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Abstract

Moklen, a tonal Austronesian language spoken
in Thailand, exhibits two tones with unbalanced
distributions. We employed machine learning
techniques for time-series classification to in-
vestigate its acoustic properties. Our analysis
reveals that a synergy between pitch and vowel
quality is crucial for tone distinction, as the
model trained with these features achieved the
highest accuracy.

1 Introduction

Moklen, an endangered and understudied Aus-
tronesian language spoken along the western coast
of southern Thailand (Larish, 2005), has sparked
debate about its tonal status. While Austronesian
languages are typically not tonal, Moklen exhibits
a few minimal pairs suggesting the presence of
two lexical tones (Larish, 1997; Pittayaporn et al.,
2022).

The acoustic properties of Moklen tone were re-
cently explored by Pornpottanamas et al. (2023).
Their study revealed that Moklen tones are distin-
guished not only by pitch, but also by vowel qual-
ity and voice quality. Interestingly, these acous-
tic characteristics resemble those of register con-
trasts found in mainland Southeast Asian languages
(Brunelle and Kirby, 2016). It is worth noting that
the definition of tone in this paper refers to the
suprasegmental contrast, which may be realized
not only by pitch, but also by voice quality or vowel
quality, similar to Vietnamese, Burmese, Shanghai
Chinese, and other languages (See Abramson and
Luangthongkum, 2009; Brunelle and Kirby, 2016).

What remains unclear is the relative weight of
acoustic cues in Moklen tones and register systems.
Phonetic contrasts often differ across multiple di-
mensions; for example, the English /b/ and /p/ differ
in their voice onset time (VOT) as well as other
dimensions, including the duration of stop clo-
sure and fundamental frequency (f0) after closure

(Lisker, 1986). Furthermore, even though a con-
trast may involve several phonetic dimensions, they
may not all be equally important. In other words,
the phonetic cues may have different weights in
production and/or perception. For instance, the
English /b/ and /p/ are primarily distinguished by
VOT, with f0 playing a secondary role (Abram-
son and Lisker, 1985). It is therefore possible that
the acoustic cues in Moklen tones, including pitch,
vowel quality, and voice quality, may have different
relative weights.

In this paper, we investigate the contribution of
individual acoustic features to Moklen tone dis-
tinction using an ablation study within a machine
learning framework. We employed a Bidirectional
Long Short-Term Memory (BiLSTM) Neural Net-
work with self-attention for sequence classifica-
tion. BiLSTM with self-attention has been used
in tone recognition tasks in previous works (e.g.,
Yang et al., 2018). However, neural network clas-
sification has rarely been used with the tones of
underrepresented languages such as Moklen.

This investigation confirms the presence of con-
trastive tones in Moklen. Furthermore, our anal-
ysis reveals that pitch and vowel quality features
are crucial for distinguishing the two lexical tones.
The model trained on this feature set achieved the
highest accuracy in differentiating between Moklen
tones.

1.1 Moklen and its lexical tones
Moklen is an indigenous language spoken by fewer
than 4,000 people along the west coast of Phang
Nga province in Thailand and on nearby islands
(Arunotai, 2017). Currently, the language is fac-
ing endangerment, as its use is limited to older
adults with low transmission to younger speakers
(Pittayaporn et al., 2022).

Phonologically, Moklen shares similarities with
mainland Southeast Asian (MSEA) languages, set-
ting it apart from the broader insular Austronesian
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Figure 1: Difference in f0 of a minimal pair /n@mán/ ‘to
fish’ vs. /n@màn/ ‘to be glad’.

family (Larish, 1999; Pittayaporn, 2024). Two fea-
tures relevant to this study, shared by Moklen and
other MSEA languages, are systematic word-final
stress and tonal contrast.

Moklen follows a consistent iambic stress pat-
tern, with stress assigned to the last syllable of
the foot (Larish, 1999; Swastham, 1982). Moklen
tones are consistently realized only on the ultimate
syllable, which also bears stress (Pittayaporn et al.,
2022; Pornpottanamas et al., 2023). The two tones
are not predictable from any phonological envi-
ronments despite an unbalanced distribution: the
majority of words carry Tone 1, while only about
10-20% carry Tone 2 (Larish, 1997). A few mini-
mal pairs have been identified, as shown in Table
1.

Acoustically, the two tones differ in several ways.
Tone 1 is generally higher-pitched compared to
Tone 2, which has a lower pitch and a steeper rise
on the stressed vowel (Figure 1). Additionally, Tone
1 vowels tend to be lower and slightly more front
compared to Tone 2 vowels. Finally, Tone 2 exhibits
breathiness, while Tone 1 is more modal. These
acoustic properties remain consistent regardless
of vowel length, onset voicing, or coda categories
(Pornpottanamas et al., 2023).

While previous research has identified acoustic
correlates of Moklen tones, including pitch, vowel
quality, and voice quality, one question remains
unanswered: the relative importance of these fea-
tures in distinguishing the two lexical tones. It is
unclear whether all features contribute equally or
if a specific combination proves most effective.
Investigating this question can provide deeper in-
sights into the acoustic realization of Moklen tones
and potentially contribute to the development of
more efficient automatic speech recognition sys-
tems for Moklen.

1.2 Research questions

This paper investigates two key questions regarding
Moklen tone:

Tone 1 Tone 2
Words Glosses Words Glosses
n@mán ‘to fish’ n@màn ‘to be glad’
b@lá: ‘to scold’ b@là: ‘dehusked rice’

n@má:P ‘to enter’ dadà:P ‘breast’
Pá:k ‘to place’ Pà:k ‘crow’

namát ‘wave, tide’ digàt ‘bedbug’
kOlá:t ‘to be hot’ kOlà:t ‘mushroom’

Table 1: Examples of stimuli.

(i) Can pitch, voice quality, and vowel quality
features be used to distinguish the two Moklen
tones?

(ii) Which combination of these acoustic features
leads to the most accurate classification of
Moklen tones?

2 Methodology

2.1 Data collection and processing

Eight native Moklen speakers from Phang Nga
Province participated in this study. Four partic-
ipants (3 females, 1 male) resided in Bang Sak
village, while the remaining four (3 females, 1
male) resided in Lam Pi village. Although the
participants are from two different villages, previ-
ous research has not observed dialectal differences
between them (Pornpottanamas et al., 2023).

The participants ranged in age from 46 to 70
years old at the time of recording. Notably, all
participants were bilingual in Moklen and Southern
Thai, with Moklen being their dominant language.

The participants were instructed to produce
Moklen monosyllabic and disyllabic words in iso-
lation. The stimuli were presented orally in Thai,
and participants were asked to translate them into
Moklen. Each target word was repeated three times.

The stimuli consist of 98 attested Moklen words
with stressed final syllables containing /a/ or /a:/
vowels. These target words were systematically var-
ied in terms of tone, onset voicing, vowel length,
and coda classes to achieve a balanced representa-
tion. Examples of the stimuli are provided in Table
1. Notably, there are 74 words with Tone 1 and
24 words with Tone 2. This unequal distribution
of stimuli roughly reflects the actual proportion of
these two tones within the Moklen lexicon. We did
not control for the semantic or syntactic categories
of the target words.

The recordings were manually segmented in
Praat (Boersma and Weenink, 2020). From the
stressed vowel intervals, five acoustic measure-
ments were extracted to serve as time-series fea-
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tures in the classification process: fundamental
frequency (f0) for pitch, first and second formant
frequencies (F1, F2) characterizing vowel quality,
the difference between corrected first harmonics
and corrected spectral amplitude of F3 (H1*-A3*)
(using the correction method from Iseli and Al-
wan, 2004), and Cepstral Peak Prominence (CPP)
as measures of voice quality. These measurements
are commonly reported as acoustic correlates of
tone in Southeast Asian languages (Brunelle and
Kirby, 2016). Measurements during the vowel in-
terval were chosen over the rime (vowel and coda)
interval because our target words include those with
final voiceless stops. Many of these measurements,
especially f0, F1, and F2, cannot be tracked during
the voiceless stop coda interval. Therefore, mea-
surements during the vowel interval provide the
only fair comparison across all syllable structures.

PraatSauce (Kirby, 2018) was used to extract
these acoustic measurements. A consistent window
size of 30 milliseconds (ms) with a 5 ms time step
was applied to all measurements. f0 tracking was
performed in two steps to account for individual
variations in f0 range across participants, following
the method described in De Looze (2010).

To standardize the acoustic measurements,
each participant’s data were z-scored based on
participant-specific mean and standard deviation.

2.2 Data preparation
To prepare the data for classification analysis, we
first addressed missing values due to tracking errors
using the fillmissing function in MATLAB (Math-
Works, 2024), employing linear interpolation of
neighboring, non-missing values. Trajectories with
too few existing values that could not be adequately
filled were removed. The remaining number of to-
kens for classification is 1,684 for Tone 1 and 567
for Tone 2.

We randomly partitioned the data into an
80:10:10 split for training, validation, and testing
sets, respectively, using the cvpartition function in
MATLAB. The training set contained 1,801 tokens
(1,353 tokens of Tone 1 and 448 tokens of Tone 2),
the validation set included 225 tokens (157 tokens
of Tone 1 and 68 tokens of Tone 2), and the testing
set comprised 225 tokens (174 tokens of Tone 1
and 51 tokens of Tone 2).

Due to the imbalanced class distribution, we up-
sampled Tone 2 tokens in the training set to match
the number of Tone 1 tokens. To achieve a more
robust classification, we augmented the training

Hyperparameters Ranges Optimized
Values

# Hidden Layers [1, 4] 1
# Hidden Units [16, 64] 52
Batch Size [16, 64] 23
Initial Learning Rate [10-6, 0.005] 0.0032

Table 2: Search ranges for Bayesian Optimization and
the optimized values.

data using two methods adapted from Flores et al.
(2021): time-warping and adding random Gaus-
sian noise. We time-warped each token to a length
randomly drawn from a Poisson distribution with
a lambda parameter corresponding to the mean
length of all tokens. Then, we added Gaussian
noise with a standard deviation of 0.05 to all mea-
surements of all tokens. Finally, we combined the
permuted data with the original data to enlarge the
training set. In total, our training set included 2,706
tokens for each tonal category.

2.3 Sequence classification using bidirectional
LSTM with Self-Attention

To classify Moklen tone, we trained a Bidirectional
Recurrent Neural Network with Long Short-Term
Memory units (BiLSTM). BiLSTM is well-suited
for sequential tasks like speech recognition (Graves
and Schmidhuber, 2005). Additionally, we en-
hanced the model by incorporating a self-attention
mechanism to focus the network on the most rele-
vant parts of the input sequence for tone classifica-
tion.

The BiLSTM architecture consisted of an input
layer with five units (one for each acoustic mea-
surement), hidden layers using a sigmoid activation
function, and an output layer with two units (one
for each tone class), followed by a softmax layer
for probability estimation. Additionally, recurrent
dropout was applied to the hidden layer for regu-
larization.

Other hyperparameters, including the number
of hidden layers, number of hidden units, batch
size, and initial learning rate, were optimized us-
ing Bayesian Optimization. The search ranges for
Bayesian Optimization and the optimized values
were summarized in Table 2.

2.4 Feature ablation

To assess the contribution of different acoustic fea-
ture sets to tone classification, we conducted a fea-
ture ablation study. We trained separate classifica-
tion models with seven feature combination inputs:
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Features Overall Tone 1 Tone 2
Acc. Acc. Acc.

(iii) Pitch+Vowel 84.0% 86.2% 76.5%
(i) Pitch+Voice+Vowel 81.3% 85.6% 66.7%
(v) Pitch 79.6% 83.9% 64.7%
(ii) Pitch+Voice 79.1% 83.3% 64.7%
(iv) Voice+Vowel 78.2% 83.3% 60.8%
(vi) Voice 73.3% 72.4% 62.7%
(vii) Vowel 70.2% 77.6% 58.8%

Table 3: Accuracy of models with different feature com-
binations sorted based on the total accuracy.

Figure 2: Confusion matrix of the model with pitch and
vowel quality features.

(i) Pitch (f0), voice quality (CPP and H1*-A3*),
and vowel quality (F1 and F2) features.

(ii) Pitch and voice quality features.
(iii) Pitch and vowel quality features.
(iv) Voice quality and vowel quality features.
(v) pitch features only.

(vi) Voice quality features only.
(vii) Vowel quality features only.

For a fair comparison across models, we applied
the hyperparameters optimized using the model
with all five feature inputs, as listed in (i), to all
ablation models.

3 Results

3.1 Ablation study
We found that the performance of all models signif-
icantly exceeded the chance level (50% overall ac-
curacy). Specifically, all models achieved an over-
all classification accuracy of over 70%, as shown
in Table 3. The model using pitch (f0) and vowel
quality (F1 and F2) features achieved the highest
overall accuracy (84%) and F1-score (0.89). The
confusion matrix of the model is illustrated in Fig-
ure 2. We also observed the importance of pitch
information, as models excluding the pitch features
exhibited lower performance, achieving the lowest
accuracy among all models (Table 3).

An interesting observation is that the model us-
ing only pitch (f0) and vowel quality (F1 and F2)
features exhibited significantly better performance

Figure 3: Grad-CAM importance map for a representa-
tive token classified by the best performing model.

in classifying Tone 2 tokens (76.5% accuracy) com-
pared to other models (all below 70% accuracy for
Tone 2). This behavior contrasts with the classi-
fication of Tone 1 tokens, where all models with
pitch features performed similarly.

To understand which parts of the vowel trajec-
tory contribute most to tone classification, we em-
ployed Gradient-weighted Class Activation Map-
ping (Grad-CAM) (Selvaraju et al., 2019). Fig-
ure 3 illustrates the Grad-CAM importance map
for a representative token classified by our best-
performing model. As evident from the map, the
model focuses heavily on the vowel’s onset, with
the importance decreasing gradually towards the
end. This observation aligns with the f0 trajec-
tories presented in Figure 1, suggesting that the
initial portion of the vowel plays a crucial role in
distinguishing the tones.

3.2 Error analysis

We also conducted an error analysis on the best-
performing model, (iii) Pitch + Vowel. We exam-
ined whether the following four features had an
effect on the model’s classification: onset voic-
ing (voiced, voiceless), vowel length (short, long),
coda manners of articulation (stop, nasal, fricative,
glide, open syllable), and coda places of articula-
tion (bilabial, alveolar, palatal, velar, glottal, open
syllable).

To determine if any of these features affected the
model’s classification, we performed Chi-squared
tests. Each feature was tested separately against the
correct and incorrect classifications of the model
as one of the variables.

Significant effects were observed for two fea-
tures: vowel length (χ2(1, 225) = 7.02, p = .008)
and coda places of articulation (χ2(5, 225) =
14.82, p = .011). The other two features
did not show significant effects: onset voicing
(χ2(1, 225) = .33, p = .56) and coda manners of
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articulation (χ2(4, 225) = 8.46, p = .08). These
results suggest that vowel length and coda place
of articulation significantly impacted the model’s
classification performance.

Regarding vowel length, it was found that words
with long vowels were more likely to be misclas-
sified than those with short vowels, with approxi-
mately 72% of the misclassified tokens being words
with long vowels.

In terms of coda places of articulation, tokens
with a velar coda were more frequently misclassi-
fied than those with other types of final consonants.
Specifically, about 30% of tokens with velar codas
were incorrectly classified, compared to only 12%
of tokens with alveolar codas. Notably, none of the
tokens with bilabial codas were misclassified.

We also examined whether unique words influ-
enced the model’s classification. However, no pat-
terns were observed, leading us to conclude that
unique words were not a direct factor in the model’s
errors.

4 Discussion and conclusion

Our investigation into Moklen tone classification
using acoustic features sheds light on the nature of
tones in this unique Austronesian language. The ab-
lation study confirmed that all features (pitch, voice
quality, and vowel quality) contribute to Moklen
tone classification. This is evidenced by the find-
ings that models utilizing only a single feature set
representing each acoustic aspect achieved rela-
tively good performance (> 70% accuracy). How-
ever, the model combining pitch and vowel quality
achieved the highest overall accuracy and F1-score.
This result suggests that a synergy between pitch
and vowel quality information plays a crucial role
in distinguishing the two Moklen tones.

One potential explanation for the importance of
pitch and vowel quality in distinguishing Moklen
tones lies in their historical development. As men-
tioned, tonal contrast in Moklen is an innovation
absent in its ancestral language. Moklen tones may
have developed from reanalyzing different con-
trasts, such as stress, that utilize pitch and vowel
quality (Gordon and Roettger, 2017)

Furthermore, we observed that the models ex-
cluding the pitch features achieved the lowest ac-
curacy. This finding confirms that pitch emerges
as the primary cue for Moklen tone. On the other
hand, although other acoustic cues can be used to
distinguish the two Moklen tones, they appear to

play a more secondary role.
Our analysis of the features’ relative importance

across time steps within the vowel interval revealed
that the most important features cluster around the
vowel onset. This suggests that the distinction be-
tween Tone 1 and Tone 2 is most salient at the onset
of the vowel. This pattern closely aligns with regis-
ter contrast, where the distinction between registers
is most prominent at the vowel onset (Brunelle and
Tạ, 2021).

We also conducted an error analysis on the best-
performing model, examining four features: onset
voicing, vowel length, coda manners, and coda
places of articulation. Chi-squared tests revealed
that vowel length and coda places of articulation
significantly impacted the model’s classification,
with words having long vowels and velar codas
being more frequently misclassified. Further inves-
tigation is needed to understand why vowel length
and coda place of articulation affected the model’s
performance.

One potential aspect for future work is to investi-
gate Moklen tones from the perspective of acoustic
features within a larger time interval, such as the
entire syllable rather than just the vowel interval
used in this paper. In other words, there may be
more aspects of the tones that we have not yet ex-
plored. This broader analysis could include features
like the f0 peak location on the final open syllable
or final syllable with sonorant coda, as shown in
Figure 1, where Tone 1 generally exhibits an earlier
peak compared to Tone 2.

Further investigation into the perception of the
two tones by Moklen speakers could provide deeper
insights into the nature of this unique tonal system.

This study demonstrates the potential of ma-
chine learning approaches for analyzing acoustic
features in endangered languages like Moklen. By
leveraging deep learning for tone classification, we
can gain valuable insights into the sound system
of a language, even with limited documentation
or speaker availability. One limitation of Moklen
tone documentation is that tones are not predictable
from the phonological environment or compara-
tive studies, making it challenging for language
fieldworkers to identify tones in Moklen words.
Classification models trained on words with iden-
tified tones can assist fieldworkers in identifying
the tones of undocumented words. Furthermore,
these models can aid in creating a dictionary of
Moklen, which is an important step in language
revitalization.
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