate that our pro-
posed framework achieves the new state-of-the-
art performance on MultiATIS++ and MTOP
datasets, and the model analysis further verifies
that CCLG can effectively transfer knowledge
between different languages.

1 Introduction

Spoken Language Understanding (SLU) holds the
central position in the task-oriented dialogue sys-
tems (Tur and De Mori, 2011; Qin et al., 2019; Xu
et al., 2021; Zhu et al., 2023c, 2024a,b). The pri-
mary objective of SLU task is to comprehend and
extract relevant information from user utterances.
This capability enables the system to discern the
user’s current objective and generate appropriate re-
sponses. SLU comprises two critical sub-tasks: in-
tent detection, which focuses on identifying users’
intentions, and slot filling, which entails extracting
semantic elements from user queries (Chen et al.,
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2022; Zhou et al., 2022; Huang et al., 2023; Cheng
et al., 2023a,c; Zhu et al., 2023b).

However, the effectiveness of traditional SLU
models is intrinsically linked to the availability of
extensive annotated data, which poses challenges
in the scalability. This challenge is particularly evi-
dent in the case of low-resource languages, where
the lack of substantial labeled datasets exacerbates
scalability issues, hindering the seamless deploy-
ment and advancement of SLU models. With the
demand for language processing solutions extend-
ing across various diverse linguistic landscapes, the
necessity for scalable SLU models that can operate
effectively in resource-constrained environments
becomes increasingly critical.

To tackle these constraints, the concept of zero-
shot cross-lingual SLU generalization has emerged
as a central focus of interest and investigation. Re-
cently, mBERT (Devlin et al., 2019) has demon-
strated significant advancements in zero-shot cross-
lingual SLU. Building upon this work, Liu et al.
(2020) first introduces an attention-informed mixed-
language training approach for cross-lingual SLU.
In addition, the exploration of multilingual code-
switched settings has been extended by Qin et al.
(2020a), which entails aligning a source language
with target languages. GL-CLEF (Qin et al., 2022)
employs contrastive learning, leveraging bilingual
dictionaries to construct multilingual views of the
same utterance, then encouraging their representa-
tions to be more similar than those negative exam-
ple pairs. LAJ-MCL (Liang et al., 2022) proposes
to model the utterance-slot-word structure using a
multi-level contrastive learning framework to fa-
cilitate explicit alignment, further enhancing per-
formance. FC-MTLF (Cheng et al., 2023b) points
out the deficiencies in conventional code-switching
methods (Qin et al., 2020a) and introduces an aux-
iliary multilingual neural machine translation task
to facilitate knowledge transfer across different lan-
guages. Although existing zero-shot cross-lingual



SLU methods have made promising strides by con-
trastive learning, we identify two main issues:

(1) The consistency between the different lan-
guages is neglected. Although the code-switching
method has been applied to construct positive sam-
ples in contrastive learning, we find that the con-
sistency between different languages has not been
effectively established. Specifically, the distances
between the corresponding samples in different lan-
guages are inconsistent, which affects the transfer
of knowledge across different languages.

(2) The utterances with one different label are
also pushed away without discrimination. Tra-
ditional contrastive learning methods utilize code-
switching to construct the positive samples and neg-
ative samples, bringing tokens with the same label
and intent label closer together while pushing other
the tokens away. However, this can result in a side
effect where tokens with only one different label
(slot or intent) can be also indiscriminately pushed
away, which undoubtedly hampers the representa-
tion modeling of contrastive learning, leading to
the suboptimal performance.

In this paper, we propose Cyclical Contrastive
Learning based on Geodesic (CCLG) to solve these
two problems. For the first problem, we introduce
two consistency losses, including the cross-lingual
consistency loss and the intra-lingual consistency
loss, aiming to boost the consistency between dif-
ferent languages. For the second problem, we aban-
don the previous approach of directly employing
code-switching to construct positive samples and
negative samples in contrastive learning. Instead,
we utilize geodesic to reconstruct positive and nega-
tive samples and employ geodesic-based similarity
instead of the traditional similarity metrics, thereby
facilitating the learning of representations.

We conduct experiments on MultiATIS++ (Xu
et al., 2020) and MTOP (Li et al., 2021), cover-
ing nine and six different languages, respectively.
The experimental results show that our framework
can outperform previous cross-lingual SLU base-
lines. Further model analysis also indicates that our
method can transfer knowledge from high-resource
languages to low-resource languages. In summary,
our work makes three-fold contributions:

• We use cyclical contrastive learning to achieve
consistency between different languages.

• We apply geodesic to construct positive and
negative samples in contrastive learning, lead-
ing to improved representations of tokens.

• Experiment results show that our framework
achieves the new state-of-the-art performance
on MultiATIS++ and MTOP datasets.

2 Related Works

The related works are introduced from zero-shot
cross-lingual SLU and contrastive learning.

2.1 Zero-shot Cross-lingual SLU

Traditional SLU usually focuses on languages with
abundant resources, which limits their widespread
use. This limitation has sparked growing interest in
a novel approach known as zero-shot cross-lingual
SLU. The essence of success in this approach lies
in tapping into the linguistic insights present in lan-
guages with ample resources. By doing so, it opens
up exciting possibilities for overcoming challenges
posed by limited data in cross-lingual scenarios.
Moreover, it extends the reach of SLU to languages
that have been previously overlooked, thereby con-
tributing to a more inclusive and adaptable frame-
work in the field of multilingualism.

In recent years, with the popularity of pre-trained
models (Xin et al., 2022; Xin and Zou, 2023; Xin
et al., 2023a,b; Yang et al., 2023, 2024a; Dong
et al., 2023; Yang et al., 2024b; Hu et al., 2024; Wu
et al., 2023; Shen et al., 2023; Feng et al., 2019;
Dong et al., 2022), many cross-lingual embeddings,
such as mBERT (Devlin et al., 2019), have shown
promising results. Liu et al. (2020) propose code-
mixing to construct training sentences containing
both the source and target phrases, implicitly fine-
tuning mBERT. Building upon it, Qin et al. (2020a)
proposes multilingual code-switching data augmen-
tation to better align the source language with all
target languages. Additionally, van der Goot et al.
(2021) suggests three non-English auxiliary tasks to
boost cross-lingual transfer. More recently, SOGO

(Zhu et al., 2023a) highlights the limitations of the
conventional code-switching method and proposes
a saliency-based substitution approach for extract-
ing keywords as substitutions. In our method, we
use cyclical contrastive learning based on geodesic
to further transfer the knowledge from the source
language to the target language.

2.2 Contrastive Learning

As attention mechanisms have become increasingly
popular, exploring how to obtain the better repre-
sentations is a highly worthwhile topic of investi-
gation (Yin et al., 2023; Wei et al., 2023a,b, 2024;
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Figure 1: The overview of our proposed approach.

Zhang et al., 2024a,b; Cao et al., 2021, 2022; Jin
et al., 2023; Chen et al., 2024). Contrastive learning
aims to learn representations of examples via mini-
mizing the distance between positive pairs and max-
imizing the distance between negative pairs (Saun-
shi et al., 2019; Chuang et al., 2020; Liu et al.,
2022), a concept initially proposed in the field of
computer vision (Chopra et al., 2005; Chen et al.,
2020; Wang and Liu, 2021). In natural language
processing, contrastive learning is utilized for learn-
ing the sentence embeddings (Giorgi et al., 2021;
Yan et al., 2021), translation tasks (Pan et al., 2021;
Ye et al., 2022), and summarization (Wang et al.,
2021; Cao and Wang, 2021). Owing to its strong
capability in achieving alignment across different
languages, contrastive learning has also been used
in zero-shot cross-lingual SLU (Liang et al., 2022;
Qin et al., 2022). However, we find two main issues
with directly using vanilla conservative learning in
cross-lingual SLU. As a result, we propose cyclical
contrastive learning based on geodesic to tackle
these two issues in this paper.

3 Background

SLU comprises two core subtasks, including intent
detection and slot filling. Given the input utterance
x = (x1, x2, . . . , xn), where n denotes the length
of x, intent detection is treated as a classification
task, producing the intent label oI , and slot filling
is a sequence labeling task, mapping each utterance
x to a slot output sequence oS = (oS1 , o

S
2 , . . . , o

S
n).

Due to the intrinsic correlation between intent de-
tection and slot filling, it is common to train a uni-
fied SLU model capable of jointly handling both
tasks. Zero-shot cross-lingual SLU task involves
training an SLU model on a high-resource source
language, such as English, and seamlessly using it
on a low-resource target language, such as Hindi.

In this scenario, when presented with an instance
xtarget in the target language, the trained model f
can directly generate predictions for both intent and
slot values in the target language:(

oI
target,o

S
target

)
= f (xtarget) (1)

where f denotes the trained model and target de-
notes the target language.

4 Method

In this section, we first introduce the Generic SLU
Module (Sec. 4.1) and the previous paradigm of
utilizing contrastive learning to enhance zero-shot
cross-lingual SLU (Sec. 4.2). Then, we introduce
the components of our proposed approach, includ-
ing Cyclical Contrastive Learning (Sec. 4.3) and
Geodesic (Sec. 4.4). Finally, we introduce the final
Training Objective (Sec. 4.5). The overview of our
approach is demonstrated in Figure 1.

4.1 Generic SLU Module
Given the input sentence x = (x1, x2, ..., xn), the
construction of the input utterance is based on each
input utterance by incorporating the specific tokens
x = ([CLS], x1, x2, ..., xn, [SEP]). Following Qin
et al. (2020a), code-switching is applied to leverage
the bilingual dictionaries (Lample et al., 2018) in
generating multi-lingual code-switched data as the
input. The representation of the utterance, denoted
as H = (hCLS, h1, . . . , hn, hSEP), is obtained by uti-
lizing the pre-trained mBERT (Devlin et al., 2019).
The predicted intent oI and the predicted slot oS

t

are formulated as follows, respectively:

oI = softmax
(
W IhCLS + bI

)
(2)

oS
t = softmax

(
W Sht + bS

)
(3)

where W I , W S , bI , and bS are trainable parame-
ters, ht is the first sub-token representation of xt.



4.2 Previous Contrastive Paradigm
Contrastive learning has been applied in zero-shot
cross-lingual SLU (Qin et al., 2022; Liang et al.,
2022). In general, previous methods aim to bring
tokens and the corresponding code-switched tokens
(positive pairs) closer together while pushing apart
tokens and the non-corresponding tokens (negative
pairs). And the previous contrastive loss LCL can
be formulated as follows:

LI
CL = −

N∑
j=1

log
s(hj

CLS,h
j+
CLS)∑B

hj
CLS ̸=hj′

CLS

s(hj
CLS,h

j′

CLS)
(4)

LS
CL = − 1

n

N∑
j=1

n∑
i=1

log
s(hj

i ,h
j+
i )∑B

hj
i ̸=hj′

i

s(hj
i ,h

j′

i )
(5)

LCL = LI
CL + LS

CL (6)

where s(·) denotes the cosine similarity function,
h+
CLS denotes the positive sample of hCLS, h+

i de-
notes the positive sample of hi, B denotes the mini-
batch of original and code-switched tokens, and N
denotes the total number of utterences.

4.3 Cyclical Contrastive Learning
Inspired by previous work (Goel et al., 2022), we
introduce two additional consistency losses to im-
prove the consistency between different languages,
including the cross-lingual consistency loss and the
intra-lingual consistency loss.

The cross-lingual consistency loss LC
CCL is uti-

lized to reduce the discrepancy in similarity scores
between the representations of all mismatched pairs
of original tokens and code-switched tokens, which
could be formulated as follows:

LC
CCL =

1

N

N∑
j=1

N∑
i=1

(⟨Hj ,Hi⟩ − ⟨Hi,Hj⟩)2 (7)

where ⟨·, ·⟩ denotes the inner product function, and
H denotes the representation of the corresponding
code-switched utterance.

The intra-lingual consistency loss LI
CCL is em-

ployed to reduce the discrepancy in the similarity
scores between the representations of all the origi-
nal token pairs and corresponding code-switched
token pairs, which could be formulated as follows:

LI
CCL =

1

N

N∑
j=1

N∑
i=1

(⟨Hj ,Hi⟩ − ⟨Hi,Hj⟩)2 (8)

The final cyclical contrastive learning loss LCCL
is the sum of LC

CCL and LI
CCL:

LCCL = LC
CCL + LI

CCL (9)

4.4 Geodesic
In the previous contrastive paradigm, only the to-
kens with the same two labels, including intent and
slot, are regarded as the positive pairs. Therefore,
the tokens with only one different label (slot or in-
tent) are also pushed apart without discrimination,
which limits the overall performance. To solve this
problem, we leverage geodesic to discriminate pos-
itive pairs in contrastive learning (Li et al., 2023).

The representations of tokens are often embed-
ded within a high-dimensional manifold, and our
objective is to gauge the geodesic distance between
two points along this manifold. However, calculat-
ing the precise geodesic distance proves challeng-
ing in the absence of some knowledge regarding the
manifold’s structure (Kimmel and Sethian, 1998).
To address this, we resort to leveraging the K-NN
graph (Cover and Hart, 1967) as an approximation
to the manifold structure (Surazhsky et al., 2005;
Chowdhury et al., 2022). Within this graph, each
token hi constitutes a node, and connections are es-
tablished between nodes such that each node links
to at most k other nodes of the graph.

Specifically, a directed edge is established from
the node hi to node hj if hj is one of the k nearest
neighbors of hi. The weight of each edge d(hi,hj)
is defined utilizing the cosine similarity:

d(hi,hj) = 1− s(hi,hj) (10)

Finally, we employ the shortest path algorithm
Dijkstra (Dijkstra, 1959) to compute the length of
the shortest path between the two token representa-
tions along the obtained weighted directed graph,
serving as the final geodesic distance G(hi,hj).

For a token hi, we define the k tokens with the
closest geodesic distance from the code-switched
tokens as its positive samples Pi:

Pi =
{
pk
i

}
= arg topkG(hi,hj)

k

(11)

In vanilla contrastive learning, for the negative
samples with only one different label and the sam-
ples with two different labels, the push operation
for all negative samples is indistinguishable, which
clearly undermines the model to learn the correct
representations. To solve this issue, we leverage the
geodesic distance to push negative samples away.
The similarity SG(hi,hj) between different tokens
could be formulated as follows:

SG(hi,hj) = exp(hih
⊤
j · log 1

exp(G(hi,hj) + 1)
)

(12)



By considering the relationships between nega-
tive samples while maximizing the mutual informa-
tion, we believe SG(hi,hj) is more beneficial than
the conventional similarity function. The geodesic-
based contrastive learning loss LGCL are as follows:

LI
GCL = −

N∑
j=1

log

∑
pk
CLS∈PCLS

exp(hj
CLS,p

k
CLS)∑B

hj
CLS ̸=hj′

CLS

SG(h
j
CLS,h

j′

CLS)

(13)

LS
GCL = − 1

n

N∑
j=1

n∑
i=1

log

∑
pk
i ∈Pi

exp(hj
i ,p

k
i )∑B

hj
i ̸=hj′

i

SG(h
j
i ,h

j′

i )

(14)

LGCL = LI
GCL + LS

GCL (15)

4.5 Training Objective
Following previous work (Qin et al., 2020b, 2022),
the intent detection objective LI and the slot filling
objective LS are computed as follows:

LI = −
nI∑
i=1

ŷI
i log

(
oIi

)
(16)

LS = −
n∑

j=1

nS∑
i=1

ŷi,S
j log

(
oi,Sj

)
(17)

where ŷI
i denotes the gold intent label, ŷi,S

j denotes
the gold slot label for the j-th token, nI denotes
the number of gold intent labels, and nS denotes
the number of gold slot labels.

The final training objective L is as follows:

L = αLI + (1− α)LS + λLCCL + γLGCL (18)

where α and λ are two hyper-parameters.

5 Experiments

5.1 Datasets and Metrics
We primarily conduct our experiments on two pub-
lic cross-lingual SLU benchmark datasets, includ-
ing the MultiATIS++ (Xu et al., 2020) dataset and
the MTOP (Li et al., 2021) dataset.

MultiATIS++1 dataset is the broadened version
of the Multilingual ATIS (Upadhyay et al., 2018)
dataset, whose statistics are shown in Table 1. This
extension includes human-translated data for an ad-
ditional six languages: Spanish (es), German (de),
Chinese (zh), Japanese (ja), Portuguese (pt), and

1https://github.com/amazon-science/multiatis

French (fr), complementing the original languages,
Hindi (hi) and Turkish (tr). The dataset comprises
4,478 utterances in the training set, 500 in the vali-
dation set, and 893 in the test set, with a total of 18
intents and 84 slots for each language.

Language Utterances Intent Slot
train valid test types types

hi 1440 160 893 17 75
tr 578 60 715 17 71
es 4488 490 893 18 84
pt 4488 490 893 18 84
de 4488 490 893 18 84
fr 4488 490 893 18 84
zh 4488 490 893 18 84
ja 4488 490 893 18 84

Table 1: Statistics of MultiATIS++ dataset.

MTOP2 is compiled from interactions between
humans and assistant systems, with statistics pre-
sented in Table 2. MTOP comprises over 100,000
human-translated utterances in six languages (En-
glish (en), German (de), Spanish (es), French (fr),
Thai (th), and Hindi (hi)). For the fair comparison,
we follow Liang et al. (2022) to utilize the flat ver-
sion, divided into 70:10:20 percentage splits for the
training set, validation set, and test set.

Number of Total Utterances Intent Slot
en de fr es hi th types types

22,288 18,788 16,584 15,459 16,131 15,195 117 78

Table 2: Statistics of MTOP dataset.

Consistent with prior research (Qin et al., 2022;
Zhu et al., 2023a; Cheng et al., 2023d, 2024), accu-
racy serves as the main metric for evaluating intent
detection, and the F1 score is applied to assess the
slot filling performance. In addition, overall accu-
racy is utilized for sentence-level semantic frame
parsing evaluation, which is more important.

5.2 Implementation Details
Following Qin et al. (2022), we utilize the base
case of the multilingual BERT (mBERT)3(Devlin
et al., 2019), featuring N = 12 attention heads and
M = 12 transformer blocks. The learning rate is
set to 5× 10−7 and the total batch size is equal to
16. During the whole training process, the value of

2https://fb.me/mtop_dataset
3https://github.com/google-research/bert/blob/

master/multilingual.md

https://github.com/amazon-science/multiatis
https://fb.me/mtop_dataset
https://github.com/google-research/bert/blob/master/multilingual.md
https://github.com/google-research/bert/blob/master/multilingual.md


Intent Accuracy en de es fr hi ja pt tr zh AVG

ZSJoint‡ (Chen et al., 2019) 98.54 90.48 93.28 94.51 77.15 76.59 94.62 73.29 84.55 87.00
CoSDA† (Qin et al., 2021) 95.74 94.06 92.29 77.04 82.75 73.25 93.05 80.42 78.95 87.32
GL-CLEF* (Qin et al., 2022) 98.77 97.53 97.05 97.72 86.00 82.84 96.08 83.92 87.68 91.95
LAJ-MCL* (Liang et al., 2022) 98.77 98.10 98.10 98.77 84.54 81.86 97.09 85.45 89.03 92.41
DiffSLU* (Mao and Zhang, 2023) 98.86 98.17 98.21 98.93 86.66 82.65 97.21 85.98 89.46 92.90
SOGO* (Zhu et al., 2023a) 98.89 98.45 98.15 97.74 83.87 84.75 97.73 85.53 89.10 92.69
FC-MTLF* (Cheng et al., 2023b) 98.97 98.21 98.36 99.01 86.72 82.95 97.34 86.02 89.53 93.01

CCLG (ours) 99.35 98.51 98.94 99.43 87.32 85.53 98.79 86.48 89.97 93.81

Slot F1 en de es fr hi ja pt tr zh AVG

ZSJoint‡ (Chen et al., 2019) 95.20 74.79 76.52 74.25 52.73 70.10 72.56 29.66 66.91 68.08
CoSDA† (Qin et al., 2021) 92.29 81.37 76.94 79.36 64.06 66.62 75.05 48.77 77.32 73.47
GL-CLEF* (Qin et al., 2022) 95.39 86.30 85.22 84.31 70.34 73.12 81.83 65.85 77.61 80.00
LAJ-MCL* (Liang et al., 2022) 96.02 86.59 83.03 82.11 61.04 68.52 81.49 65.20 82.00 78.23
DiffSLU* (Mao and Zhang, 2023) 96.16 86.72 85.48 84.26 73.04 74.12 82.52 68.14 83.12 81.51
SOGO* (Zhu et al., 2023a) 95.42 87.46 87.01 84.45 74.25 76.69 83.91 67.04 78.53 81.64
FC-MTLF* (Cheng et al., 2023b) 96.21 86.87 85.66 84.62 73.18 74.24 82.68 68.22 83.16 81.65

CCLG (ours) 96.83 88.01 87.45 85.22 74.97 77.19 84.17 68.98 83.82 82.96

Overall Accuracy en de es fr hi ja pt tr zh AVG

ZSJoint‡ (Chen et al., 2019) 87.23 41.43 44.46 43.67 16.01 33.59 43.90 1.12 30.80 38.02
CoSDA† (Qin et al., 2021) 77.04 57.06 46.62 50.06 26.20 28.89 48.77 15.24 46.36 44.03
GL-CLEF* (Qin et al., 2022) 88.02 66.03 59.53 57.02 34.83 41.42 60.43 28.95 50.62 54.09
LAJ-MCL* (Liang et al., 2022) 89.81 67.75 59.13 57.56 23.29 29.34 61.93 28.95 54.76 52.50
DiffSLU* (Mao and Zhang, 2023) 90.06 68.02 59.84 58.08 35.12 43.06 63.04 29.32 55.08 55.74
SOGO* (Zhu et al., 2023a) 90.54 72.26 61.05 57.88 39.90 46.95 64.23 29.14 51.31 57.02
FC-MTLF* (Cheng et al., 2023b) 91.58 69.54 61.43 59.62 36.86 44.64 64.55 30.86 56.52 57.29

CCLG (ours) 91.97 74.91 62.43 59.99 40.43 47.98 64.95 31.56 57.83 59.12

Table 3: Experiment Results on the MultiATIS++ dataset. We report both individual and average (AVG) results.
Results with “*” are obtained from the respective published paper, results with “†” are cited from Qin et al.
(2022), and results with “‡” are cited from Liang et al. (2022). Results in bold denote our framework significantly
outperforms baselines with p < 0.01 under t-test.

Methods Intent Acc Slot F1 Overall Acc

ZSJoint♢ 85.31 67.26 52.15
CoSDA‡ 90.72 73.34 58.77
CL-CLEF♢ 88.94 79.86 61.24
LAJ-MCL* 91.04 74.50 60.11

CCLG (ours) 92.42 82.24 64.36

Table 4: Average results of all the languages on MTOP.
Results with ‡ are cited from Liang et al. (2022), re-
sults with * are from the corresponding published paper,
results with ♢ are obtained by our re-implementation,
and results in bold denote our framework significantly
outperforms baselines with p < 0.01 under t-test.

label smoothing is set to 0.1, and the dropout rate is
set to 0.1. We train our model for 40 epochs, and to
avoid overfitting, our training will early-stop if the
loss on the development set does not decrease by
10 epochs. We apply Adam optimizer (Kingma and
Ba, 2015) with β1 = 0.9, β2 = 0.98, and 4k warm-
up updates to optimize parameters. Following the
zero-shot setting, we choose the model with the
highest overall accuracy based on the English de-
velopment set and subsequently evaluate the model

on test datasets. For all hyper-parameters, we per-
form several experiments and select the values with
the best performance, where α is set to 0.9, λ is set
to 0.5, γ is set to 1, and k is set to 5. All the exper-
iments are conducted on an NVIDIA A100 GPU.
Our code is based on PyTorch (Paszke et al., 2019)
and Transformers4(Wolf et al., 2020) framework.

5.3 Baselines

We compare our proposed CCLG with the follow-
ing strong cross-lingual SLU baselines:

(1) ZSJoint: We have re-implemented the zero-
shot joint model (Chen et al., 2019) (referred to as
ZSJoint), trained on the English training set, and di-
rectly applied it to the test sets of target languages.

(2) CoSDA: Qin et al. (2021) introduces a novel
dynamic code-switching method involving random
multilingual token-level replacement. To ensure a
fair comparison, we utilize both the English train-
ing data and code-switching data for fine-tuning.

(3) GL-CLEF: Qin et al. (2022) proposes a strong
global-local contrastive learning framework for ex-

4https://github.com/huggingface/transformers

https://github.com/huggingface/transformers


Intent Accuracy en de es fr hi ja pt tr zh AVG

CCLG (ours) 99.35 98.51 98.94 99.43 87.32 85.53 98.79 86.48 89.97 93.81

w/o Cyclical Contrastive Learning 98.21 97.76 97.11 97.74 86.14 84.15 96.01 84.23 88.13 92.16
w/o Geodesic 98.05 97.23 96.54 97.12 85.22 82.05 95.33 83.24 87.42 91.36

Slot F1 en de es fr hi ja pt tr zh AVG

CCLG (ours) 96.83 88.01 87.45 85.22 74.97 77.19 84.17 68.98 83.82 82.96

w/o Cyclical Contrastive Learning 96.13 87.11 86.82 84.75 74.23 76.65 83.76 68.33 83.08 82.32
w/o Geodesic 95.13 86.04 85.03 83.76 69.97 72.44 81.03 64.98 77.01 79.49

Overall Accuracy en de es fr hi ja pt tr zh AVG

CCLG (ours) 91.97 74.91 62.43 59.99 40.43 47.98 64.95 31.56 57.83 59.12

w/o Cyclical Contrastive Learning 91.13 74.22 62.01 59.56 39.64 47.45 64.33 31.02 56.76 58.46
w/o Geodesic 87.62 65.73 59.14 56.62 34.44 41.02 60.11 28.63 50.14 53.72

Table 5: Ablation study of difference components on the MultiATIS++ dataset.

plicit alignment, achieving the different granularity
alignments, including sentence-level local intent
alignment, token-level local slot alignment, and the
semantic-level global intent-slot alignment.

(4) LAJ-MCL: Liang et al. (2022) introduces a
multi-level contrastive learning framework, which
is designed for zero-shot cross-lingual SLU.

(5) DiffSLU: Mao and Zhang (2023) introduces
a diffusion model and also utilizes knowledge dis-
tillation for zero-shot cross-lingual SLU, achieving
mutual guidance between intent and slots.

(6) SOGO: Zhu et al. (2023a) further proposes a
semantics-coherent and grammar-coherent method
to boost the code-switching method for zero-shot
cross-lingual SLU, achieving higher performance.

(7) FC-MTLF: Cheng et al. (2023b) introduces
a framework for cross-lingual SLU, utilizing code-
switching for coarse-grained alignment and apply-
ing machine translation for fine-grained alignment.

5.4 Main Results

The results on MultiATIS++ are shown in Table 3
and the results on MTOP are listed in Table 4. From
them, we observe that our method achieves a rela-
tive enhancement of 1.83% in average overall accu-
racy over the previous state-of-the-art model. This
notable improvement could be attributed to our in-
novative approach based on the cyclical contrastive
learning method utilizing geodesic techniques. By
ensuring consistency across diverse languages and
reconstructing both positive and negative samples
by applying geodesic methods, our method excels
in achieving superior overall accuracy.

Additionally, CCLG demonstrates notable and
consistent advancements across all subtasks, par-
ticularly showcasing significant improvements in
low-resource languages compared to high-resource

languages. The success of CCLG in low-resource
languages aligns with the original goal of the zero-
shot cross-lingual SLU task, which aims to address
the challenges in languages with limited training
data. This outcome underscores the effectiveness
of our method in transferring knowledge success-
fully from source languages to target languages.

5.5 Ablation Study
To validate the advantages of CCLG from different
perspectives, we conduct several ablation studies
on the MixATIS++ dataset, the results of which are
demonstrated in Table 5.

5.5.1 Effect of Cyclical Contrastive Learning
CCLG makes a pivotal contribution through its in-
novative cyclical contrastive learning, strategically
achieving consistency across different languages.
To meticulously evaluate the impact of this module,
we conduct an ablation study by excluding LCCL
in Eq. 18, as denoted by "w/o Cyclical Contrastive
Learning" in Table 5. The discernible degradation
in performance emerges across all metrics for ev-
ery language when the cyclical contrastive learning
module is omitted. We contend that this observed
improvement stems from the module’s capability to
model the consistency between different languages,
particularly beneficial for low-resource languages
facing the data scarcity challenges.

5.5.2 Effect of Geodesic
To bolster the effectiveness of geodesic, we con-
duct an ablation study by excluding LGCL in Eq. 18.
This configuration is denoted as "w/o Geodesic" in
Table 5. Significantly, our findings reveal a decline
in performance across all the metrics for each lan-
guage, underscoring the importance of geodesic in



Text (En): show flights from burbank to st. louis on monday

Ref. Intent: atis_flight
Slot: O O O B-fromloc.city_name O B-toloc.city_name I-toloc.city_name O B-depart_date.day_name

GL-CLEF Intent: atis_flight
Slot: O O O B-fromloc.city_name O O O O B-depart_date.day_name

FC-MTLF Intent: atis_flight
Slot: O O O B-fromloc.city_name O B-toloc.city_name O O B-depart_date.day_name

CCLG Intent: atis_flight
Slot: O O O B-fromloc.city_name O B-toloc.city_name I-toloc.city_name O B-depart_date.day_name
Text (De): Zeige Flüge von Burbank nach St. Louis für Montag

Ref. Intent: atis_flight
Slot: O O O B-fromloc.city_name O B-toloc.city_name I-toloc.city_name O B-depart_date.day_name

GL-CLEF Intent: atis_airline
Slot: O O O B-fromloc.city_name O O O O O

FC-MTLF Intent: atis_airline
Slot: O O O B-fromloc.city_name O B-toloc.city_name O O O

CCLG Intent: atis_flight
Slot: O O O B-fromloc.city_name O B-toloc.city_name I-toloc.city_name O B-depart_date.day_name

Table 6: Case study on MultiATIS++ dataset. Text in red denotes the incorrect predictions.

constructing positive and negative samples in con-
trastive learning. This ensures a robust and reliable
model performance in real-world applications.

5.6 Case Study
As illustrated in Table 6, we present a case study in
English and German to validate the advancements
of our model compared to previous zero-shot cross-
lingual SLU methods. These results reveal notable
distinctions in the performance of GL-CLEF, FC-
MTLF, and our proposed CCLG.

In the case of English, all these models correctly
predict the intent. However, as the linguistic com-
plexity increases in German, errors become more
pronounced in both GL-CLEF and FC-MTLF, while
CCLG maintains correct predictions. It exemplifies
the robustness and cross-lingual generalizability of
CCLG, outperforming its counterparts in accurately
predicting intents across diverse languages, with-
out succumbing to increased linguistic complexity,
thereby enhancing overall performance.

In terms of slot filling accuracy, GL-CLEF and
FC-MTLF show several errors in English, whereas
CCLG maintains accuracy. Moving to German, the
errors in GL-CLEF and FC-MTLF become more
pronounced, while CCLG continues to maintain a
high performance. This observed trend highlights
the robust nature of CCLG, showcasing its consis-
tent superiority in accurately predicting slots.

6 Conclusion

In this paper, we propose a novel framework CCLG
for zero-shot cross-lingual spoken language under-
standing (SLU), which utilizes cyclical contrastive
learning to achieve the consistency across different

languages and applies geodesic to construct posi-
tive samples and negative samples in contrastive
learning. Experiments on the MultiATIS++ dataset
and the MTOP dataset show that our CCLG outper-
forms the previous best model and achieves a new
state-of-the-art performance. Further analysis also
demonstrates that our method could indeed transfer
knowledge between different languages effectively.

Limitations

While our method has achieved state-of-the-art per-
formance by modifying the traditional contrastive
paradigm, we recognize the potential for the further
enhancements through the incorporation of the ex-
ternal knowledge. Considering the recent successes
observed with LLMs, we anticipate that harnessing
LLMs could yield additional improvements in our
model’s performance. Exploring the integration of
LLMs into our framework represents a promising
avenue. We leave this aspect for future work.
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