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Abstract
Eye movements in reading reveal humans’ cog-
nitive processes involved in language under-
standing. The duration a reader’s eyes fix-
ate on a word has been used as a measure of
the visual attention given to that word or its
significance to the reader. This study investi-
gates the correlation between the importance
attributed to input tokens by language mod-
els (LMs) on the one hand and humans, in the
form of fixation durations, on the other hand.
While previous research on the internal pro-
cesses of LMs have employed the models’ at-
tention weights, recent studies have argued in
favor of gradient-based methods. Moreover,
previous approaches to interpret LMs’ internals
with human gaze have neglected the tasks read-
ers performed during reading, even though psy-
cholinguistic research underlines that reading
patterns are task-dependent. We therefore em-
ploy a gradient-based saliency method to mea-
sure the importance of input tokens when LMs
are targeted on specific tasks, and we find that
task specificity plays a crucial role in the cor-
relation between human- and model-assigned
importance. Our implementation is available at
https://github.com/gjwubyron/Scan.

1 Introduction

Human eye movements during reading reflect cog-
nitive processes involved in language process-
ing (Just and Carpenter, 1980; Rayner, 1998): the
fixation duration on a word correlates with read-
ing comprehension (Rayner, 1977; Malmaud et al.,
2020a). As such, fixation duration has been em-
ployed as proxy of the relative importance of a
word to a reader (Hollenstein and Beinborn, 2021).

The introduction of neural attention mecha-
nisms (Bahdanau et al., 2014) and the Transformer
architecture (Vaswani et al., 2017), which relies
on self-attention to compute input and output rep-
resentations, has given fresh impetus to research
into how language models (LMs) process language.

Attention mechanisms assign dynamic weights to
input tokens, offering a method to understand a
model’s internal functioning and decision-making
processes (Wang et al., 2016; Ghaeini et al., 2018).

Recent research has compared model and hu-
man language comprehension by aligning model
attention weights with human reading metrics, such
as fixation durations (Sood et al., 2020; Eberle et al.,
2022; Bensemann et al., 2022), presuming model
attention effectively signifies the relative impor-
tance of input tokens. However, the findings are
mixed (cf Section 2). While some studies (Sood
et al., 2020) observed significant differences be-
tween transformer LMs’ attention patterns and hu-
man fixation patterns, other studies (Eberle et al.,
2022; Bensemann et al., 2022) found strong cor-
relations. Besides, research on attention (Jain and
Wallace, 2019; Serrano and Smith, 2019; Brun-
ner et al., 2019) has questioned the reliability of
attention weights in accurately reflecting token sig-
nificance.

In contrast, Hollenstein and Beinborn (2021)
utilized gradient-based saliency (Simonyan et al.,
2014; Li et al., 2016) to approximate relative im-
portance in LMs through iterative token masking
and discovered strong correlation between LMs
gradient-based saliency and human fixation dura-
tions. However, the output space of this approach
comprises tens of thousands of tokens, which could
make gradient-based saliency uninformative (Yin
and Neubig, 2022). Moreover, their work focused
on natural reading. Since psycholinguistic stud-
ies show that human reading strategies vary with
the task and differ from normal reading (Malmaud
et al., 2020b; Shubi and Berzak, 2023; Mézière
et al., 2023), it is crucial to take task specificity
into account.

In this work, we align the LMs with the same
tasks performed by human participants during task-
specific reading and measure the importance of
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input tokens using gradient-based saliency. Addi-
tionally, we expand our analysis to include decoder-
based LMs, which, due to their auto-regressive na-
ture, more closely mirror the incremental nature of
human processing. We find strong correlations be-
tween LMs and humans in this task-specific setting,
and further fine-tuning on the task can enhance
these correlations.

2 Related Work

Model attention and human attention Re-
search comparing model attention to human visual
attention, using fixation locations and durations as
proxies, has produced mixed findings. Sood et al.
(2020) observed distinct differences between trans-
former LM attention patterns and human fixation
patterns. Conversely, studies by Eberle et al. (2022)
and Bensemann et al. (2022) found strong corre-
lations between early transformer layer attention
weights, like those in BERT (Devlin et al., 2019),
and human visual attention, contrasting with ear-
lier results. This discrepancy can be attributed to
methodological differences in processing attention
weights: Sood et al. (2020) analyzed maximum at-
tention values from the last layer’s sub-word tokens,
while Bensemann et al. (2022) averaged attention
across sub-word tokens in the first layer.

Limitations of attention-based interpretation
The inconsistent results outlined above challenge
the usefulness of methods based on model attention
to investigate the internals of LMs. Indeed, Brunner
et al. (2019) emphasize the lack of token identifia-
bility as one moves to higher layers of a model, and
Abnar and Zuidema (2020) show that distinct atten-
tion patterns are only found in earlier layers, while
in higher layers the attention weights approximate
a uniform distribution. Moreover, Jain and Wallace
(2019) question whether attention weights can re-
liably identify the relative importance of inputs to
the entire model, showing that different attention
distributions yield equivalent model predictions.
Similarly, Serrano and Smith (2019) find attention
weights to be very noisy indicators of importance.
Finally, an analysis of BERT’s (Devlin et al., 2019)
attention (Clark et al., 2019) reveals a significant
focus on the [SEP] token, which does not affect
model outputs when its attention is altered, sug-
gesting a“no-op” operation. Similarly, research on
attention heads (Voita et al., 2019; Michel et al.,
2019) finds that many of them can be pruned with
minimal impact, further indicating the potential

redundancy or non-operational nature of certain
attention mechanisms.

Saliency-based methods for analyzing LMs with
human gaze As saliency-based methods are ar-
guably more suited than methods based on atten-
tion (Bastings and Filippova, 2020) for model anal-
ysis, Hollenstein and Beinborn (2021) extract token
importance by iteratively masking each input to-
ken, computing the L2 norm of the gradient for
the correct output with respect to each token, and
then summing all saliency scores for each input
token. However, while they do emulate the LM’s
pre-training objective, this does does not neces-
sarily align with human processing: whereas the
model “sees” the input only partially, and as many
times as there are tokens, the readers see the input
fully and only once. Moreover, the gaze data used
in their study was, in parts, recorded while partic-
ipants were completing a task, such as sentiment
analysis and relation extraction (i.e., task-specific
reading). In our approach, we thus compute gradi-
ents by having the model perform the same kind of
classification task that humans performed during
reading. Thereby the token importance attributed
by both humans and the model refers to the impor-
tance within the constraint of a specific task, and
the model sees the input only once, and fully.

3 Method

Consider an input sentence, formalized as x =
⟨x1, . . . , xN ⟩ of N tokens, where xj is the jth to-
ken (word) in the sentence, and two corresponding
token importance vectors of the same length: the
human importance vector h = ⟨h1, . . . , hN ⟩ and
the model importance vector m = ⟨m1, . . . ,mN ⟩,
where hj and mj are the human and model impor-
tance attributed to token xj . We obtain the mean
Spearman correlation between model and human
importance by computing the by-token Spearman
correlations between the vectors m and h for all
sentences x, then dividing the sum of these correla-
tions by the number of sentences x.

Extracting model importance: gradient-based
saliency The model importance vector m con-
sists of gradient saliency values mj for each input
token xj of the sentence x. “Saliency” refers to
neural network interpretation methods that assign
an importance distribution over the input in order
to analyze a network’s prediction (Ding and Koehn,
2021). In other words, saliency methods aim at ex-
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BERT base BERT large RoBERTa DistilBERT GPT-2 base GPT-2 large OPT
Sentiment Analysis (SA)

fine-tuned 0.610.010 0.570.011 0.470.012 0.530.011 0.490.011 0.550.010 0.430.012

pre-trained (0-shot) 0.550.011 0.590.010 0.450.012 0.520.012 0.40.014 0.480.012 0.420.013
random init. (0-shot) 0.240.013 0.220.013 0.040.014 0.210.013 0.20.014 0.190.014 0.150.015

Relation Extraction (RE)
fine-tuned 0.530.010 0.520.009 0.420.010 0.450.010 0.460.010 0.520.009 0.50.011
pre-trained (0-shot) 0.510.010 0.470.011 0.370.011 0.490.010 0.370.011 0.450.011 0.420.011
random init. (0-shot) 0.080.011 0.070.011 0.040.012 0.090.011 0.160.013 0.160.013 0.140.014

Table 1: We report mean Spearman correlations and standard errors between model and human importance for all
models in their fine-tuned, pre-trained (0-shot), and randomly initialized (0-shot) version, for both tasks SA and RE.
The difference in correlations is significant in all cases except for the ones indicated in italic.

plaining how sensitive the decision of a model is to
changes in the input. The most common method of
assigning this importance distribution is by means
of the gradient (Simonyan et al., 2014). Given a
parametrized language model fθ, we compute the
gradient g with respect to an input token xj ∈ x as

g(xj) :=
∂f c

θ

∂xj
(x), (1)

where c indexes the true class y in the model’s out-
put, and f c

θ refers to the predicted output logit for
the true class y. We then follow Li et al. (2016) by
defining the gradient saliency mj of token xj as the
L1 norm of its gradient mj := |g(xj)|. Since dif-
ferent LMs employ different tokenization methods
which split tokens into sub-word tokens (Sennrich
et al., 2016; Song et al., 2021), we pool gradients
back to token level by summing up the sub-word
token-level gradient norms. We then normalize the
token-level saliencies by dividing them by the sum
of all saliency values in the sentence.

Extracting human importance: relative fixation
duration To obtain the human importance vector
h, we first extract raw total fixation durations tj,r
for each token xj ∈ x, which is the sum of the
durations of all fixations on that token by a reader
r. However, due to variations in reading speed
across readers and sentences, these raw durations
can vary significantly between instances. We thus
normalize them by dividing them by the sum of du-
rations across all tokens within a sentence, resulting
in relative fixation durations dj,r = tj,r/

∑
j tj,r

for each token xj . These relative durations are
then averaged across all readers to bypass individ-
ual differences and to obtain a more robust signal,
resulting in aggregated relative fixation durations
hj =

∑
r dj,r/ |readers| for each token xj .

4 Experiments

Datasets The eye-tracking part of the Zurich Cog-
nitive Language Processing Corpus (ZuCo; Hol-
lenstein et al., 2018) comprises two task-specific
readings: in the sentiment analysis (SA) reading,
participants were presented with a subset from the
Stanford Sentiment Treebank (SST; Socher et al.,
2013) that consists of movie reviews, based on
which they had to rate the movies; in the relation
extraction (RE) reading, they performed relation ex-
traction on a subset of sentences from the Wikipedia
relation extraction corpus (Culotta et al., 2006).

Models and fine-tuning We include both en-
coder models and decoder models, as well as mod-
els from the same family but different in size. En-
coders include BERT (Devlin et al., 2019) base
and large, RoBERTa (Liu et al., 2019), and Dis-
tilBERT (Sanh et al., 2019); decoders include
GPT-2 (Radford et al., 2019) base and large, and
OPT (Zhang et al., 2022). As the models perform
classification — ternary for SA, and 9-class for RE
—, we utilize the architecture variants implemented
for sequence classification in Huggingface (Wolf
et al., 2019). For SA, we fine-tune the models on
the SST dataset and for RE on the Wikipedia dataset
(Culotta et al., 2006) , excluding the sentences used
for ZuCo SA and RE, respectively.1

Baselines. We include two sets of baseline mod-
els: the above-mentioned models randomly initial-
ized (random (0-shot)), and the models pre-trained
but not fine-tuned (pre-trained (0-shot)).

Results As depicted in Table 1, the more similar
the model’s training is to the human task, the more
aligned are the model and human importance vec-
tors. There exist medium to strong correlations be-
tween the fine-tuned model importance and human

1For training and implementation details as well as classi-
fication test results, see Appendix A.
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Figure 1: Mean Spearman correlations between relative fixation durations and gradient saliencies for fine-tuned
BERT base are depicted at the participant level, with error bars denoting the standard error. Participants are arranged
according to task accuracy, with their average task accuracies presented at the bottom of each bar.

importance vectors, exemplified by correlations of
0.61 by BERT base or 0.55 by GPT-2 large for SA.
Additionally, most fine-tuned models produce sig-
nificantly higher correlations than the pre-trained
baselines, and the pre-trained models all have sig-
nificantly higher correlations than their randomly
initialized counterparts. Encoder models, on av-
erage, achieve higher correlations than decoders,
despite variability within both types. Additionally,
SA task model importance correlates more strongly
on average than for RE.

5 Participant-level analysis

To investigate whether the models correlate more
with certain participants, we perform an additional
participant-level analysis in which we compute cor-
relations between the model-extracted saliency val-
ues and relative fixation durations for each partici-
pant individually. We also extract the participants’
response accuracies for both their SA and RE, av-
eraged over sentences. The underlying intuition is
that the models possibly correlate more with partic-
ipants that have a higher task accuracy.

Results The juxtaposition of correlations on par-
ticipant level and participants’ accuracies reveals
no discernible pattern, as exemplified by BERT
base in Figure 1. The correlation coefficients be-
tween participants exhibit great variability in both
tasks. Participants’ task accuracies are distributed
across a wide range for SA but exhibit a ceiling
effect for RE. Moreover, averaging the participant-
level correlations yields lower correlation values
than using the aggregate relative fixation durations,
e.g., the group-level correlation with BERT base is
0.61 and the average on participant-level is 0.41.2

2An overview of all by-participant accuracies and correla-
tions, for all models can be found in Table 3 in Appendix B.

6 Discussion and Conclusion

The experimental results find medium to strong
correlations between model importance vectors,
derived from gradient saliencies, and human im-
portance vectors, indicated by relative fixation du-
rations, particularly when language models (LMs)
are fine-tuned for tasks mirroring those undertaken
by readers: task-specific fine-tuned models demon-
strate notably stronger correlations than pre-trained
zero-shot baselines. The discrepancy between
the pre-trained and randomly initialized models
suggests an initial understanding for human im-
portance attribution acquired during pre-training.
These findings underline the importance of match-
ing tasks between models and humans for accu-
rate gaze analysis, with task-specificity influencing
reading behavior but remaining largely ignored in
NLP (Shubi and Berzak, 2023). We further find
that SA tasks show consistently higher correlations
than RE, possibly due to the complexity introduced
by more output classes affecting model predictions.
Moreover, initial observations suggest encoders
outperform decoders in correlation, potentially due
to decoders’ unsuitability for classification tasks.
Yet, this distinction may be incidental, influenced
by factors like pre-training data or model architec-
ture. Surprisingly, BERT base yields the highest
correlation, while BERT large and RoBERTa, who
achieve higher test accuracies than BERT, produce
lower correlations. This indicates that emulating
human importance attribution is neither a function
of model parameters nor does it necessarily imply
better model performance. The participant-level
analysis reveals no distinct pattern, indicating that
the models do not mirror the token importance attri-
bution of more proficient humans. Moreover, aver-
aging correlations across individual participants re-
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sults in a lower correlation value compared to when
participant fixation durations are aggregated across
sentences. This implies both that by-participant ag-
gregation of relative fixation durations produces a
more robust signal, and that models correlate more
with average human language processing than with
subject-level idiosyncracies.

In conclusion, we have developed a gradient
saliency-based method to analyze LMs with hu-
man gaze that does not neglect task-specificity and
found that mirroring tasks yields higher correla-
tions.

Limitations

First of all, the number of sentences in the eye gaze
dataset is quite low, as is the number of readers
(which are all L1 English readers based in Zurich,
and are not experts in sentiment analysis or relation
extraction), which does not make for a representa-
tive sample of the population at large.

Relatedly, for a more extensive evaluation of
our task-specific approach, one would have to ap-
ply it to the same sentences that contain eye move-
ments from natural reading instead of task-specific
reading. We leave it to future work to extend the
data from ZuCo with eye movements from natural
reading.

Moreover, while the studies outlined in Sec-
tion 2 underline the superiority of gradient-based
over attention-based methods, they might still not
be the state-of-the-art for explainability methods
and one might employ methods such as Integrated
Gradients or Layer-wise Relevance Propagation.
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Appendices
A Fine-Tuning Details

We fine-tune the models outlined in Section 3 on the SST (Socher et al., 2013) dataset for ternary sentiment
classification, excluding the sentences used for ZuCo SA, and on the Wikipedia dataset (Culotta et al.,
2006) for 9-class relation classification, excluding the sentences used for ZuCo RE. After excluding
sentences from ZuCo SA and RE, we are left with 5211 sentences allocated for SA and 889 sentences
allocated for RE. Subsequently, we implement an 80/20 split for training and validation. For testing, there
are 400 sentences from ZuCo SA and 335 sentences from ZuCo RE 3. We train the models for 10 epochs,
with an early stopping patience of 3 epochs, using the AdamW (Loshchilov and Hutter, 2019) optimizer, a
learning rate of 2 ∗ 10−5, and a batch size of 16. All models are implemented in PyTorch (Paszke et al.,
2019).

BERT base BERT large RoBERTa DistilBERT GPT-2 base GPT-2 large OPT
SA 75.3 76.5 82.8 75.0 71.8 77.8 73.8
RE 57.9 61.2 57.9 60.9 53.1 56.1 55.2

Table 2: We report the accuracy of fine-tuning the models on the SST (Socher et al., 2013) for sentiment analysis
(SA) and on the Wikipedia dataset (Culotta et al., 2006) for relation extraction (RE). In both cases, the ZuCo SA and
RE sentences are excluded from the training data; the models are tested on the ZuCo sentences for SA and RE.

B Participant-Level Analysis

(a) BERT large

(b) DistilBERT

(c) RoBERTa

3Out of the original 407 sentences in ZuCo RE, we retain only 335 sentences that contain a specific relation.
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(d) GPT-2 base

(e) GPT-2 large

(f) OPT

Figure 2: Spearman correlations between relative fixation durations and gradient saliencies for various models are
depicted at the participant level, including standard error. Participants are arranged according to task accuracy, with
their accuracy values presented at the bottom of each bar.

ZAB ZDM ZDN ZGW ZJM ZJN ZJS ZKB ZKH ZKW ZMG ZPH avg
Sentiment Analysis (SA)

Task acc 76.09 76.09 89.13 71.74 80.43 54.34 91.3 89.13 76.09 69.57 91.3 89.13 79.53
BERT base 0.47 0.36 0.28 0.39 0.40 0.36 0.39 0.42 0.51 0.49 0.43 0.40 0.41
BERT large 0.44 0.33 0.26 0.37 0.37 0.34 0.36 0.38 0.48 0.46 0.39 0.36 0.38
DistilBERT 0.40 0.32 0.25 0.36 0.35 0.30 0.34 0.36 0.44 0.41 0.38 0.35 0.35
RoBERTa 0.4 0.25 0.2 0.28 0.33 0.31 0.29 0.3 0.43 0.37 0.31 0.27 0.31
GPT-2 base 0.41 0.25 0.23 0.29 0.35 0.31 0.31 0.31 0.43 0.38 0.31 0.27 0.32
GPT-2 large 0.43 0.3 0.29 0.33 0.39 0.35 0.34 0.36 0.45 0.43 0.34 0.33 0.36
OPT 0.34 0.23 0.21 0.26 0.31 0.27 0.26 0.28 0.35 0.34 0.27 0.25 0.28

Relation Extraction (RE)
Task acc 90.42 96.81 92.87 92.14 79.12 96.56 93.86 95.33 93.12 94.84 95.82 97.05 93.16
BERT base 0.39 0.27 0.27 0.34 0.40 0.34 0.32 – 0.42 0.41 0.37 0.24 0.34
BERT large 0.37 0.27 0.26 0.33 0.41 0.34 0.31 – 0.43 0.42 0.36 0.22 0.34
DistilBERT 0.35 0.25 0.24 0.28 0.30 0.29 0.31 – 0.34 0.30 0.30 0.23 0.29
RoBERTa 0.33 0.21 0.19 0.25 0.34 0.31 0.26 – 0.38 0.31 0.27 0.16 0.27
GPT-2 base 0.36 0.21 0.23 0.30 0.34 0.33 0.25 – 0.37 0.35 0.29 0.20 0.29
GPT-2 large 0.41 0.24 0.27 0.34 0.39 0.35 0.29 – 0.4 0.4 0.34 0.24 0.33
OPT 0.4 0.24 0.29 0.33 0.35 0.34 0.31 – 0.38 0.36 0.31 0.25 0.32

Table 3: The participants’ task accuracy and their Spearman correlations with the LMs are reported. There is a lack
of correlations for one participant in the RE task because of a pre-processing issue with the eye-tracking data.
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