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Abstract

Language complexity is an emerging concept
critical for NLP and for quantitative and cogni-
tive approaches to linguistics. In this work, we
evaluate the behavior of a set of compression-
based language complexity metrics when ap-
plied to a large set of native South American
languages. Our goal is to validate the desir-
able properties of such metrics against a more
diverse set of languages, guaranteeing the uni-
versality of the techniques developed on the
basis of this type of theoretical artifact. Our
analysis confirmed with statistical confidence
most propositions about the metrics studied, af-
firming their robustness, despite showing less
stability than when the same metrics were ap-
plied to Indo-European languages. We also
observed that the trade-off between morpho-
logical and syntactic complexities is strongly
related to language phylogeny.

1 Introduction

The development of means for quantifying linguis-
tic properties is essential for cognitive approaches
to computational linguistics, becoming simultane-
ously more challenging and useful as the property
of interest is transversal to different languages and,
therefore, an important clue for accessing cognitive
processes behind human language. This is the case
of language complexity.

The concept of language complexity, whether
of an utterance or of a language as a whole, is
instinctive for us. People know how to recognize
when a text is written in a difficult or elaborate way
and they usually recognize that certain languages
are less or more complicated to learn depending on
their linguistic background.

Informally, we can say that: (i) the complexity of
an utterance encompasses the quantity and sophis-
tication of linguistic constructs necessary to form
and understand the utterance and (ii) the complexity
of a language as a whole refers to the quantity and

sophistication of communicative strategies avail-
able for the formation of such utterances in that
language.

Despite a relative consensus around these intu-
itions, we lack established formal and quantifiable
definitions of language complexity. It is difficult
to find a definition that encompasses the hetero-
geneous range of human language manifestations,
both in terms of different languages and of different
levels in which meaning can be conveyed within a
language.

Even in light of these challenges, it is crucial
to establish rigorous, theoretically and experimen-
tally validated definitions of language complexity.
Both cognitive and non-cognitive approaches to
Linguistics can significantly enhance their expres-
sive capacity and theoretical framework. In NLP,
complexity measures can be used in automatic text
simplifiers, translators, domain-sensitive correctors
and completers (Leal et al., 2023), but can also
be integrated into the of training machine learn-
ing models, to increase performance (Sarti et al.,
2021).

Another challenge for the construction of a ro-
bust theory for language complexity is that of in-
clusion: historically, the construction of tools and
theories of human language has included Indo-
European languages, to the detriment of other lin-
guistic manifestations, e.g. American native lan-
guages. For a concept that aims to be transversal to
different languages and provide universal insights
into them and their underlying cognitive processes,
as is the case with language complexity, it is nec-
essary to include the broadest possible range of
languages in its development and validation.

This inclusion is the focus of our work. Here, we
examine a set of language complexity metrics de-
rived from Information Theory, proposed in Juola
(1998, 2005, 2008), and Ehret and Szmrecsanyi
(2016). The authors ran several experiments with
the proposed metrics, drawing on data from a sub-
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stantial set of languages, with a predominant focus
on those belonging to the Indo-European language
family.

Here, we repeat these experiments with data
from South American indigenous languages, at-
tempting to ascertain whether the desirable prop-
erties of these metrics remain solid when incorpo-
rating frequently excluded languages. We seek to
verify the robustness of the proposed metrics and
include a more diverse set of linguistic manifesta-
tions in the construction of a quantifiable theory of
human language complexity.

Our text is structured as follows: In section 2,
we present our theoretical background and related
works; section 3 outlines our methodology, com-
plexity metrics and its properties, the data used and
the experimental pipeline employed; in section 4
we exhibit our results and, in section 5, we present
our conclusions.

2 Related Works

Nichols (1998) was a pioneer in proposing a quan-
tifiable language complexity metric. She defines
the morphological complexity of a language as the
number of inflection points in its typical sentence.
She computed it for more than 200 languages. In
this, work we evaluate the consistency of our tar-
geted metrics with hers.

In contrast to the computational challenges of
Nichols (1998)’s metric, Juola (1998, 2005, 2008)
proposes a set of compression-based complexity
metrics based on information theory. The author
compares these metrics to alternatives, extend them
to different linguistic tiers, and evaluate them on
different parallel corpora. This family of metrics is
the main object of study in this paper, with a focus
on their behavior when applied to indigenous South
American languages, not explored in the original
works. Ehret and Szmrecsanyi (2016) suggests
modifications to them, proposing improvements
for eliminating potential spurious correlations, and
experiment on semi-parallel and non-parallel data.

Several subsequent works draw directly or indi-
rectly from the notion of compression-based com-
plexity metrics (Juvonen, 2008; Sadeniemi et al.,
2008; Fenk-Oczlon and Fenk, 2008; Ehret et al.,
2021; Szmrecsanyi, 2021; Pellegrino et al., 2011;
Ackerman and Malouf, 2013; Kettunen, 2014;
Housen et al., 2019), in particular, to quantify the
difficulty of acquiring a second language (Bulté
and Housen, 2014; Clercq and Housen, 2019).

An alternative approach, which characterizes
complexity as a function of linguistic features, was
explored in Graesser et al. (2004, 2011); Graesser
and McNamara (2011) for English and in Leal et al.
(2023) for the Portuguese language. Similar works
study language complexity from the perspective
of readability, instead of the typological approach
adopted here, focusing on text simplification or
elaboration (McNamara et al., 2014; Carroll et al.,
1998; Max, 2006; Shardlow, 2014; Siddharthan,
2006; DuBay, 2007; Leal and Aluísio, 2024).

Regarding the study of indigenous languages of
South America, several classic works studied and
documented the languages explored here, e.g. Cal-
low (1962); Derbyshire and Pullum (1986–1991);
Dixon and Aikhenvald (2006) inter alia. The in-
vestigation into the computational complexity of
indigenous languages remains much less explored
and our work is completely original, to the best
of our knowledge. Bentz et al. (2017), Gutierrez-
Vasques et al. (2023), Oh and Pellegrino (2023),
Bentz et al. (2016), Nichols and Bentz (2018) and
Bentz et al. (2023) are the works that closely re-
semble the work we present here, assessing vari-
ous complexity metrics or associated measures on
language sets that incorporate South American lan-
guages. Nevertheless, these studies diverge from
ours in terms of goals, methodology, and/or the
quantity of included indigenous languages, typi-
cally covering a significantly smaller number com-
pared to our assessment.

3 Methodology

This paper aims to evaluate a collection of
compression-based language complexity metrics
M introduced in previous works (Juola, 1998,
2005, 2008; Ehret and Szmrecsanyi, 2016). The
evaluation is conducted on a dataset D encoded in
a broad range of South American indigenous lan-
guages L. The objective is to determine the validity
of the theoretical and experimental propositions P
regarding M, as observed in the aforementioned
studies, when M is applied to the languages in L.

In this section, we present the methodology
adopted to achieve this goal. In subsection 3.1,
we define the set M of language complexity met-
rics evaluated; in subsection 3.2, we present the
set L of South American languages tested and the
data D used to represent them; in subsection 3.4
we present the propositions P about M, whose
validity we wish to verify when M are applied
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to L through D; in subsection 3.5, we outline the
experimental processing pipeline employed for con-
ducting this verification. Subsection 3.3 presents
a brief interlude on the writing systems used to
encode the languages in L.

3.1 Complexity Metrics

The language complexity metrics M evaluated
in this work (Juola, 1998, 2005, 2008; Ehret and
Szmrecsanyi, 2016) are based on a teleological
approach to human language, that can be traced
back to (Zipf, 1949) . This view reduces natural
language to its primary functionality - the trans-
mission of meaning or information - in line with
Shannon’s Information Theory (MacKay, 2003).

In this approach, each textual excerpt is seen as a
message encoding a certain amount of information.
The complexity of the message is the amount of in-
formation encoded. For a sufficiently long message,
the amount of information can be approximated by
the size of the message when compressed by an
efficient compression algorithm.

However, experimental results show that natural
languages tend to maintain a relatively uniform in-
formation density during communication (Manin,
2006; Aylett and Turk, 2004; Jaeger, 2006; Jaeger
and Levy, 2006; Jaeger, 2010). Some works model
this through the hypothesis that natural languages
try to maximize information transmission without
overloading the cognitive systems of senders and
receivers (Piantadosi et al., 2011), but with lim-
ited results (Pimentel et al., 2023). Regardless of
the exact mechanisms behind this uniformity, one
consequence is that longer texts contain more in-
formation, resulting in larger compressed versions.

This correlation between a text’s length and its
compressed size must be considered by any com-
plexity metric using compressed text size to esti-
mate overall text complexity. To address this issue,
Ehret and Szmrecsanyi (2016) proposes that the
overall language complexity should be computed as
a measure of how much the size of the compressed
message deviates from the expected correlation
with the size of the uncompressed version. This
can be computed from the residuals (res) of the
linear regression between the compressed message
size and its original size. This definition of overall
complexity µA is shown in Equation 1 (For details
about the mathematical notation, see InfoBox 1).

µA(T ) = res(|C(T )|, |T |) (1)

Mathematical Notation Key

Throughout this text we will use the follow-
ing notation conventions:

• T represents a textual excerpt or mes-
sage encoded in a natural language;

• Degraded texts are represented with
subscripts and superscripts. The sub-
script symbol represents the type of
degradation (◦ for replacement, × for
deletion). The superscript represents
the target tier of the degradation pro-
cess.

• Language complexity metrics are func-
tions represented by µY

_ (·), where, the
subscript symbol indicates the type of
degradation associated with the metric
and the superscript symbol indicates
the target language tier accessed by the
metric;

• C(T ) represents the text T after com-
pression ;

• | · | represents the size of an object in
bytes.

InfoBox 1: Mathematical notation adopted throughout
this text.

Nevertheless, the complexity of a text cannot
be determined solely by the overall information
transmitted (A). Natural languages have different
mechanisms of encoding information and adopt
different strategies to distribute the information
transmitted through these mechanisms. Finnish,
for example, has a rich morphological case system,
in which a noun such as "talo" (house) becomes
"talolta" to express the concept "from the house".
This same concept is expressed syntactically in
English through the association with a preposition,
external to the word "house".

In information theory terms, each message en-
coded in a natural language consists of different
tiers through which one can distribute the infor-
mation conveyed by the message, and therefore
its complexity. A text would then have a different
level of complexity for each tier.

In an effort to grasp these subtleties, Juola (2008)
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introduce a set of metrics designed to capture the
relative complexities across three distinct linguistic
tiers: morphological (M), syntactic (S), and prag-
matic (P). The principle underlying these three
metrics is the same: to degenerate1 the informa-
tion conveyed only by the targeted linguistic tier
and to compute the ratio between the size of the
degenerated compressed text to that of the original
compressed text. In this way it is possible to ac-
cess how much of the overall information is being
transmitted by the targeted tier.

The more dependent a language is on a partic-
ular tier for conveying information, the more the
degradation of that tier leads to information loss in
the text. This intensified information loss hinders
pattern recognition for compression algorithms, re-
sulting in reduced compressibility and higher com-
plexity metric values for that tier.

Juola (2008) achieves degeneration through a
deletion process, wherein 10% of the units in the
text are randomly erased. The choice of textual
unit to be erased depends on the targeted linguistic
tier: characters for morphology, words2 for syntax,
and verses for pragmatics3.

Ehret and Szmrecsanyi (2016) argue that an ex-
pected exception to this general template is mor-
phological complexity: languages with rich mor-
phology use systems to convey information within
words that other languages express through exter-
nal elements. As a result, a single word in this
languages can have several allowed forms. Thus,
in languages with high morphological complexity,
deleting a character still often yields a valid word
form, minimizing disruption in text compressibility.
To address this, a negative sign is incorporated in
the definition of morphological complexity. Ehret
and Szmrecsanyi (2016) also experimentally con-
firms the need for this sign correction.

These complexity metrics, as described, are rep-
resented by equations 2, 3, and 4. In all cases,
we follow the mathematical notation conventions
outlined in InfoBox 1.

1In this text, the terms "degeneration" and "degradation"
are used interchangeably.

2As in Juola (2008), we adopt here the work definition of
words as maximal non-blank sequences.

3In Juola (2008), as well as here, the main text used in
the experiments is a subset of the Christian Bible, given the
high availability of translations into different languages. As
the Bible is divided into verses and verses correspond roughly
to sentences, this is used as the pragmatic unit for computing
pragmatic complexity metrics.

µM
× (T ) = −|C(T M

× )|
|C(T )| (2)

µS
×(T ) =

|C(T S
× )|

|C(T )| (3)

µP
×(T ) =

|C(T P
× )|

|C(T )| (4)

Juola (2008) proposes an alternative technique
to morphological degeneration using substitution
instead of deletion. He replaces all tokens of the
same type in the original text with an integer, re-
moving information about the internal structure
of words without affecting information about their
relative positioning within the sentences. This is
represented in Equation 5. Here the numerator and
denominator are inverted compared to the previous
metrics. This inversion is an attempt to address the
same problem related to the morphological com-
plexity that led to the proposition of sign inversion
in equation 2, but with a different mathematical
strategy.

µM
◦ (T ) =

|C(T )|
|C(T M◦ )| (5)

The process of calculating a complexity metric
value from a text T , as previously described, is
illustrated in Figure 1. This example employs the
metric µM

× , defined in Equation 2.
Juola (2008) provides a cognitive argument to

why compression-based metrics would work for
measuring language complexity. Any measure of
the complexity of an object is computed as the
number of primitive operations necessary for its
functioning. We can reduce the compression pro-
cess to storage and querying operations over a
lexicon of frequent textual patterns. These opera-
tions, he argues, align with how human mind uses
language, storing frequent linguistic patterns and
querying them. Compression-based metrics should
thus work well, as they are an approximation, albeit
simple, of human cognitive linguistic procedures.

3.2 Data

In order to access the properties of complexity met-
rics across different languages, Juola (2008) opts
to eliminate other potential factors of complexity
variation, conducting experiments with a parallel
corpus comprising the same text translated into dif-
ferent languages. The Christian Bible was his main
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Figure 1: Diagram exemplifying the pipeline for computing complexity metrics. This example refers to the metric
of morphological complexity through deletion µM

× defined in equation 2.

       I thank my God upon every
remembrance of you;

Always in every prayer of mine
for you all making request with

joy
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you all m_kin_ req_est with _oy
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selected text, chosen for its extensive range of trans-
lations and convenient accessibility. In an effort
to maintain maximum fidelity to his experiments
and isolate potential factors of variation that could
undermine the validity of our results, we also have
opted to use texts from the Christian Bible.

Another reason for using these texts in our case
is the unfortunate scarcity of translations simultane-
ously available in a wide range of indigenous South
American languages. Notably, even the Brazilian
constitution lacks versions in the various indige-
nous languages spoken within its territory. The
Bible stands out as one of the rare texts extensively
translated into these languages, primarily due to
its central role in the colonization process of these
communities. A further contributing factor to the
limited data availability is the lack of written tra-
dition in the languages studied here. Historically,
many of them were primarily oral and only recently
adopted a writing system, often developed specifi-
cally for the translation and dissemination of chris-
tian texts, such as the Bible.

Acknowledging the problematic context in
which these translations were produced, we refrain
from disclosing the data or deploying any models
based on it. Our sole purpose is to leverage these
translations to explore aspects of these languages
that might otherwise be challenging to investigate.
Our aim is to emphasize the importance of consid-
ering these languages in the examination of prop-
erties that are said to be universal, encompassing
human diverse cultural manifestations in our view
of natural languages.

We are also aware that these translations were
probably produced with very little care for the lan-
guages and its cultural meanings and nuances, and

that the distribution of language in the Bible may
be not representative of these languages as a whole
and can be skewed. These may be confounding
factors reflected in the obtained values of the afore-
mentioned complexity metrics.

Our dataset, kindly provided by IBM Research
Brazil, was originally assembled to explore lan-
guage classification and machine translation be-
tween indigenous languages. It consists of the texts
of the Catholic Bible’s New Testament, translated
into a diverse set of South American indigenous
languages and is separated by books, chapters and
verses.

The dataset includes 51 South American indige-
nous languages: Apalaí (apl), Apinayé (api), Apur-
inã (apu), Asheninka (cax), Bakairi (bki), Borôro
(brr), Canela (cnl), Culina (cul), Desano (des),
Guajajara (gjj), Guarani Eastern Bolivian (crg),
Guarani Mbya ([gun]), Guarani Paraguay (gua),
Guarani Western Bolivian ([gnw]), Hixkaryána
(hix), Jamamadi (jmm), Kaapor (urk), Kadiwéu
(kdw), Kaigang (kng), Kaiwá (kaw), Karajá (jva),
Kashinawa (csh), Kayabí (kyz), Kayapó (kyp),
Kubeo (cub), Macushi (mac), Makuna (mcn), Mat-
sés (myr), Maxakali (max), Mundurukú (muu),
Nadeb (nad), Nambikuára (nmb), Nheengatu
([yrl]), Palikúr (plk), Parecís (pex), Paumarí (pau),
Piratapúya (prt), Rikbaktsa (rik), Sanumá (snm),
Sateré-Mawé ([mav]), Siriano (sri), Tenharim
([pah]), Terêna (trn), Ticuna (tic), Tucano (tuc),
Tuyúca (tuy), Wanana (gno), Wapishana (wps),
Xavante (xav), Yamináwa (yam), and Yanomami
([guu] ). The geographical distribution of these
languages is represented in Figure 2. Additional
information about them can be found in Appendix
B.
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Figure 2: Geographical distribution by family for the
languages explored in our experiments. Latitude, Lon-
gitude and Phylogenetic data were obtained from the
Glottolog Database (Hammarström et al., 2024).
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Furthermore it also includes 5 Indo-European
languages: English (eng), French (fre), German
(ger), Portuguese (por), and Spanish (spa), which
we use for comparison purposes.

We also collected the New Testament in Ancient
Greek ([grc]) 4 for verifying the proposition that
overall complexity of a text is always smaller in its
original language (see Section 3.4).

3.3 Writing Systems

The metrics defined in previous sections assess
language complexity through the degradation of or-
thographic elements and sequences such characters
and words, thus linking these metrics to the writ-
ing systems employed by the targeted languages
under evaluation. Both Juola (2008)’s and our ex-
periments focus on languages with alphabetic and
low-logographic writing systems derived from the
Latin alphabet (Sproat, 2000). Consequently, our
conclusions are constrained to this region of the
orthographic space. Further research is needed to
validate these complexity metrics across diverse re-
gions of the orthographic space that are beyond the
scope of this paper. Figure 5 in Appendix A pro-
vides a visual representation of the types of writing
systems not addressed in our experiments.

4https://www.greekbible.com/

3.4 Propositions

We used the data described above to assess whether
the desirable properties of the proposed complexity
metrics remain consistent when evaluated over our
broad set of native South American languages.

These expected properties can be formulated as
propositions falling into two broad groups: prior
hypotheses about how a language complexity met-
ric should behave, and a posteriori observations,
found in Juola (2008)’s experiments.

The prior hypotheses evaluated in this work are:

• H1: the overall complexity (µA) of a text in
its original language is lower than in other
languages, as a result of the introduction of
cultural clarifications in the translation pro-
cess;

• H2 (equi-complexity hypothesis): all lan-
guages have (approximately) the same overall
complexity (µA)5;

• H3 (trade-off hypothesis): there is a trade-off
between the syntactic (µS

×) and morphological
(µM

× ) complexities of a language.

The a posteriori observations of Juola (2008),
accessed in this work are:

• O1: there is a positive correlation between
morphological complexity by replacement
(µM

◦ ) and the number of types in the sample
and a negative correlation with the number of
tokens;

• O2: all languages are approximately equal in
terms of their pragmatic complexity (µP

×); in
other words, the variance of pragmatic com-
plexity is significantly lower than that of mor-
phological and syntactic equivalents;

• O3: the morphological complexity metric µM
◦

is consistent with Nichols (1998) morphologi-
cal complexity metric (see Section 2);

• O4: the results were equivalent when varying
the compression algorithm between gzip and
bz2.

5Contact languages are possible exceptions to this, but
without a representative dataset of contact languages, we can-
not verify this hypothesis.
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Figure 3: Trade-off between syntactic and morphological complexities by deletion, computed with gzip for both D90
and DAll sets. The legend is the same for both plots. Phylogenetic data was obtained from Glottolog (Hammarström
et al., 2024).
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3.5 Experimental Pipeline
Our experimental pipeline consists of five steps:

1. Data normalization: this step ensures that
characters that appear identical are indeed en-
coded identically in UTF-8 representation;

2. Data processing: here, we create two datasets
Dall and D90. Dall contains only verses that
appear in all languages (2585 verses across 27
languages), while D90 contains verses from
languages where the intersection of verses
makes up at least 90% of the total (7159 verses
across 27 languages).

3. Outlier detection and removal: we analyzed
the dataset, detecting the Nambikuára data
as a potential anomaly. Nambikuára is a lan-
guage family spoke in Mato Grosso, Brazil.
These are tonal languages, i.e. languages in
which the pitches produced are grammatically
or lexically distinctive, with tones marked or-
thographically by special characters "¹," "²,"
and "³" in all syllables of our sample (Lowe,
1999). Orthographic tone marking varies
widely across languages, but even where per-
vasive, it typically evolves organically with

compensatory mechanisms to ensure easy
written communication. Nambikuára, like
many of the languages studied here, does not
have a long written tradition, and the devel-
opment of its writing system is connected
the contact between native speakers and peo-
ples of European descent. It is likely that
our sample’s ubiquitous tonal marking reflects
the needs of people unfamiliar with tonal-
ity rather than those of it’s native speakers.
Consequently, this marking likely increases
information redundancy without appropriate
compensation, affecting the comparability of
complexity metrics 6. We thus removed Nam-
bikuára from our analysis.

4. Encoding choice: since UTF-8 is a variable-
size encoding, we encoded our data in UTF-
16, to ensure all characters use exactly the
same amount of storage;

6A similar argument can be found in Sproat (2000, pp. 21–
23), using as an example the differences between the standard
Hebrew writing system and the Masoretic Hebrew system.
The later includes annotations designed to help people who
don’t speak Hebrew to read the Bible with the correct pronun-
ciation.
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5. Compression: we employed Gzip (gzip) and
Bzip2 (bz2) from Python’s 3.11.8 standard
library. In both cases, we used the maximum
compression level available (level 9).

With this pipeline, we have a total of four exper-
imental settings for each metric (gzip, D90), (bz2,
D90), (gzip, Dall), (bz2, Dall).

The programs developed for this work are avail-
able in an online repository7.

4 Results and Discussion

Using the complexity metrics computed from the
described experimental pipeline, we conducted
analyses to empirically validate each proposition
outlined in section 3.4, obtaining the following re-
sults:

• H1: we ordered the languages of each dataset
by overall complexity µA in ascending or-
der. For instance, the ranking obtained for
the setting (gzip, D90) was Nheengatu, Ja-
mamadi, Eastern Bolivian Guarani, Western
Bolivian Guarani, Matsés, Maxakali, Guarani
Mbya, Parecís, Nadeb, Asheninka, Paraguay
Guarani, Tuyúca, Apurinã, Apalaí, English,
Kaigang, Macushi, Portuguese, French, Pa-
likúr, Wapishana, Yanomami, German, Span-
ish, Terêna, Ancient Greek. It’s clear that this
ranking does not follow the expectation posed
by H1 that Ancient Greek would be the least
complex language, however we have no in-
formation on the translation history that con-
nects the different versions of the Bible and
which could influence our ranking. Another
confounding factor is that Juola (2008) uses
the Old Testament as experimental data, orig-
inally written in Hebrew. Hebrew, being a
Semitic language, lacks orthographic repre-
sentation of vowels, thus reducing character
count. Ancient Greek, our approximate ba-
sis for the New Testament original language,
features a highly intricate orthographic sys-
tem with numerous diacritics, significantly
increasing character count. Analyzing the cor-
relation between overall complexity and num-
ber of distinct characters per language reveals
a non-negligible correlation (ρ = 0.45, p-
value= 0.019), suggesting orthographic com-
plexity as a confounding variable that war-
rants consideration for a more precise assess-

7Our source code is available in this repository

ment of this hypothesis. The fact that Nheen-
gatu is in all settings one of the languages of
least complexity may be related to its role as
a lingua franca, or to the possibility that it
was used as a basis for the other translations.
The evaluation of H1 is therefore inconclusive,
and is subject to a more in-depth study of the
translation history of the different versions of
the text and orthographic complexity;

• H2: we observed that the variance of the com-
pressed text sizes is two orders of magnitude
smaller than the variance of the original text
sizes while the variance of the overall com-
plexity metric µA is three orders of magnitude
smaller, in all scenarios, confirming the hy-
pothesis within our experimental limitations.
This is illustrated in Figure 4.

• H3: we computed the correlation between
syntactic and morphological complexity, ob-
taining negative values in all scenarios and
confirming the trade-off hypothesis. In par-
ticular, for the set containing all languages,
we obtained ρ = −0.45, p-value= 0.0004
with gzip and ρ = −0.47, p-value= 0.0002
with bz2. Analysing the relationship between
these complexities, as illustrated in Figure 3,
we noted (i) a significant cohesion in com-
plexity space between languages that belong
to the same family. This is clearly observ-
able, for example, for the Indo-European, Tu-
pian, Nuclear-Macro-Je, and Arawakan fami-
lies; (ii) a significant separation between the
cluster of Indo-European languages and the
clusters of South American languages, indicat-
ing that the distance in complexity space can
be a meaningful metric of language dissimilar-
ity; (iii) that South American languages have
a much greater dispersion in complexities be-
tween them than Indo-European languages,
reinforcing the need to validate the desired
properties of this metrics in a more diverse
set of languages, instead of generalizing the
results obtained for Indo-European languages.
We consider these results as evidence that the
trade-off between syntactic and morpholog-
ical complexities may be dependent on the
phylogeny of languages, and usable as feature
or tool in language differentiation.

• O1: as expected, we observed significant posi-
tive correlations between morphological com-
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Figure 4: Compared distributions of original text size |T |, compressed text size |C(T )| and overall complexity µA

for the Dall subset. The differences in the dispersion of the distributions corroborate H2.
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plexity and the number of types and negative
correlations with the number of tokens for all
settings. In particular, for (gzip, D90) we ob-
tained ρtypes = 0.92 and ρtokens = −0.77,
both with p-value < 10−6. This hypothesis
was therefore validated;

• O2: in all scenarios, we observed that the vari-
ance of the pragmatic complexity metric is
one to three orders of magnitude smaller than
the variance of the morphological and syntac-
tic complexities, confirming this hypothesis
within our experimental limitations. This cor-
roborates Juola (2008)’s hypothesis that the
amount of information transmitted at the inter-
sentential level is language universal, perhaps
related to the general cognitive processes of
sequential reasoning.

• O3: we collected the available values of
Nichols (1998) morphological complexity
metric for the languages in our dataset. Un-
fortunately, this came down to a small set of
six languages. This number of points was too
small to obtain a statistically reliable measure
of correlation. The evaluation of this hypothe-
sis is therefore inconclusive;

• O4: the assessment of all previously vali-
dated propositions yielded equivalent results
for both gzip and bz2. The hypothesis of their
equivalence as base for language complexity
measurements is therefore validated within
our experimental limitations. Despite this, it’s
evident that bz2 typically achieves superior
compression compared to gzip. However, this

isn’t always advantageous, as bz2’s compres-
sion capacity may flatten complexities distri-
butions, complicating the assessment of the
trade-off hypothesis H3.

5 Conclusions and Future Steps

The majority of propositions about the studied com-
plexity metrics (H2, H3, O1, O2, and O4) were
successfully validated in our vast dataset of South
American indigenous languages. These results con-
firm the robustness of such metrics and indicate the
universality of the techniques proposed by (Juola,
2008) to compute the different forms of linguis-
tic complexity. As we used a greater variety of
languages, we were also able to document that
the trade-off between morphological and syntactic
complexities strongly relates with language phy-
logeny.

Although we confirmed most of our proposi-
tions, we obtained inconclusive results for H1 and
O3, and even for the confirmed hypothesis, we
found them to be weaker in South American lan-
guages compared to the sets of predominantly Indo-
European languages used in the original experi-
ments. This highlights the need to validate and
adjust these metrics for a wider range of human
languages, a task we have initiated here.

In future research, we aim to investigate the in-
conclusive propositions, particularly focusing on
the impact of orthographic complexity on overall
linguistic complexity, extending our results to a
greater set of writing systems.

Our findings add to those of (Juola, 2008) and
(Ehret and Szmrecsanyi, 2016), expanding the set
of languages on which these family of language
complexity metrics have been validated.
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Limitations

Authors

We, the authors, speak Portuguese, English, and
Spanish, with Brazilian Portuguese as our native
language. Consequently, we cannot provide in-
sights requiring in-depth knowledge of other lan-
guages studied in this work.

Nomenclature of Complexity Metrics

We adhered here to Juola (2008)’s classification
of complexity metrics as morphological, syntactic,
and pragmatic. However, we believe these names
might be misleading.

Regarding syntactic and morphological com-
plexity metrics, it is known that polysynthetic lan-
guages like Central Siberian Yupik (not studied
here) embed almost all sentence information within
words. Many researchers view these process as
syntactic rather than morphological, constituting
an internal syntax within words (de Reuse, 2006).
The metrics studied here would categorize this
as morphological complexity instead of syntactic,
therefore a more appropriate terminology might be
"word complexity" and "sentential complexity."

Regarding pragmatic complexity, the metric
used here measures relationships between text parts
rather than between the text and external context,
typically studied by pragmatics. Thus, a term like
"intersentential complexity" might be more suit-
able.

Data

We used data from the New Testament of the Chris-
tian Bible for our experiments. The language in
these texts has its own bias, not reflecting the cul-
tural reality of the studied languages. Many trans-
lations of this text were made to facilitate colo-
nization, with little regard for cultural and linguis-
tic nuances of each language and people. This
could affect our results. We also lacked access to
a clear history of translation relationships between
versions in different languages, which could have
provided a more comprehensive interpretation of
H1. We aim to obtain this data in future work.

Writing Systems

As noted in Section 3.3, the metrics studied here
are strongly dependent on the writing systems used
to represent target languages. Their applicabil-
ity is therefore currently limited to alphabetic and

low-logographic writing systems. Extensions are
needed to apply them to other writing systems.
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A A contextualization within a planar
taxonomy of writing systems

Figure 5: Sproat (2000)[p. 142]’s planar taxonomy of
writing systems, organizing them by the Ammount of
Logography, i.e. the degree to which a system uses sin-
gle symbols to represent entire words, and the Type of
Phonography, i.e. which sound units are represented by
the symbols in the system. The region of the plane col-
ored in pink (alphabetic and low-logographic systems)
corresponds to the types of writing systems where the
explored metrics were validated.

Type of Phonography

A
m

m
ou

nt
 o

f L
og

og
ra

ph
y

Consonantal Polyconsonantal Alphabetic Core Syllabic Syllabic

Egyptian

W. Semitic

Perso-Aramaic

English
Portuguese
Nhengatu
Greek

Linear B

Summerian
Mayan

Japanese

Modern Yi

Chinese

B Reference Information for the South
American languages studied in this
work

Table 1: Reference information about the native
South American languages used in this work (Apalaí -
Kayapó), partially based on Cavalin et al. (2023)

Language Code Family Countries
Apalaí apl Cariban Brazil
Apinayé api Nuclear-Macro-Je Brazil
Apurinã apu Arawakan Brazil
Asheninka cax Arawakan Peru
Bakairí bki Cariban Brazil
Bororo brr Bororoan Brazil
Canela cnl Nuclear-Macro-Je Brazil

Culina cul Arawan
Brazil
Peru

Desano des Tucanoan
Colombia
Brazil

Guajajara gjj Tupian Brazil

Guarani Eastern Bolivia crg Tupian
Argentina
Bolivia
Paraguay

Guarani Mbya [gun] Tupian
Argentina
Brazil
Paraguay

Guarani Paraguay gua Tupian Paraguay

Guarani Western Bolivia [gnw] Tupian
Argentina
Bolivia
Paraguay

Hixkaryána hix Cariban Brazil
Jamamadi jmm Arawan Brazil
Kaapor urk Tupian Brazil
Kadiwéu kdw Guaicuruan Brazil
Kaigang kng Nuclear-Macro-Je Brazil

Kaiwá kaw Tupian
Brazil
Paraguay

Karajá jva Nuclear-Macro-Je Brazil

Kashinawa csh Pano-Tacanan
Brazil
Peru

Kayabí kyz Tupian Brazil
Kayapó kyp Nuclear-Macro-Je Brazil
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Table 2: Reference information about the native
South American languages used in this work (Kubeo -
Yanomami).

Language Code Family Countries
Kubeo cub Tucanoan Colombia

Macushi mac Cariban
Brazil
Guyana
Venezuela

Makuna mcn Tucanoan
Brazil
Colombia

Matsés myr Pano-Tacanan
Brazil
Peru

Maxakali max Nuclear-Macro-Je Brazil
Mundurukú muu Tupian Brazil
Nadeb nad Naduhup Brazil
Nambikuára nmb Nambikwára Brazil

Nheengatu [yrl] Tupian
Brazil
Colombia
Venezuela

Palikúr plk Arawakan Brazil
Parecís pex Arawakan Brazil
Paumarí pau Arawan Brazil

Piratapúya prt Tucanoan
Brazil
Colombia

Rikbaktsa rik Nuclear-Macro-Je Brazil

Sanumá snm Yanomamic
Brazil
Venezuela

Sateré-Mawé [mav] Tupian Brazil

Siriano sri Tucanoan
Brazil
Colombia

Tenharim [pah] Tupian Brazil
Terêna trn Arawakan Brazil

Ticuna tic Ticuna-Yuri
Brazil
Peru

Tucano tuc Tucanoan
Brazil
Colombia

Tuyúca tuy Tucanoan
Brazil
Colombia

Wanana gno Tucanoan
Brazil
Colombia

Wapishana wps Arawakan
Brazil
Guyana

Xavante xav Nuclear-Macro-Je Brazil

Yamináwa yam Pano-Tacanan
Brazil
Peru

Yanomami [guu] Yanomamic Brazil
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