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Abstract

This study aims to leverage state of the art
language models to automate generating the
“Brief Hospital Course” and “Discharge In-
structions” sections of Discharge Summaries
from the MIMIC-IV dataset, reducing clini-
cians’ administrative workload. We investigate
how automation can improve documentation
accuracy, alleviate clinician burnout, and en-
hance operational efficacy in healthcare facil-
ities. This research was conducted within our
participation in the Shared Task Discharge Me!
at BioNLP @ ACL 2024. Various strategies
were employed, including Few-Shot learning,
instruction tuning, and Dynamic Expert Selec-
tion (DES), to develop models capable of gen-
erating the required text sections. Utilizing
an additional clinical domain-specific dataset
demonstrated substantial potential to enhance
clinical language processing. The DES method,
which optimizes the selection of text outputs
from multiple predictions, proved to be espe-
cially effective. It achieved the highest overall
score of 0.332 in the competition, surpassing
single-model outputs. This finding suggests
that advanced deep learning methods in com-
bination with DES can effectively automate
parts of electronic health record documentation.
These advancements could enhance patient care
by freeing clinician time for patient interactions.
The integration of text selection strategies rep-
resents a promising avenue for further research.

1 Introduction

Clinical notes in electronic health records (EHRs)
are used by clinicians to document patient progress

in free-text format. These notes typically include
the patient’s experiences, symptoms, findings, diag-
noses, and details of procedures and interventions
performed. They serve as the foundation for Dis-
charge Summaries (DS), which contain a section
with concise overviews of the entire hospital en-
counter known as Brief Hospital Course (BHC)
(Searle et al., 2023). They are embedded in the DS
and are written by senior physicians who are re-
sponsible for the patient’s overall care. In addition
to BHC, DS also includes Discharge Instructions
(DI), which are detailed guidelines provided to pa-
tients regarding their post-hospital care. These in-
structions cover the patient’s ongoing care, such as
medication instructions, follow-up appointments,
and any necessary lifestyle adjustments to ensure
proper recovery. Discharge Instructions are de-
signed to facilitate a smooth transition from hospi-
tal care to home care and to prevent readmissions.
Writing such summaries (BHC) and instructions
(DI) can be time-consuming and tedious. Conse-
quently, physicians often spend a big portion of
their clinical day dedicated to EHR documentation
and desk work (Sinsky et al., 2016).

This paper presents WisPerMed’s contribution to
the Shared Task Discharge Me! (Xu et al., 2024b),
which is part of BioNLP @ ACL 2024. This Shared
Task aims to ease the administrative burden on clin-
icians by developing automated methods to gener-
ate critical sections in DS, specifically the “Brief
Hospital Course” and “Discharge Instruction”. Au-
tomating the creation of these sections has the po-
tential to improve documentation accuracy, reduce
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clinician burnout, and ultimately optimize the pro-
cesses in healthcare facilities (Patel and Lam, 2023)
by allowing clinicians to allocate more time toward
direct patient care.

Our work focuses on designing and implement-
ing various innovative approaches to overcome this
challenge and contribute to the overall goals of the
Shared Task.

2 Dataset

The dataset (Xu, 2024) provided for this Shared
Task utilizes the MIMIC-IV (Medical Informa-
tion Mart for Intensive Care) database (Johnson
et al., 2023a,b). MIMIC-IV is a publicly available
database sourced from the EHR of the Beth Israel
Deaconess Medical Center and is accessible on
PhysioNet (Goldberger et al., 2000).

The task dataset is divided into four subsets: a
training set consisting of 68,785 samples, a val-
idation set containing 14,719 samples, a phase I
testing set with 14,702 samples, and a phase II test-
ing set comprising 10,962 samples. Each subset
includes DS that are organized into various sec-
tions. All records contain two mandatory sections:
“Brief Hospital Course” and “Discharge Instruc-
tions”. The BHC section typically provides an
overview of the patient’s treatment and progress
during their hospital stay and precedes the DI sec-
tion. These DI summarize post-hospitalization care
instructions and are positioned at the conclusion of
the summary.

The challenge organizers provided a regular ex-
pression (regex) query to extract these two sections
from the DS. The regex query ensures that the rele-
vant information is accurately identified and sepa-
rated from the rest of the DS content.

For the remainder of this paper, any reference to
the “Discharge Summary” (DS) will exclude the
target sections, BHC or DI.

3 Evaluation

The submissions to the Shared Task were evaluated
using eight metrics, which assess the relevance and
factuality of the generated target. These metrics
include Bilingual Evaluation Understudy (BLEU-
4) (Papineni et al., 2002), Recall-Oriented Under-
study for Gisting Evaluation (ROUGE-1, ROUGE-
2, ROUGE-L) (Lin, 2004), BERTScore (Zhang
et al., 2020), Metric for Evaluation of Translation
with Explicit Ordering (METEOR) (Banerjee and
Lavie, 2005), AlignScore (Zha et al., 2023), and

Medical Concept (MEDCON) (Yim et al., 2023).
The overall score was calculated by averaging the
scores across these eight metrics. In addition to
these evaluation metrics, readability scoring met-
rics were also investigated and utilized in some of
the developed approaches.

After the conclusion of the competition, sub-
missions from the highest-performing teams, de-
termined by the overall score, were evaluated by a
panel of clinicians 1. The generated sections were
assessed based on their completeness, correctness,
readability, and overall comparison to the reference
text. These criteria were evaluated on a scale rang-
ing from 1 to 5, where 1 signifies performance that
is considerably worse than the reference text, and
5 indicates performance that is considerably better
than the reference text. Three independent clini-
cians scored 25 DI and 25 BHC texts from each
team, using the same DS.

3.1 Relevance

Relevance was evaluated using BLEU-4, ROUGE-
1, ROUGE-2, ROUGE-L and BERTScore. BLEU-
4 measures the precision of 4-gram matches be-
tween the generated target and reference text, pro-
viding a quantitative measure of how closely the
generated target matches the reference in terms of
specific sequences of words. The ROUGE metrics
measure the overlap of n-grams between the target
and reference texts, providing a quantifiable mea-
sure of content overlap. Furthermore, BERTScore
leverages contextual embeddings to assess the se-
mantic similarity between texts by utilizing pre-
trained language models such as BERT (Devlin
et al., 2019). In this Shared Task, the distilBERT
model (Sanh et al., 2019), a lightweight and effi-
cient variant of BERT, was used for the BERTScore
evaluation.

3.2 Factuality

Factuality in text generation was assessed using
AlignScore and Summary Consistency (SummaC)
(Laban et al., 2022). AlignScore measures how
well the facts in a generated summary align with
those in the source text. SummaC extends the
AlignScore by considering both, the alignment and
consistency of the generated target, ensuring it not
only contains factual information but also main-
tains logical coherence with the source.

1https://stanford-aimi.github.io/discharge-me/
Accessed: 2024-05-17

https://stanford-aimi.github.io/discharge-me/
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Furthermore, METEOR score evaluates transla-
tion quality by aligning machine-generated target
with reference translations, considering synonyms,
stemming, and ordering. It balances precision and
recall, and penalizes non-contiguous matches to
more closely reflect human judgments than sim-
pler metrics like BLEU-4. Lastly, the MEDCON
score is a medical concept-based evaluation met-
ric that uses the F1-score to measure the similarity
between the Unified Medical Language System
(UMLS) concept sets found in candidate and ref-
erence clinical notes, assessing their accuracy and
consistency.

3.3 Readability
Readability was assessed using the Flesch-Kincaid
Grade Level (FKGL) (Kincaid et al., 1975), Dale-
Chall Readability Score (DCRS) (Chall and Dale,
1995), and Coleman-Liau Index (CLI) (Coleman
and Liau, 1975). FKGL estimates the educational
grade level of a text based on sentence length and
syllable count per word. DCRS evaluates text com-
plexity by identifying words not recognized by typ-
ical fourth graders. CLI calculates the grade level
needed to understand the text based on character
counts and sentence structure. According to CLI,
higher scores indicate lower readability.

4 Methods

This section describes different approaches to the
Shared Task. Licenses for the used models, frame-
works, and additional datasets can be found in Ap-
pendix E.

4.1 Few-Shot learning
Few-shot learning (Wang et al., 2020) enables ma-
chine learning models to quickly adapt to new tasks
using only a handful of training examples, reducing
the need for extensive data collection. This method
has shown improved performance on new tasks
with minimal input. The Few-Shot approach uti-
lized the WizardLM-2-8x22B (WizardLM-2) (Xu
et al., 2024a) model, which was released by Mi-
crosoft and is an instruction-tuned version of the
Mixtral-8x22B2 model from Mistral AI. Refer to
Appendix A for prompting examples.

4.2 Instruction Tuning
The process of instruction tuning (Peng et al., 2023)
in natural language processing involves guiding a

2https://mistral.ai/news/mixtral-8x22b/
Accessed: 2024-05-14

pre-trained large language model to follow specific
instructions or prompts. Unlike traditional fine-
tuning, which focuses on adapting the model to a
specific task using a task-specific dataset, instruc-
tion tuning uses diverse instruction-based datasets
to train the model to generate more accurate and
relevant responses to a wide range of queries. This
enables the model to better generalize across dif-
ferent tasks by understanding and following the
instructions given.

For every experiment carried out, two models
were trained: One to generate DI and one to gen-
erate BHC. Between the different experiments, hy-
perparameters were changed only slightly to make
the experiments comparable (see Appendix C).
As input format, the chat template recommended
by the model publishers was used for training.
Chat templates3 are structured formats that guide
the interaction between the user and the model.
The input consisted of a System Message and the
DS taken from the MIMIC-IV dataset. Exam-
ple prompts are shown in the Appendix (see Ap-
pendix A). Most models were trained on a single
NVIDIA H100 80GB using the unsloth4 frame-
work. Only Phi-3-Mini-128K-Instruct (Abdin et al.,
2024) was trained on three NVIDIA H100 80GB.
It was necessary to choose Large Language Mod-
els that are capable of handling long sequences.
The average DS length is about 1,775 words or
4,243 tokens, using the Mistral-7B-Instruct-v0.2
(Jiang et al., 2023) tokenizer. All models were
trained with Low-Rank Adaptation (LoRA) (Hu
et al., 2022). The following models were evaluated:
Llama-3-8B-Instruct (AI@Meta, 2024), Llama-
3-70B-Instruct (AI@Meta, 2024), OpenBioLLM-
70B (Ankit Pal, 2024), Phi-3-Mini-128K-Instruct,
Mistral-7B-Instruct-v0.2. In the remainder of the
paper, “I” stands for Instruct in the model naming
convention. Please see Appendix C for the fine-
tuning setup.

Besides the classical approach of model fine-
tuning, an attempt was made to prime the models to
improve their understanding of “clinical language”.
For this, the models were instruction-tuned with
the Asclepius dataset before using the task-specific
MIMIC-IV dataset. For this approach, Llama-8B-I
and Mistral-7B-I-v0.2 were evaluated.

Asclepius is a dataset that was released by

3https://huggingface.co/docs/transformers/
chat_templating Accessed: 2024-05-17

4https://github.com/unslothai/unsloth
Accessed: 2024-05-14

https://mistral.ai/news/mixtral-8x22b/
https://huggingface.co/docs/transformers/chat_templating
https://huggingface.co/docs/transformers/chat_templating
https://github.com/unslothai/unsloth
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Kweon et al. 2023. This dataset contains 158,000
rows of synthetical clinical notes and instruction-
answer pairs. It was built on publicly available case
reports, extracted from biomedical lectures, and
then transformed into clinical notes. instruction-
answer pairs were built using ChatGPT-3.5-Turbo
(OpenAI, 2023).

4.3 MIMIC Section Identification

MIMIC Section Identification (MIMIC-SID) (Lan-
des et al., 2022, 2023) is a framework used for
automatically classifying sections within unstruc-
tured clinical texts, such as patient medical records.
It recognizes and defines different sections of text
based on their content and context. This is partic-
ularly useful in the medical domain. Documents
such as DS contain distinct sections (e.g., diagno-
sis, treatment, patient history) that need accurate
identification for effective information retrieval and
processing.

Utilizing MIMIC-SID (see Figure 1), the most
important sections for the target text were identi-
fied by calculating the average BERTScore (with
distilBERT) between the extracted section and the
target section. The text was then ordered based on
relevance, from highest to lowest BERTScore, and
truncated after 2,000 words. This method assumes
that relevant parts are already found at the begin-
ning of the text, and less relevant parts would be
cut out. To compare this approach to a more stan-
dardized setting, the unaltered input text was also
truncated to 2,000 words. This results in two train-
ing schemes: one with 2,000 words of reordered
text and one with 2,000 words of the original text.

4.4 Hyperparameters

The quality of the generated targets is strongly in-
fluenced by the inference parameters employed.
The Meta-Llama-3-8B-Instruct model was utilized
to establish decoding strategies for the Shared Task,
specifically adopting the proposed methods by (Mi-
naee et al., 2024). Three experimental runs were
conducted to examine their influence on text gener-
ation quality, each employing these decoding strate-
gies in different configurations. The configurations
and their respective parameters are detailed in Ta-
ble 1.

4.5 Dynamic Expert Selection

As final approaches, five different Dynamic Expert
Selections (DES) were constructed. For each DES,
a set of models was pre-selected to serve as ex-

MIMIC-
IV

Test
Sections

Discharge 
Summaries

test

Train
Discharge

Instructions

train

Train
Sections

MIMIC-SID

infusions

labs

history_of_present_illness

[...]

Sorted Sections

history_of_present_illness (0.736)

Apply Ranking
past_medical_history (0.693)

physical_examination (0.694)

[...]

Calculate BERT
Score

Inference

Train Model
LLama-3 8B Instruct

Generated
Discharge 
Instructions

Prompt

Combine 
and Truncate

to 2000 Words

Sort from highest
to lowest avg.
BERTScore

Ranked Train 
Sections

Figure 1: This workflow, exemplified by DI, is applied
to BHC in the same way. With MIMIC-SID the dataset
is divided into up to 50 sections. For each training
section, the average BERTScore is computed using the
target text as a reference. The sections are then ranked
from highest to lowest BERTScore, and this ranking is
applied to both the training and testing DS. The ranked
training dataset is used to train the Llama-3-8B-I model.
Subsequently, the ranked testing dataset is presented to
the model in the form of prompts to generate DI outputs.

Parameter Config 1 Config 2 Config 3

do_sample False False True
RP 1.2 1 1
NNS 3 ∞ ∞
ERP 1 1.2 1
temp 0 0 0.6
top_p 0 0 0.9

Table 1: Configuration Parameters for Inference
Runs. RP stands for repetition_penalty, NNS stands
for non_repeat_ngram_size, and ERP stands for en-
coder_repetition_penalty.

perts. Each model generates DI and BHC for a DS,
and then an expert model is selected whose text is
included in the submission.

Readability and factuality scores are calculated
to select the expert model. The readability scores
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can be calculated without any reference text, and
the factuality scores use the entire DS as a refer-
ence. Because they do not use the target texts, these
scores are referred to as pre-calculated scores.

Additionally, the validation set was used to com-
pute the pre-calculated scores for the generated
targets of the Mistral-7B-I-v0.2 + Asclepius model.
Furthermore, the overall scores (all challenge eval-
uation scores) based on the target texts were deter-
mined on the validation set. Then, the correlations
between the pre-calculated scores and the overall
scores were examined. Figure 2 shows these cor-
relations as a heatmap. Taking into account these
correlations, DES 1-4 were constructed. For DES
5, the lengths of the generated targets were con-
sidered instead of scores as the selection criterion.
This decision was based on the observation that,
particularly in longer texts, models exhibit signs
of hallucination or the generation of repetitive con-
tent.

When compiling a DES, the pre-calculated
scores of all included models for a DS are sub-
jected to a min-max normalization. This means
normalization over all available models. These
normalized scores are then multiplied by selected
weights. The model with the highest average of all
normalized and weighted scores is selected as the
expert for that DS.

DES 1 This DES was optimized for MEDCON
and METEOR with a weight of 1

2 each, as these
two metrics exhibited the strongest correlation with
a higher overall score. The final submission file
included 6,407 texts from Mistral-7B-I-v0.2 + As-
clepius, 1,210 texts from Llama-3-8B-I with greedy
decoding (Minaee et al., 2024), 2,815 texts from
Llama-3-8B + Asclepius, 5,600 texts from Llama-
3-70B-I, 4,112 from OpenBioLLM-70B, and 1,780
from WizardLM-2.

DES 2 This DES was optimized for MEDCON
and METEOR as measures for factuality, and CLI
score for readability with the weights 2

5 for both
MEDCON and METEOR, and 1

5 for CLI. The fi-
nal submission file included a total of 3,471 texts
from the Mistral-7B-I-v0.2 + Asclepius model,
4,374 texts from Llama-3-8B-I + Asclepius, 5,108
texts from Llama-3-70B-I, and 5,971 texts from
OpenBioLLM-70B.

DES 3 This DES was optimized for all readabil-
ity metrics (FKGL, DCRS, and CLI) for DI, and ad-
ditionally MEDCON, METEOR, and AlignScore
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Figure 2: Heatmap of the Pearson correlations between
pre-calculated scores and the overall score on the vali-
dation dataset. The pre-calculated scores include factu-
ality scores (SummaC, AlignScore, MEDCON and ME-
TEOR), which are calculated for the generated targets
of the Mistralv2 + Asclepius model with the whole DS
as the reference, and readability scores (FKGL, DCRS
and CLI).

as factuality metrics for both text types. For the
DI, all readability metrics were assigned a weight
of −1

9 , and the factuality metrics were assigned
a weight of 2

9 . For the BHC, all factuality met-
rics were weighted with 1

3 . The final submission
file included 5,120 texts from Mistral-7B-I-v0.2 +
Asclepius, 4,211 texts from Llama-3-8B-I + Ascle-
pius, 5,435 texts from Llama-3-70B-I, and 7,158
texts from OpenBioLLM-70B.

DES 4 This DES used only Mistral-7B-I-v0.2
models and the values of correlation between the

Example given:

[...Non-repetitive text]

-Please check LFTs weekly for the next month.

-Please continue to monitor for signs of refeeding

hyperglycemiAsclepius

-Please continue to monitor for signs of refeeding

hypocalcemiAsclepius

[Continues Repetition...]

Figure 3: Example of repetitive and hallucinated DI
output generated by Llama-3-8B-I. The words hyper-
glycemia and hypocalcemia are very similar but only
one of them should be in the generated targets. The
other one was not mentioned in the DS.
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scores calculated on the generated targets against
the whole DS and the overall score on the valida-
tion dataset as weights. The final submission file
included 7,912 texts from Mistral-7B-I-v0.2 + As-
clepius, 6,485 texts from the Mistral-7B-I-v0.2 +
Asclepius model, which was further fine-tuned on
the validation dataset, and 7,527 texts from Mistral-
7B-I-v0.2.

DES 5 This DES considers lengths of texts in-
stead of weighted metrics. DI in the training dataset
has an average word count of approximately 196.3,
whereas BHCs have an average word count of ap-
proximately 327.6. Models trained on these texts,
therefore, tend to generate shorter texts for DI and
longer texts for BHC. To mitigate the impact of hal-
lucinations at the end of lengthy texts (e.g Figure
3), a strategy of preferably selecting shorter texts
with the DES was adopted. The objective of the
strategy was to initially rank the models based on
their overall scores. Subsequently, for each DS,
the text from the first model that has a word count
within the range of 100 to 180 words is selected. If
no model had generated a text with a word count
within this range, the text with the minimum word
count was selected. However, the text could not
be shorter than 70 words. In the case that no text
met these criteria, the text from the highest-ranked
model remained.

5 Results

This section describes results of the evaluation of
the developed models using the metrics described
in section 3. The evaluation done by clinicians can
be seen in Table 3.

5.1 Automatic Evaluation

The final scores for the Shared Task, provided
by the organizers, are shown in Table 2. The ta-
ble presents the approaches from the most gen-
eral to the most specific, beginning with the base-
line model, followed by the Few-Shot model, the
instruction-tuned models, the instruction-tuned
models primed with Asclepius, the MIMIC section-
based approaches, and the various DES variants.
The top competitors by overall score are high-
lighted for comparison. All inference runs for the
final results were conducted with an optimized de-
coding strategy (temp=0.6, top_p=0.9) as described
in section 4.4. Based on its high evaluation scores,
Configuration 3 was chosen as the standard param-
eter setting, which can be seen in Table 1.

WizardLM-2, despite not being fine-tuned on the
training data, surpassed the baseline with an overall
score of 0.195.

Among the fine-tuned models, Llama-3-70B-I
led with a score of 0.300, followed by Mistral-7B-
I-v0.2 at 0.289, which has way less parameters
yet outperformed several larger models, including
Llama3-8B-I. Even though the OpenBioLLM-70B
has been adapted for clinical use, it underperformed
when compared to other models. The Phi-3-mini-
128k-I (3.8 billion parameters) model matched the
performance of larger models, such as the Llama-
8B-I, demonstrating the efficiency of models with
less parameters.

Among the configurations, incorporating the
Asclepius dataset into Mistral-7B-I-v0.2 made it
clearly outperform Llama3-8B-I. Excluding the
DES approaches, this combination achieved the
highest performance of all models.

The MIMIC-SID approaches with a shorter con-
text length of 2,000 words displayed weak perfor-
mances.

Different parameters on the Llama-8B-I, in-
cluding greedy decoding and an ERP (en-
coder_repetition_penalty), yielded lower scores
compared to setups utilizing sampling and tem-
perature adjustments.

In the Dynamic Expert Selection category, DES
1 focused on MEDCON and METEOR scores but
did not surpass the individual fine-tuned models.
DES 2 achieved the highest BERTScore and Align-
Score, which represent relevance and factuality,
respectively. Reaching an overall score of 0.311,
this DES outperformed all individual fine-tuned
models. DES 3, aimed at lowering readability met-
rics, scored 0.296, performing better than DES 1
but lagging behind others. DES 4, using corre-
lation values for optimization, showed negligible
improvements. DES 5 achieved the highest overall
score of 0.332 and topped the leaderboard by limit-
ing text length. The approach achieved the highest
scores in all metrics, except for a slightly lower
BERTScore and AlignScore.

5.2 Clinical Evaluation
The ranking order of the first six teams did not
change when comparing the automatic with the
clinicians’ evaluation results (see Table 2 and Table
3). The evaluated BHC were ranked the best over
all aspects. The readability and holistic evaluation
of the BHC were notably superior to that of the
other teams. However, the DI scores were compa-
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Model Ovr. BLEU R-1 R-2 R-L BERT MET Align MED

Baseline

Challenge Baseline 0.102 0.015 0.126 0.051 0.113 0.138 0.098 0.167 0.121

Few-Shot learning

WizardLM-2 8x22B 0.195 0.017 0.257 0.074 0.158 0.331 0.310 0.193 0.218

Instruction-tuned

Llama-3-8B-I 0.253 0.053 0.331 0.107 0.241 0.392 0.235 0.320 0.348
Mistral-7B-I-v0.2 0.289 0.101 0.371 0.122 0.252 0.416 0.375 0.293 0.380
Llama-3-70B-I 0.300 0.112 0.367 0.141 0.260 0.437 0.347 0.334 0.401
OpenBioLLM-70B 0.285 0.084 0.376 0.127 0.248 0.421 0.307 0.337 0.383
Phi-3-mini-128k-I 0.254 0.062 0.347 0.128 0.217 0.359 0.310 0.275 0.330

Instruction-tuned + Asclepius (A.)

Llama-3-8B-I + A. 0.302 0.107 0.388 0.150 0.275 0.432 0.350 0.311 0.403
Mistral-7B-I-v0.2 + A. 0.307 0.120 0.390 0.140 0.258 0.434 0.391 0.320 0.404

MIMIC Section Identification

Llama-3-8B-I 2k 0.209 0.022 0.263 0.054 0.171 0.326 0.199 0.355 0.280
Llama-3-8B-I R 2k 0.216 0.026 0.292 0.073 0.191 0.351 0.186 0.306 0.304

Hyperparameter

Llama-3-8B-I Greedy 0.192 0.018 0.274 0.043 0.147 0.314 0.221 0.281 0.241
Llama-3-8B-I ERP 0.238 0.032 0.348 0.093 0.228 0.372 0.221 0.307 0.300

Dynamic Expert Selection

DES 1 0.277 0.097 0.329 0.121 0.217 0.417 0.339 0.319 0.374
DES 2 0.311 0.110 0.414 0.151 0.273 0.439 0.351 0.344 0.406
DES 3 0.296 0.108 0.366 0.128 0.242 0.435 0.352 0.335 0.400
DES 4 0.297 0.112 0.371 0.127 0.244 0.426 0.379 0.320 0.396
DES 5 0.332 0.124 0.453 0.201 0.308 0.438 0.403 0.315 0.411

Top 5 Competitors

HarmonAI Lab Yale 0.300 0.106 0.423 0.180 0.284 0.412 0.381 0.265 0.353
aehrc 0.297 0.097 0.414 0.192 0.284 0.383 0.398 0.274 0.332
EPFL-MAKE 0.289 0.098 0.444 0.155 0.262 0.399 0.336 0.255 0.360
UF-HOBI 0.286 0.102 0.401 0.174 0.275 0.395 0.289 0.296 0.355
de ehren 0.284 0.097 0.404 0.166 0.265 0.389 0.376 0.231 0.339

Table 2: Summary of model performance across different experimental settings. Each section represents a distinct
approach: Baseline, Few-Shot Learning, instruction-tuned, instruction-tuned + Asclepius, MIMIC-SID (2k for
truncation to 2k words and R for reordering the subsections in the text from most to least relevant according to
BERTScore), Hyperparameter, and DES, showcasing respective strategies to address the challenge. I indicates that
the instruction version of the model was used. Furthermore, the Top 5 runs from other challenge participants are
included. Metrics include overall score (Ovr.), BLEU-4 (BLEU), ROUGE-1 (R-1), ROUGE-2 (R-2), and ROUGE-L
(R-L), BERTScore (BERT), METEOR (MET), AlignScore (Align) and MEDCON (MED). Bold scores indicate
the best performance in each category, with underlined bold scores highlighting the top overall scores across all
experiments.
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rable to those of other teams and did not achieve
the highest score in any of the evaluated aspects.

In order to compare automated evaluation results
with clinicians’ assessments, it was necessary to
normalize the scores on a scale from 0 to 1. Note
that readability was not compared, as clinicians
did not rate the readability of DI texts, nor did
the challenge metrics include readability scores.
Figure 4 illustrates that clinicians tend to assign
higher scores than the automated metrics in their
evaluation approach. However, the holistic evalua-
tion aligns more closely with the overall automated
scores.

C Rel A Rel C Fact A Fact C Overall A Overall C Holistic
Metric
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Figure 4: Boxplot of Average Clinician Scores and Aver-
age Metric Scores. C stands for Clinician and A stands
for the scores caluclate with the challenge metrics. Here
A Relevance includes ROUGE-1, ROUGE-2, ROUGE-
L, BertScore and BLEU-4. A Factuality includes Align-
Score METEOR and MEDCON.

6 Discussion

Despite being one of the less robust models evalu-
ated, WizardLM-2 exceeded the established base-
line, showing its effectiveness in a Few-Shot learn-
ing context. With minimal training examples, the
model still produced high-quality texts, according
to the metrics, highlighting the potential of Few-
Shot learning in enhancing performance metrics.

The performance of instruction-tuned models
revealed mixed outcomes. Despite being a spe-
cialized adaptation of the Llama-3-70B-I model
tailored for medical contexts, OpenBioLLM-70B
underperformed in relation to its base model. This
behavior was unexpected, considering its design to
enhance relevance and accuracy in clinical appli-
cations. Conversely, the Mistral-7B-I-v0.2 model
demonstrated impressive capabilities, outperform-
ing both the larger OpenBioLLM-70B and the
Llama-8B-I models. This highlights the effec-
tiveness of Mistral-7B-I-v0.2 in handling complex

medical text generation and summarization tasks
despite its smaller size. In contrast to its reputa-
tion as one of the most promising state-of-the-art
open-source LLMs, the Llama-3 models have been
found to be less effective in this challenge. This
is on par with the findings from LMSYS chatbot
arena (Chiang et al., 2024) where LLama-3 mod-
els showed the weakest performance compared to
other state-of-the-art models on the task of summa-
rization (Dunlap et al., 2024).

Using the Asclepius dataset for priming sub-
stantially improved model performance during the
fine-tuning phases. For instance, the Llama-8B-I
model’s score rose from 0.253 to 0.302, and the
Mistral model’s performance increased from 0.289
to 0.307. Notably, the Mistral-7B-I-v0.2 + Ascle-
pius model was the top performer in the challenge,
aside from DES approaches. This underscores the
benefits of further training models with special-
ized datasets to enhance accuracy and relevance in
domain-specific tasks.

The reordering of sections within the MIMIC-
SID approach moderately enhanced overall model
performance, demonstrating that prioritizing the
most relevant sections can be beneficial. However,
it is important to note that metrics sensitive to text
order, such as METEOR and AlignScore, experi-
enced a decline. This suggests that while reorder-
ing can improve general outcomes by emphasizing
key information, it may simultaneously compro-
mise the sequential integrity of the text. Therefore,
this strategy confirms the utility of structurally opti-
mizing input for task-specific relevance, albeit with
some trade-offs in textual coherence.

Exploration of hyperparameter settings revealed
that more complex configurations did not yield
superior results. The basic approach, utilizing
do_sample=True, temp=0.6, and top_p=0.9, con-
sistently outperformed other tested configurations,
including those with greedy decoding and encoder
repetition penalties. This emphasizes the efficacy
of maintaining simpler hyperparameter settings for
stable and high-quality text generation. Additional
complexity in parameter tuning did not always cor-
relate with improved model performance.

The DES that relied on the pre-calculated scores
had varying effects on the metrics evaluated. Us-
ing MEDCON and METEOR in combination with
CLI improved the results, whereas choosing the
correlation as weights resulted in no improvement.
A possible reason might be that the pre-calculated
scores were only calculated on the entire DS and
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BHC DI

Team Avg. Comp Corr Read Hol. Comp Corr Hol.

WisPerMed 3.375 3.667 3.667 3.373 2.440 3.947 4.000 2.533
HarmonAI Lab at Yale 2.903 3.520 2.587 2.107 1.533 4.267 3.947 2.360
aehrc 2.785 2.307 3.053 1.960 1.093 3.907 4.547 2.627
EPFL-MAKE 2.720 3.293 2.827 2.533 1.653 3.453 3.413 1.867
UF-HOBI 2.579 2.480 3.360 2.707 1.413 3.013 3.293 1.787
de ehren 2.335 2.280 2.987 2.680 1.120 2.813 3.053 1.413

Table 3: BHC and DI Metrics for Teams by clinicans. In this Table Avg. stands for Average, Comp stands for
Comperability, Corr stands for Correctness, Read stands for Readability, and Hol stands for Holistic.

not on the target text, as in the final evaluation. It
may also be that the correlations are not always suf-
ficient, and a more elaborate association analysis is
needed.

Consequently, the best overall score of all DES
was achieved by the approach limiting the text
length, suggesting that hallucinations and repet-
itive sequences have a measurable impact on text
quality.

The manual evaluation seen in Table 3 indicates
that the holistic approach by clinicians is compara-
ble to the automated metrics, thus reconfirming the
effectiveness of the metrics used in the competition.
The lower scores for the DI may be caused by infor-
mation loss or distortion due to the simplification.

7 Conclusion

The research identified several opportunities for
future investigation that may enhance the perfor-
mance and utility of the discussed models. Initially,
due to the extensive size of the training dataset
and the constraints imposed by the context length
of input texts, each model was trained for a maxi-
mum of only three epochs. Therefore, extending
the training duration may provide improvements
and merits further exploration.

Moreover, alterations to inference parameters
have demonstrated notable effects on model out-
puts. For example, employing the ERP parameter,
while maintaining other settings constant resulted
in a degradation of performance metrics (from
0.253 to 0.238 overall score). This suggests a sys-
tematic evaluation of inference parameters could
further enhance model output.

Additionally, priming the model has substan-
tially improved results. Investigating additional
datasets for priming purposes could further opti-
mize model performance and expand its applica-

bility across diverse textual tasks. This could be
a promising direction for future research efforts.
Further opportunities lie in optimizing section re-
ordering to balance task-specific relevance while
maintaining text coherence.

The winning approach, evaluated by the auto-
matic and clinicans’ evaluation, a DES, achieved
the highest overall score. This suggests that gener-
ating multiple outputs and developing methodolo-
gies to select the optimal text may further improve
performance. Therefore, exploring various DES
techniques and selection criteria is a field for fur-
ther research.

The clinicians’ evaluation added valuable in-
sights, and the automatic scores demonstrated high
robustness and strong alignment with the manual
assessments. This alignment indicates that the man-
ual evaluation, even on a small subset, effectively
validates the reliability of the generated texts.

Lastly, efforts to enhance the quality of medical
machine learning algorithms are ongoing, along
with a responsibility to report the environmental
impact of the research. In this study, the total en-
ergy consumption for training and inference is esti-
mated with 1,552.10 kWh, resulting in 591.35 kg
CO2 emission. Detailed information is provided in
Appendix D.

Limitations

For the model training, only the entire discharge
summaries were utilized, while the provided radiol-
ogy reports and ICD 9/10 codes were not included.
The decision to exclude these additional documents
might have limited the comprehensiveness of our
models. Future research should consider incor-
porating these documents to potentially improve
model accuracy and contextual understanding.

Moreover, each model was trained for a max-
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imum of three epochs due to the context length
constraints of input texts. Extending the training
duration could potentially enhance performance
and merit further exploration.

Additionally, the influence of inference parame-
ters on model outputs is notable. Systematic evalu-
ation of these parameters is needed, as variations
can measurably affect performance metrics.

Furthermore, the study did not employ advanced
preprocessing or postprocessing techniques, which
could substantially enhance the reliability and ac-
curacy of the generated texts by mitigating issues
such as non-factual content generation ("halluci-
nations"). Notably, DES 5 considered text length,
which may indirectly reduce hallucinations. How-
ever, this approach does not explicitly address the
issue and therefore cannot ensure their complete
avoidance.

The Asclepius dataset, being synthetic and partly
based on the MIMIC-III dataset, may introduce
data redundancy or leakage, potentially impacting
model robustness and generalizability. Future work
should explore advanced data validation techniques
or alternative dataset creation methodologies to
mitigate these issues.

Lastly, while priming models with specialized
datasets showed substantial improvements, further
investigation into additional datasets for priming
could optimize model performance and expand ap-
plicability across diverse textual tasks.
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A Few-Shot Learning Prompts

This section showcases how the WizardLM-2-Model was instructed. A variety of prompts were tested, and
the displayed ones (see Figure 5 and Figure 6) yielded the best results, as measured by human evaluation.
Detailed instructions were provided for the DI text generation, whereas the details for the BHC generation
were excluded. The BHC texts are considerably longer on average and do not follow the same pattern
most of the time.

Discharge Instructions Prompt

USER: Generate a detailed discharge instruction based on the provided summary, adhering to the style of the provided
examples. The instruction should comprehensively cover all aspects of the patient’s care, with a total length of about
300-500 words.

Please follow the format used in previous discharge instructions:

1. Start with a polite greeting and an expression of gratitude or pleasure for having taken care of the patient.

2. Describe the reason for hospitalization succinctly.

3. Detail what occurred during the stay, including any treatments administered, patient responses, and significant
changes to the patient’s condition.

4. Outline clear follow-up care instructions, including medications, dietary recommendations, activity level, and
scheduled follow-up visits.

5. Close with a kind farewell and additional well-wishes or reminders.

Discharge Instruction Format Example:
Dear [Patient Name],
It was a pleasure taking care of you during your hospitalization at [Hospital Name].

Why were you hospitalized?
- [Brief reason for hospitalization]

What happened while you were in the hospital?
- [Key details about treatment and patient response]
- [Any significant tests and their results]
- [Any changes to patient condition]

What should you do after you leave the hospital?
- [Medications and dosage]
- [Dietary instructions]
- [Activity recommendations]
- [Follow-up appointments]

We wish you the best in your recovery!

Sincerely,
Your [Hospital Team Name] Team

Discharge Instruction Example 1 start:
[Discharge Instruction Example from Validation set]
Discharge Instruction Example 1 end.
[· · · ]
Discharge Instruction Example 10 start:
[Discharge Instruction Example from Validation set]
Discharge Instruction Example 10 end.
Discharge Summary:
[Discharge Summary without target section]
Start with the Discharge Instructions for the Discharge Summary.
ASSISTANT:

Figure 5: Discharge Instruction Prompt for Few-Shot learning with WizradLM-2.
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Brief Hospital Course Prompt

USER: Here are some Example Brief Hospital Courses.

Brief Hospital Course Example 1 start:
[Brief Hospital Course Example from Validation set]
Brief Hospital Course Example 1 end.
[· · · ]
Brief Hospital Course Example 7 start:
[Brief Hospital Course Example from Validation set]
Brief Hospital Course Example 7 end.

Now create a Brief Hospital Course in the same style as in the Examples with the information from the following
Discharge Summary:
[Discharge Summary without target section]

ASSISTANT:

Figure 6: Brief Hospital Course Prompt for Few-Shot learning with WizardLM-2.

B Instruction Tuning Prompts

Figure 7 and Figure 8 show the prompts used for instruction tuning DI and BHC. The only difference
between the instruction tuning and inference prompts is that the [Target Discharge Instructions] or [Target
Brief Hospital Course] was left empty for inference. For each model, the recommended chat template
provided by the model inventors was followed and applied. This is especially important when using the
instruction version of those models.

Discharge Instructions Prompt

<SYSTEM>You are in the world’s best hospital as the best doctor. You’re given a patient’s details summarized by your
medical staff in ’Summary’. You now need to figure out the ’Discharge Instructions’ for the patient. Think carefully
without error, since you might endanger a patient’s life, which we do not want to happen.

<User>Summary: [Discharge Summary without target section]

Discharge Instructions:

<ASSISTANT>[Target Discharge Instructions]

Figure 7: Instruction Tuning and Inference Prompt for Discharge Instructions.

Brief Hospital Course Prompt

<SYSTEM>You are in the world’s best hospital as the best doctor. You’re given a patient’s details summarized by your
medical staff in ’Summary’. You now need to figure out a ’Brief Hospital Course’ for the patient. Think carefully
without error, since you might endanger a patient’s life, which we do not want to happen.

<USER>Summary: [Discharge Summary without target section]

Brief Hospital Course:
<ASSISTANT>[Target Brief Hospital Course]

Figure 8: Instruction Tuning and Inference Prompt for Brief Hospital Course.
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C Parameter Setup

Whenever possible, hyperparameters were only changed slightly to ensure high comparability between
results. The LoRA setup is detailed in Table 4. The following modules were targeted with LoRA: “q_proj”,
“k_proj”, “v_proj”, “o_proj”, “gate_proj”, “up_proj”, and “down_proj”. While it is suggested5 to use a
LoRA Rank = LoRA Alpha * 2, this approach was not chosen due to VRAM efficiency considerations.
For the detailed training setup, please see Table 5. All models were trained on 80GB H100s and 48GB

Model LR LA loadIn4Bit LD GC DT

Llama-3-8B-I + A. Prime 16 16 true 0 true bfloat16
Mistral-7B-I-v0.2 + A. Prime 16 16 true 0 true bfloat16
Llama-3-8B-I 16 16 true 0 true bfloat16
Mistral-7B-I-v0.2 16 16 true 0 true bfloat16
Llama-3-70B-I 16 16 true 0 true bfloat16
OpenBioLLM-70B 16 16 true 0 true bfloat16
Phi-3-mini-128k-I 16 16 true 0 true bfloat16
Llama-3-8B-I 2k + A 16 16 true 0 true bfloat16
Mistral-7B-I-v0.2 + A. 16 16 true 0 true bfloat16
Llama-3-8B-I 2k 16 16 true 0 true bfloat16
Llama-3-8B-I R 2k 16 16 true 0 true bfloat16

Table 4: LoRA Setup for fine-tuning. LR means LoRA Rank, LA means LoRA Alpha, LD means LoRA Dropout,
GC means Gradient Checkpointing, DT means dtype. By A. Asclepius is meant. Prime means the instruction tuning
runs with Asclepius.

RTX6000s. The Unsloth open-source training framework was used because it reduced VRAM usage by at
least 50% and subsequently made fine-tuning runs twice as fast. This efficiency allowed training almost
all models on a single GPU. The Maximum Sequence Length for the 70B models was reduced to decrease

Model MSL E GAS WS LR BS O S WD

Llama-3-8B-I + A. P. 15,000 1 4 5 2e-4 4 adamw_8bit linear 0.01
Mistral-7B-I-v0.2 + A. P. 15,000 1 4 5 2e-4 4 adamw_8bit linear 0.01
Llama-3-8B-I 10,000 3 4 5 2e-4 4 adamw_8bit linear 0.01
Mistral-7B-I-v0.2 10,000 3 4 5 2e-4 4 adamw_8bit linear 0.01
Llama-3-70B-I 10,000 2 4 5 2e-4 2 adamw_8bit linear 0.01
OpenBioLLM-70B 10,000 2 4 5 2e-4 2 adamw_8bit linear 0.01
Phi-3-mini-128k-I 12,000 2 4 10 2e-4 4 p_adamw_8bit linear 0.01
Llama-3-8B-I + A. 13,000 2 4 5 2e-4 4 adamw_8bit linear 0.01
Mistral-7B-I-v0.2 + A. 13,000 2 4 5 2e-4 4 adamw_8bit linear 0.01
Llama-3-8B-I 2k 6,000 3 4 5 2e-4 4 adamw_8bit linear 0.01
Llama-3-8B-I R 2k 6,000 3 4 5 2e-4 4 adamw_8bit linear 0.01

Table 5: MSL means Maximum Sequence Length (Tokens), E means Epochs, GAS means Gradient Accumulation
Steps, WS means Warmup Steps, LR means Learning Rate, BS means Batch Size, O means Optimizer, S means
Scheduler, WD means Weight Decay. By A. Asclepius is meant. Prime (P.) means the instruction tuning runs with
Asclepius.

memory consumption. For Phi-3, the optimizer was changed from adamw_8bit (Loshchilov and Hutter,
2019) to paged_adamw_8bit6 to further optimize memory usage.

5https://magazine.sebastianraschka.com/p/practical-tips-for-finetuning-llms Accessed: 2024-05-17
6https://huggingface.co/docs/bitsandbytes/en/optimizers#paged-optimizers Accessed: 2024-05-15

https://magazine.sebastianraschka.com/p/practical-tips-for-finetuning-llms
https://huggingface.co/docs/bitsandbytes/en/optimizers#paged-optimizers
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D Environmental Impact

In scientific research, it is crucial to consider not only the direct results of experiments but also the broader
implications and consequences of the research process. While the following environmental assessment is
not directly tied to the primary results, reporting on the environmental footprint of the work is essential
given the increasing global emphasis on sustainability and the environmental impact of computational
practices. This perspective aligns with the findings of (Ulmer et al., 2022), emphasizing the importance of
understanding and reporting the environmental consequences of experimental work.

The experiments were conducted using HPC resources located in Essen and Dortmund, Ger-
many. The region’s electricity generation has a carbon efficiency of 0.381 kgCO2 eq/kWh7, with
approximately 41,1% 8 of the electricity being sourced from fossil fuels. To estimate the carbon footprint
of our experiments, the Machine Learning Impact calculator, as presented by (Lacoste et al., 2019), is
utilized. This calculator provides a comprehensive framework to quantify the carbon emissions associated
with machine learning experiments, considering both the energy consumption of computational resources
and the carbon efficiency of the electricity source.

Final Models Runtime (hours) Power (Avg. Watts) Energy (kWh) CO2 (kg)

Mistral-7B-I-v0.2 BHC + A. 28.5 651.45 18.58 7.08
Mistral-7B-I-v0.2 + A. Prime 5 637 3.21 1.22
Mistral-7B-I-v0.2 DI + A. 27.4 681 18.71 7.13

Experiment runs 1,920 783.83 1,511.59 575.91

Overall 1,980.9 783.532 1,552.10 591.35

Table 6: Runtime, Energy Consumption and CO2 Emissions for the Final models, Other Experiment Runs and
Overall for All Experiments. By A. Asclepius is meant. Prime means the instruction tuning runs with Asclepius.

The carbon footprint and electricity consumption values for our optimal models, as well as for all
experimental runs conducted throughout the research process presented in Table 6. The values indicate
that substantial resources are expended on debugging and testing during development.

7https://ourworldindatAsclepiusorg/grapher/carbon-intensity-electricity?country=~DEU Accessed: 2024-
05-14

8https://www.destatis.de/EN/Themes/Economic-Sectors-Enterprises/Energy/Production/Tables/
gross-electricity-production.html Accessed: 2024-05-14

https://ourworldindatAsclepiusorg/grapher/carbon-intensity-electricity?country=~DEU
https://www.destatis.de/EN/Themes/Economic-Sectors-Enterprises/Energy/Production/Tables/gross-electricity-production.html
https://www.destatis.de/EN/Themes/Economic-Sectors-Enterprises/Energy/Production/Tables/gross-electricity-production.html
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E Licenses

In Table 7 the Licenses as given by the owners of the Dataset/Framework/Model are displayed.

Dataset/Framework/Model License

Asclepius dataset9 Creative Commons Attribution Non Commercial Share Alike 4.0
MIMIC-IV-Note10 PhysioNet Credentialed Health Data License 1.5.0
MIMIC-IV-ED11 PhysioNet Credentialed Health Data License 1.5.0
MIMIC-SID12 MIT License
unsloth13 Apache License Version 2.0
Mistral-7B-I-v0.214 Apache License Version 2.0
Llama-3-8B-I15 Llama 3 Community License Agreement
Llama-3-70B-I16 Llama 3 Community License Agreement
OpenBioLLM-70B17 Llama 3 Community License Agreement
WizardLM-2 8x22B18 MIT License
Phi-3-mini-128k-I19 Apache License Version 2.0

Table 7: Licenses of the dataset, Framework and Models used for this Shared Task.

9https://huggingface.co/datasets/starmpcc/Asclepius-Synthetic-Clinical-Notes Accessed: 2024-05-17
10https://physionet.org/content/mimic-iv-note/2.2/ Accessed: 2024-05-17
11https://physionet.org/content/mimic-iv-ed/2.2/ Accessed: 2024-05-17
12https://github.com/plandes/mimicsid Accessed: 2024-05-17
13https://github.com/unslothai/unsloth Accessed: 2024-05-17
14https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2 Accessed: 2024-05-17
15https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct Accessed: 2024-05-17
16https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct Accessed: 2024-05-17
17https://huggingface.co/aaditya/Llama3-OpenBioLLM-70B Accessed: 2024-05-17
18https://huggingface.co/alpindale/WizardLM-2-8x22B Accessed: 2024-05-17
19https://huggingface.co/microsoft/Phi-3-mini-128k-instruct Accessed: 2024-05-17

https://huggingface.co/datasets/starmpcc/Asclepius-Synthetic-Clinical-Notes
https://physionet.org/content/mimic-iv-note/2.2/
https://physionet.org/content/mimic-iv-ed/2.2/
https://github.com/plandes/mimicsid
https://github.com/unslothai/unsloth
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct
https://huggingface.co/aaditya/Llama3-OpenBioLLM-70B
https://huggingface.co/alpindale/WizardLM-2-8x22B
https://huggingface.co/microsoft/Phi-3-mini-128k-instruct
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