
Findings of the Association for Computational Linguistics ACL 2024, pages 1776–1782
August 11-16, 2024 ©2024 Association for Computational Linguistics

RankMean: Module-Level Importance Score for Merging Fine-tuned
Large Language Models

Gabriel J. Perin1,2, Xuxi Chen2, Shusen Liu3,
Bhavya Kailkhura3, Zhangyang Wang2, Brian Gallagher3

1University of São Paulo 2University of Texas at Austin
3Lawrance Livermore National Laboratory

gabrieljp@usp.br,{xxchen,atlaswang}@utexas.edu
{liu42,kailkhura1,gallagher23}@llnl.gov

Abstract
Traditionally, developing new language mod-
els (LMs) capable of addressing multiple tasks
involves fine-tuning pre-trained LMs using a
wide collection of datasets, a process that of-
ten incurs significant computational expenses.
Model merging emerges as a cost-effective al-
ternative, allowing the integration of existing
models fine-tuned on different tasks into a sin-
gle model that performs well across all tasks,
eliminating the need for additional training.
In this paper, we propose RankMean, an al-
gorithm for merging fine-tuned LMs without
requiring any downstream data. RankMean de-
termines merging coefficients based on the rela-
tive rankings of weight change magnitudes and
applies these coefficients for module-wise inte-
gration of various fine-tuned models. Our ex-
perimental results demonstrate that RankMean
outperforms existing baseline methods on mul-
tiple benchmarks. The code is available at
github.com/VITA-Group/RankMean.

1 Introduction
The LLM research community has invested signifi-
cant effort in developing robust models capable of
tackling diverse downstream tasks such as mathe-
matical reasoning (Hendrycks et al., 2021; Cobbe
et al., 2021), program completion (Chen et al.,
2021), and general question answering (Welbl et al.,
2017). One approach to craft these models is to
fine-tune large pre-trained language models specif-
ically for the targeted downstream tasks. However,
such a fine-tuning process involving a large num-
ber of parameters often incurs significant training
costs (Bartoldson et al., 2023), especially when
constructing models intended to address multiple
tasks simultaneously, where more samples from
diverse datasets need to be used in training.

Instead of fine-tuning LMs for solving multiple
downstream tasks, model merging seeks to amalga-
mate multiple already trained model weights into a
single model without the need for additional train-
ing. This approach is advantageous, especially in

the context of LMs, as it leverages the commu-
nity’s existing efforts in fine-tuning LMs across
diverse tasks, while also preserving inference time.
Following this streamline of research, different
model merging methods have been proposed, such
as Fisher Merging (Matena and Raffel, 2022), Reg-
Mean (Jin et al., 2022) and DARE (Yu et al., 2023).
However, these methods either require access to
training samples, which is not always cheap and
feasible in practical scenarios, or suffer from per-
formance degradation after merging compared to
their fine-tuned counterpart.

In this work, we propose RankMean, an algo-
rithm that aims to merge multiple LMs fine-tuned
on downstream tasks and overcomes the aforemen-
tioned limitation. Our algorithm considers each
module of LMs as a basic unit (e.g., attentions,
feed-forward networks, or a whole transformer
block), adopts a module-wise merging scheme, and
derives the merging coefficient purely based on
the relative rank of the magnitude of changes in
module’s weights within each model. Such rank-
based coefficients are straight-forward to obtain,
and do not need access to any data sample. We
conduct experiments on multiple architectures and
datasets and evaluate the merged models on various
benchmarks. Specifically, although still suffering
from some level of performance degradation when
compared to the fine-tuned models, RankMean out-
performs the simple averaging algorithm by clear
margins and the most competitive baseline method,
DARE, by up to 1.82 when applied to merge mod-
els fine-tuned for coding and mathematical tasks.

2 Related Works
Model merging aims to combine multiple models
into a single one that achieves higher accuracy or
robustness on multiple tasks. One of the typical
ways to perform the merging is to adopt a weights
averaging approach. Numerous efforts have been
made to study the effectiveness of weights aver-
aging under different settings. For example, Na-

1776

https://github.com/VITA-Group/RankMean


garajan and Kolter (2019) discovered that models
trained from the same initialization on MNIST can
be averaged without losing much accuracy. Fran-
kle et al. (2020) demonstrated that the two models
can be averaged without accuracy drops if the two
models share some common optimization trajec-
tories. Neyshabur et al. (2020) showed that in-
terpolating models fine-tuned from the same pre-
trained weights can attain accuracies. Wortsman
et al. (2022) proposes to average the weights of
multiple fine-tuned models on the same dataset
with different hyperparameter configurations and
often leads to improved accuracy. Ainsworth et al.
(2022) studies the property of mode connectivity
and proposes more effective algorithms.

Several recent works have considered the appli-
cation of model merging in the context of language
models (Matena and Raffel, 2022; Jin et al., 2022;
Ilharco et al., 2022; Ramé et al., 2023; Yadav et al.,
2023). For example, Fisher Merging (Matena and
Raffel, 2022) merges models by approximating the
Fisher matrices. RegMean (Jin et al., 2022) pro-
poses to use the representation of data to calculate
the merging ratio of models. DARE (Yu et al.,
2023) proposes a simple algorithm that prunes and
rescales the delta vector for model merging. In this
work, we opt for the same philosophy and propose
a model merging algorithm for fine-tuned LLMs
that achieves better performance than prior art on
various downstream tasks.

3 Methodology
3.1 Preliminaries and Problem Formulation
We denote a language model by f(·) and its weights
by θ ∈ Rd where d indicates the hidden dimen-
sion. In this paper, our objective is to combine
multiple weights that correspond to the same lan-
guage model f , denoted by θ1, θ2, . . . ,θM into
one θmerged. The series of weights, i.e. θi, can
be derived from different training tasks, and the
merged weights model is expected to have good
performance on all these tasks.

Existing works on model merging aim to find a
set of coefficients, denoted as c1, c2, . . . , cM , that
is leveraged to construct the merged weights by
θmerged =

∑M
i=1 ciθi. A simple baseline would be

setting ci =
1
M , i = 1, 2, . . . ,M . More advanced

methods assign different ci to different weights.
For example, Fisher Merging (Matena and Raf-
fel, 2022) assumes ci ∈ Rd and calculates it with
the following formula: c(j)i = F

(j)
i /(

∑M
i=1 F

(j)
i ),

where Fi = Ex∼DiEy∼pθi (y|x)∇θi
(log pθi

(y|x))2,

and obtains the merged weights by computing
θmerged =

∑M
i=1 ci ⊙ θi., where ⊙ denotes the

point-wise product. Instead of using the same
coefficients for all the layers for a model, Reg-
Mean (Jin et al., 2022) calculates the coefficients
ci in a layer-wise manner. More specifically, for
every layer j the coefficients are calculated as
cji = Gj

i/(
∑M

i=1G
j
i ), where Gj

i is derived based
on the Gram matrix of features of training data in-
put to the j-th layer of the i-th model. The weights
in each layer of the combined models are com-
puted based on the coefficients. More recently,
DARE (Yu et al., 2023) proposed a simple algo-
rithm to merge different finetuned LLMs without
access to training data. It prunes the “delta” vector
(i.e., the difference of weights between the fine-
tuned model and the original model), and conducts
a simple average between the delta vectors. In our
work, we follow a similar philosophy to merge lan-
guage models that are fine-tuned on different down-
stream datasets without resorting to the utilization
of training data, aiming to build a strong model that
are capable of solving multiple downstream tasks.

3.2 RankMean: Module-Level Importance
Score for Merging Models

Most existing works on model merging leverage
the training data to calculate the coefficients. How-
ever, the process of iterating over samples from
pre-training datasets incurs a computational cost
that is prohibitively expensive. These datasets con-
tain an extensive number of samples, with a scale
reaching billions of tokens. This renders the act of
processing all samples through the models exceed-
ingly costly. Similarly, downstream task datasets
usually comprise thousands of samples, making the
complete traverse also highly burdensome in com-
putation, particularly as the number of parameters
in models increases. To overcome these issues, we
propose RankMean, a framework for merging mul-
tiple fine-tuned LLMs without the access to original
training data. RankMean consists of two important
designs that are different from existing methods on
LLMs: (1) it adopts module-wise merging coeffi-
cients to combine the weights from multiple fine-
tuned models (derived from the same pre-trained
LLM); and (2) it estimates the cross-model impor-
tance scores based on relative change within the
same model through rank.

Module-level Merging. Existing literature has
demonstrated that different layers vary in their con-
tributions to a specific task (Kim et al., 2024). It

1777



has also been discovered that the attention and
the FFNs modules have diversified characteris-
tics (Dai et al., 2022). Nonetheless, employing
uniform merging coefficients across all layers ne-
glects the consideration of the varying significance
of each module. To rectify this oversight, we
propose the adoption of distinct coefficients for
each module of models, thereby acknowledging
and accommodating the different importance in-
herent to their contribution to the overall model
performance. We achieve this by first defining
a function I that maps weight vectors into a se-
ries of coefficients. More specifically, we assume
θi = {w1

i + ∆w1
i ,w

2
i + ∆w2

i . . . ,w
n
i + ∆wn

i }
where wj

i indicates the pretrained weights of the
j-th module, ∆wj

i indicates the weight changes
caused by fine-tuning and n denotes the number of
modules in the model. Note that a module does not
necessarily mean a linear layer but can also be a
Transformer block. We define I as

I(w1
1 +∆w1

1, . . . ,w
n
1 +∆wn

1 ; . . . ,w
n
N +∆wn

N )

= c11, c
2
1, . . . , c

n
1 ; . . . ; c

1
N , . . . , cnN .

Consequently, the merged weights can be
written as {∑i c

1
i (w

1
i + ∆w1

i ),
∑

i c
2
i (w

2
i +

∆w2
i ), . . . ,

∑
i c

n
i (w

n
i +∆wn

i )}.
Importance Score Estimation. Essentially, I es-
timates the importance of different components for
model merging. A straight-forward method to esti-
mate the importance is to use the mean magnitude
of parameters, which has been proven to be effec-
tive in locating essential parameters for network
pruning. However, since different models can be
trained on different numbers of samples with differ-
ent hyperparameters such as learning rate, they can
have drastically different distributions of parame-
ters (refer to Figure 1), which undermines the ef-
fectiveness of estimated importance and hence the
final performance. Using the magnitude of changes
in parameters suffer from the same problem. As
an alternative, we seek to use the relative order of
the Frobenius norm of weight changes to indicate
the importance of components. The mathematical
expression can be written as follows:

cji =
ArgSort(∥∆wj

i∥F ; ∥∆w1
i ∥F , . . . , ∥∆wn

i ∥F )∑N
k=1 ArgSort(∥∆wj

k∥F ; ∥∆w1
k∥F , . . . , ∥∆wn

k∥F )
,

where ArgSort(∥∆wj
i∥F ; ∥∆w1

i ∥F , . . . , ∥∆wn
i ∥F )

indicates the ranking (i.e., the index after sorting
in ascending order where 1 means the small-
est) of ∥∆wj

i∥F among ∥∆w1
i ∥F , ∥∆w2

i ∥F ,

. . . , ∥∆wn
i ∥F . Intuitively, if a weight change

∆w ranks high within a model, it has a higher
chance to receive a higher coefficient in merging.
In Section 4.3, we also compare with a “reversed”
form of I where we observe worse performance.

In our experiments, we consider each trans-
former block to be a “module” as we discover this
leads to the best performance (refer to Section 4.3).
4 Experiments
4.1 Implementation Details
Architectures and Baselines. We conduct experi-
ments with Falcon (Almazrouei et al., 2023) and
Llama-2 (Touvron et al., 2023). We compare with
multiple baseline methods: (1) SFT: where we use
directly the fine-tuned model for evaluation; (2)
Simple Averaging, where we directly calculate the
mean weights of multiple models; (3) DARE (Yu
et al., 2023), which prunes and rescales the weight
change vectors first, and applies the average of
them to the pre-trained model.

Hyper-parameters. The models fine-tuned
from Falcon-7B are trained with LoRA (Hu
et al., 2021) for 3 epochs, using a learning rate
of 5 × 10−5 with a cosine annealing learning
rate scheduler and a gradient accumulation steps
of 4. The modules adapted by LoRA in each
layer are self_attention.query_key_value,
mlp.dense_h_to_4h and mlp.dense_4h_to_h.
The models fine-tuned from LlaMA-v2-13B are
downloaded from the huggingface hub (see Ap-
pendix A.1). In all experiments that use DARE, we
have used a masking rate of 0.9 as suggested.

Evaluation. We use different benchmarks to
evaluate the model’s capabilities. For coding eval-
uation, we evaluate models on HumanEval (Chen
et al., 2021) and we report the pass@1 metric.
For mathematical reasoning, we evaluate on both
GSM8K (5-shot) (Cobbe et al., 2021) and MATH
(zero-shot) (Hendrycks et al., 2021) and report the
accuracy. We also report the performance on Al-
pacaEval (Dubois et al., 2023).

4.2 Experimental Results
In the first set of experiments, we fine-tune
Falcon-7B on three different datasets, MathIn-
struct (Yue et al., 2023), CodeAlpaca (Chaudhary,
2023), and SciQ (Welbl et al., 2017), covering a
wide range of skills. Note that we randomly sam-
ple 20K samples from the MathInstruct dataset to
maintain the number of samples at the same level
across tasks. The evaluation results are presented in
Table 1, where we observe that RankMean achieves

1778



0 20 40 60 80 100
Module Index

0.0000

0.0001

0.0002

0.0003

0.0004

M
od

ul
e 

Av
er

ag
e 

Ch
an

ge

CodeAlpaca
MLP modules
Self Attention modules

0 20 40 60 80 100
Module Index

0.0000

0.0001

0.0002

0.0003

0.0004

M
od

ul
e 

Av
er

ag
e 

Ch
an

ge

MathInstruct
MLP modules
Self Attention modules

0 20 40 60 80 100
Module Index

0.0000

0.0001

0.0002

0.0003

0.0004

M
od

ul
e 

Av
er

ag
e 

Ch
an

ge

SciQ
MLP modules
Self Attention modules

Figure 1: The average magnitude of updates to each module’s weights of models fine-tuned on CodeAlpaca,
MathInstruct, and SciQ. We focus on the weights in feed-forward networks (MLPs) and in self-attention modules.

the best performance. Notably, when merging mod-
els fine-tuned on maths and coding data, RankMean
achieves an improvement of 0.53 on GSM8K and
0.04 on HumanEval, when compared to the second-
best scores. When merging other models, we ob-
serve that RankMean achieves performance at a
comparable level with DARE, the currently most
competitive algorithm for LM merging.

Method
Train Sets / Evaluation Sets

Source Models GSM8K HumanEval SciQ

SFT
M 9.10 3.93 93.10
C 5.53 8.40 94.50
S 0.15 0.00 96.30

Simple
M + S 7.73 - 96.20
C + S - 4.02 96.30
C + M 8.26 7.69 -

DARE
M + S 8.19 - 96.30
C + S - 4.04 96.30
C + M 8.34 7.14 -

RankMean
M + S 6.37 - 96.20
C + S - 3.44 96.40
C + M 8.87 7.73 -

Table 1: Performance on benchmarks by merging Falcon-7B
fine-tuned on different training sets. M: MathInstruct, C:
CodeAlpaca, S: SciQ. The + sign indicates the merging of
two models. The best results are in bold and the second best
are in underline.

We continue to conduct experiments on
LlaMA-v2-13B using the setting introduced in
DARE and present the performance in Table 2. It
shows that RankMean out-performs substantially
simple averaging on downstream benchmarks and
achieves better overall performance compared to
DARE when merging LMs fine-tuned on coding
and mathematical data. For the other two combi-
nations, RankMean remains a top performer, con-
sistently achieving better performance than simple
averaging and DARE especially on AlpacaEval and
HumanEval.

4.3 Ablation Studies

We compare the performance of our method with
different variants: (1) Finer-Grained: where we
define the modules as weights of linear layers; (2)

Method
Train Sets / Evaluation Sets

Source Models MATH HumanEval AlpacaEval

No Merging
M 12.52 8.54 29.98
C 0.00 24.39 22.28
I 0.18 32.93 45.83

Simple
M + I 11.10 - 45.00
C + I - 29.88 36.09

C + M 8.68 8.54 -

DARE
M + I 10.00 - 44.94
C + I - 26.83 37.38

C + M 10.14 10.37 -

RankMean
M + I 9.90 - 46.07
C + I - 28.05 38.15

C + M 9.54 12.19 -

Table 2: Performance on benchmarks by merging
LlaMA-v2-13B adapted to different training sets. M: RLEIF
on mathematics data, C: CodeAlpaca, I: Evol-Instruct. The
+ sign indicates merging between the two models. The best
results are in bold and the second best are in underline.

Reversed, where we change the formula of cji to

1/(1 + n− ArgSort(∥∆wj
i∥F ; ∥∆w1

i ∥F , . . . ))∑
k 1/(1 + n− ArgSort(∥∆wj

k∥F ; ∥∆w1
k∥F , . . . ))

.

The results are shown in Table 3, which demon-
strates that RankMean and its finer-grained coun-
terpart achieve comparable performance, while the
reversed version under-performs the other two.

Method Training Set
Evaluation Sets

GSM8K HumanEval SciQ

Finer-Grained
M + S 7.05 - 96.50
C + S - 3.66 96.30
C + M 8.57 7.89 -

Reversed
M + S 5.46 - 96.30
C + S - 2.96 96.30
C + M 8.72 7.77 -

RankMean
M + S 6.37 - 96.20
C + S - 3.44 96.40
C + M 8.87 7.73 -

Table 3: Performance of different variants of RankMean.
The experiments are conducted with Falcon-7B on various
downstream benchmarks.

4.4 Visualization
In Figure 1, we visualize the average magnitude
of parameter changes in each module after fine-
tuning Falcon-7B on different datasets, where we
can observe that different models exhibit different
distributions. Such a difference creates a bias when

1779



using absolute values of weight changes for deriv-
ing merging coefficients, which we speculate to be
the reason for inferior performance.
5 Conclusion
We present RankMean, an algorithm for merging
language models that are fine-tuned on different
downstream tasks. We propose to calculate the rela-
tive rank of the mean magnitude of weight changes
in each module and use the obtained rank to derive
the coefficients for model merging. Even though
our algorithm still faces some level of performance
degradation when compared to the fine-tuned mod-
els, we demonstrate its effectiveness and superior-
ity in mitigating the issue on multiple benchmark
datasets and architectures.

Limitations

The experiments conducted throughout this work
are performed using a limited variety of tasks. In-
vestigating if RankMean can be used to combine
certain skills of the models (such as readability,
conciseness, completeness, ...) could be an interest-
ing research path, and we will explore it as future
works. Besides, our algorithm explores only the
merging between models with the same architec-
tures. It would be also interesting to explore if
models with different architectures can be merged.

Ethics Statement

Merging model methods allow users to cheaply
combine features of different models. Even though
most of the use cases are harmless, there are scenar-
ios where these methods can facilitate the spread
of malicious models. One example of such harmful
use cases would be to fine-tune popular pre-trained
models to be explicitly harmful and merge them
with different popular task-specific fine-tuned mod-
els to create malicious versions of these models.

Acknowledgements

This work was performed under the auspices
of the U.S. Department of Energy by Lawrence
Livermore National Laboratory under Contract
DE-AC52-07NA27344 and was supported by the
Laboratory Directed Research and Development
(LDRD) program under project tracking code 22-
SI-007. This work is reviewed and released under:
LLNL-CONF-860667. G. Jacob Perin acknowl-
edges support from São Paulo Research Founda-
tion (FAPESP), grants 2022/11645-1, 2023/15047-
4 and 2022/15304-4.

References

Samuel K Ainsworth, Jonathan Hayase, and Siddhartha
Srinivasa. 2022. Git re-basin: Merging models
modulo permutation symmetries. arXiv preprint
arXiv:2209.04836.

Ebtesam Almazrouei, Hamza Alobeidli, Abdulaziz Al-
shamsi, Alessandro Cappelli, Ruxandra Cojocaru,
Mérouane Debbah, Étienne Goffinet, Daniel Hess-
low, Julien Launay, Quentin Malartic, et al. 2023.
The falcon series of open language models. arXiv
preprint arXiv:2311.16867.

Brian R Bartoldson, Bhavya Kailkhura, and Davis
Blalock. 2023. Compute-efficient deep learning: Al-
gorithmic trends and opportunities. Journal of Ma-
chine Learning Research, 24:1–77.

Sahil Chaudhary. 2023. Code alpaca: An instruction-
following llama model for code generation. https:
//github.com/sahil280114/codealpaca.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-
try, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz
Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cum-
mings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N.
Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021. Evaluating
large language models trained on code.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao
Chang, and Furu Wei. 2022. Knowledge neurons in
pretrained transformers. In Proceedings of the 60th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 8493–
8502.

Yann Dubois, Xuechen Li, Rohan Taori, Tianyi Zhang,
Ishaan Gulrajani, Jimmy Ba, Carlos Guestrin, Percy
Liang, and Tatsunori B Hashimoto. 2023. Al-
pacafarm: A simulation framework for methods
that learn from human feedback. arXiv preprint
arXiv:2305.14387.

1780

https://github.com/sahil280114/codealpaca
https://github.com/sahil280114/codealpaca
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374


Jonathan Frankle, Gintare Karolina Dziugaite, Daniel
Roy, and Michael Carbin. 2020. Linear mode con-
nectivity and the lottery ticket hypothesis. In Inter-
national Conference on Machine Learning, pages
3259–3269. PMLR.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and Ja-
cob Steinhardt. 2021. Measuring mathematical prob-
lem solving with the math dataset. arXiv preprint
arXiv:2103.03874.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Worts-
man, Suchin Gururangan, Ludwig Schmidt, Han-
naneh Hajishirzi, and Ali Farhadi. 2022. Edit-
ing models with task arithmetic. arXiv preprint
arXiv:2212.04089.

Xisen Jin, Xiang Ren, Daniel Preotiuc-Pietro, and
Pengxiang Cheng. 2022. Dataless knowledge fu-
sion by merging weights of language models. arXiv
preprint arXiv:2212.09849.

Bo-Kyeong Kim, Geonmin Kim, Tae-Ho Kim, Thibault
Castells, Shinkook Choi, Junho Shin, and Hyoung-
Kyu Song. 2024. Shortened llama: A simple depth
pruning for large language models. arXiv preprint
arXiv:2402.02834.

Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jian-
guang Lou, Chongyang Tao, Xiubo Geng, Qingwei
Lin, Shifeng Chen, and Dongmei Zhang. 2023. Wiz-
ardmath: Empowering mathematical reasoning for
large language models via reinforced evol-instruct.

Michael S Matena and Colin A Raffel. 2022. Merging
models with fisher-weighted averaging. Advances in
Neural Information Processing Systems, 35:17703–
17716.

Vaishnavh Nagarajan and J Zico Kolter. 2019. Uniform
convergence may be unable to explain generalization
in deep learning. Advances in Neural Information
Processing Systems, 32.

Behnam Neyshabur, Hanie Sedghi, and Chiyuan Zhang.
2020. What is being transferred in transfer learning?
Advances in neural information processing systems,
33:512–523.

Alexandre Ramé, Kartik Ahuja, Jianyu Zhang, Matthieu
Cord, Léon Bottou, and David Lopez-Paz. 2023.
Model ratatouille: Recycling diverse models for out-
of-distribution generalization. In International Con-
ference on Machine Learning, pages 28656–28679.
PMLR.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti

Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurelien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023. Llama 2: Open foundation and fine-
tuned chat models.

Johannes Welbl, Nelson F Liu, and Matt Gardner. 2017.
Crowdsourcing multiple choice science questions.
arXiv preprint arXiv:1707.06209.

Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre,
Rebecca Roelofs, Raphael Gontijo-Lopes, Ari S Mor-
cos, Hongseok Namkoong, Ali Farhadi, Yair Carmon,
Simon Kornblith, et al. 2022. Model soups: averag-
ing weights of multiple fine-tuned models improves
accuracy without increasing inference time. In In-
ternational Conference on Machine Learning, pages
23965–23998. PMLR.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng,
Pu Zhao, Jiazhan Feng, Chongyang Tao, and Daxin
Jiang. 2023. Wizardlm: Empowering large lan-
guage models to follow complex instructions. arXiv
preprint arXiv:2304.12244.

Prateek Yadav, Derek Tam, Leshem Choshen, Colin
Raffel, and Mohit Bansal. 2023. Resolving in-
terference when merging models. arXiv preprint
arXiv:2306.01708.

Le Yu, Bowen Yu, Haiyang Yu, Fei Huang, and Yongbin
Li. 2023. Language models are super mario: Absorb-
ing abilities from homologous models as a free lunch.
arXiv preprint arXiv:2311.03099.

Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wen-
hao Huang, Huan Sun, Yu Su, and Wenhu Chen.
2023. Mammoth: Building math generalist models
through hybrid instruction tuning. arXiv preprint
arXiv:2309.05653.

Jinghan Zhang, Shiqi Chen, Junteng Liu, and Junxian
He. 2023. Composing parameter-efficient modules
with arithmetic operations.

1781

http://arxiv.org/abs/2308.09583
http://arxiv.org/abs/2308.09583
http://arxiv.org/abs/2308.09583
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2306.14870
http://arxiv.org/abs/2306.14870


A More Experimental Details

A.1 Model Architectures
The models fine-tuned from LlaMA-v21 and
used in the Table 2 are WizardLM2 (Xu et al.,
2023), WizardMath3 (Luo et al., 2023) and
llama-2-13b-code-alpaca4.

A.2 Dataset Statistics

Table 4: The statistics of datasets used in our experi-
ments.

Dataset Training Split Testing Split

MathInstruct 20,000 -
MATH 7,500 5,000

GSM8K 7,500 1,319

CodeAlpaca 20,022 -
HumanEval - 164

SciQ 12,679 1,000
Evol-Instruct 250,000 -
AlpacaEval - 805

Most of the datasets we have used in our ex-
periments are publicly available on Huggingface5.
The usage of these datasets is consistent with their
intended use. MathInstruct, MATH and GSM8K
contain samples related to mathematical reason-
ing. CodeAlpaca and HumanEval contain samples
related to programming. SciQ, Evol-Instruct and
AlpacaEval are general samples.

A.3 Computational Resources.
We conduct experiments on NVIDIA RTX A6000
and NVIDIA A100 80G.

A.4 Additional results
We conduct an additional set of experiments com-
paring RankMean to Multi-task PEM merging
(Zhang et al., 2023), which directly averages the
LoRA modules without merging them to the pre-
trained models first. In this experiment, Multi-task
PEM merging uses uniform coefficients.

1https://huggingface.co/meta-llama/
Llama-2-13b-hf

2https://huggingface.co/WizardLM/
WizardLM-13B-V1.2

3https://huggingface.co/WizardLM/
WizardMath-13B-V1.0

4https://huggingface.co/layoric/
llama-2-13b-code-alpaca

5https://huggingface.co/datasets/

Method
Train Sets / Evaluation Sets

Source Models GSM8K HumanEval SciQ

Multi-task PEM Merging
M + S 5.31 - 96.0
C + S - 3.88 96.0
C + M 8.11 6.95 -

RankMean
M + S 6.37 - 96.20
C + S - 3.44 96.40
C + M 8.87 7.73 -

Table 5: Performance on benchmarks by merging Falcon-7B
fine-tuned on different training sets. M: MathInstruct, C:
CodeAlpaca, S: SciQ. The + sign indicates the merging of
two models. Best results are in bold.

From Table 5 we can see that the performance of
our algorithm still matches and outperforms these
additional baselines.

1782

https://huggingface.co/meta-llama/Llama-2-13b-hf
https://huggingface.co/meta-llama/Llama-2-13b-hf
https://huggingface.co/WizardLM/WizardLM-13B-V1.2
https://huggingface.co/WizardLM/WizardLM-13B-V1.2
https://huggingface.co/WizardLM/WizardMath-13B-V1.0
https://huggingface.co/WizardLM/WizardMath-13B-V1.0
https://huggingface.co/layoric/llama-2-13b-code-alpaca
https://huggingface.co/layoric/llama-2-13b-code-alpaca
https://huggingface.co/datasets/

