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Abstract

The Shared Task on Large-Scale Radiology
Report Generation (RRG24) aims to expedite
the development of assistive systems for inter-
preting and reporting on chest X-ray (CXR)
images. This task challenges participants to
develop models that generate the findings and
impression sections of radiology reports from
CXRs from a patient’s study, using five differ-
ent datasets. This paper outlines the e-Health
CSIRO team’s approach, which achieved mul-
tiple first-place finishes in RRG24. The core
novelty of our approach lies in the addition of
entropy regularisation to self-critical sequence
training, to maintain a higher entropy in the
token distribution. This prevents overfitting
to common phrases and ensures a broader ex-
ploration of the vocabulary during training,
essential for handling the diversity of the ra-
diology reports in the RRG24 datasets. Our
model is available on Hugging Face (https://
huggingface.co/aehrc/cxrmate-rrg24).

1 Introduction

Machine learning holds the potential to signifi-
cantly enhance diagnostic processes and clinical
reporting, particularly within the field of radiology
— a discipline characterised by high volumes of
imaging data. Radiologists are often tasked with
interpreting and reporting on hundreds of imaging
studies daily, a repetitive process that is susceptible
to fatigue and error. Automated systems capable
of generating radiology reports from chest X-rays
(CXRs) could greatly alleviate this burden by ensur-
ing consistency and potentially reducing diagnostic
turnaround times.

The Shared Task on Large-Scale Radiology Re-
port Generation (RRG24) challenges participants
to develop automated systems for producing tex-
tual reports from CXR images, with a particular
focus on the findings and impression sections (Xu
et al., 2024; Delbrouck et al., 2022b). These sec-

tions are crucial as they convey the diagnostic in-
terpretation and clinical significance of a patient’s
study. The challenge provides a means to bench-
mark the various models under uniform conditions,
offering insights into which approaches are most
effective for CXR report generation. Participants
were to train and evaluate their submissions on a
dataset formed from five different sources, includ-
ing MIMIC-CXR (Johnson et al., 2019), CheXpert
(Chambon et al., 2024), PadChest (Bustos et al.,
2020), BIMCV COVID-19 (Vayá et al., 2020), and
Open-i IU X-ray (Demner-Fushman et al., 2016).
This dataset consisted of four subsets, including the
training, validation, public-test, and hidden-test,
where the radiology reports were available for all
except the hidden-test set. Finally, RRG24 presents
participants with unique challenges to overcome,
such as handling studies with missing sections and
deciding whether to use a single model or separate
models for each section.

This paper outlines the approach taken by team
e-Health CSIRO in the RRG24 challenge. For this,
we developed a multimodal language model that
conditions report generation not only on previously
generated words (or subwords), but also on the
image embeddings of all the CXRs of a patient’s
study. We utilised a single model to generate both
sections and incorporated special tokens to signify
the absence of a section during training. These
special tokens were also used to guide the model
to generate specific sections during testing.

A key factor to the performance of our sub-
missions was our modification to the self-critical
sequence training (SCST) reinforcement learning
(RL) algorithm (Rennie et al., 2017). A widely-
used technique to enhance RL is to add entropy
regularisation into the objective function. This ap-
proach boosts exploration and prevents the model
from prematurely settling on less optimal actions
(Mnih et al., 2016). Hence, we add entropy regular-
isation to SCST, forming Entropy-Augmented Self-

https://huggingface.co/aehrc/cxrmate-rrg24
https://huggingface.co/aehrc/cxrmate-rrg24
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T[SEP]
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EAST: Entropy-Augmented Self-Critical Sequence Training

Figure 1: e-Health CSIRO’s submission into RRG24, named CXRMate-RRG24. [BOS] denotes the beginning-of-
sentence special token, [SEP] denotes the separator special token, and [EOS] denotes the end-of-sentence special
token. Ek[i] is the ith output of the projected last hidden state of the encoder for the kth image of the study.

critical sequence Training (EAST). Using EAST,
we optimised our model with RadGraph as the re-
ward (Delbrouck et al., 2022a). RadGraph is the
primary metric for RRG24; it evaluates the accu-
racy of a generated report by assessing how well
the identified entities and their relationships align
with those in a radiologist report. By optimising
for this reward, we achieved multiple first-place
finishes in RRG24.

2 Methodology

2.1 EAST: Entropy-Augmented Self-critical
sequence Training

Entropy-Augmented Self-critical sequence Train-
ing (EAST) builds upon self-critical sequence train-
ing (SCST) by incorporating entropy regularisation.
This encourages the model to maintain a higher en-
tropy in its token distribution, thereby promoting di-
versity in token selection and preventing premature
convergence on a smaller, selective set of tokens.
The loss for SCST is as follows:

LSCST (θ) = −(r(wwws)−r(wwwb))·log(π(wwws | I; θ)),
(1)

where r(wwws) is the reward for the sampled report
(wwws = (ws

1, ..., w
s
M ) denotes the tokens of length

M of the sampled report), r(wwwb) is the reward
for the baseline report (wwwb = (wb

1, ..., w
b
N ) de-

notes the tokens of length N of the baseline re-
port, where the baseline is generated with greedy
search), I = [I1, I2, . . . , IK ] denotes the images of
a study (where K is the number of images in the
study), θ represents the parameters of the model,
and π(wwws | I; θ) denotes the policy under which
wwws is sampled from. As illustrated in Figure 1, we
utilise the RadGraph ER F1-score as the reward
(Delbrouck et al., 2022a), where the generated re-
port is either the sample or baseline report, both of
which are compared to the radiologist report.

EAST is formed by adding an entropy term to
LSCST (θ):

LEAST (θ) = LSCST (θ) + λ ·H(π) (2)

where λ is a coefficient that determines the weight
of the entropy term in the loss function. The en-
tropy is as follows:

H(π) = −
∑
v∈V

π(v | x; θ) log π(v | x; θ), (3)
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Table 1: Public test set scores for the findings and impression sections (presented as findings/impression). The
order of the leaderboard for RRG24 was determined by RadGraph-F1. The best scores are indicated in boldface.

Team/Method BLEU-4 ROUGE-L BERTScore CheXbert-F1 RadGraph-F1

e-Health CSIRO
EAST 12.00/9.43 26.51/26.58 54.64/47.81 59.18/57.73 29.46/27.01
SCST 10.70/8.51 26.54/26.30 54.79/48.25 56.42/55.00 27.66/25.04

TF 11.63/7.52 25.92/23.34 51.34/41.46 50.73/47.27 23.12/20.08

Top three teams besides ours
tartan 21.59/- 42.03/- 64.34/- 59.70/- 38.05/-
maira 12.26/8.68 28.00/28.40 55.76/50.48 59.71/56.46 26.33/25.89
airi 10.13/7.10 26.54/25.92 53.84/47.18 55.49/51.33 25.82/24.07

where x represents the current state (as determined
by the image embeddings and the previously gen-
erated tokens) and v represents a token from the
vocabulary V . This discourages the policy from
converging too quickly to deterministic actions,
thus encouraging the exploration of a wider set of
generated reports.

2.2 Special Tokens and Missing Sections

As illustrated in Figure 1, our model generates both
sections. To delineate these sections within the gen-
erated text, we utilise a separator token, following
CXRMate (Nicolson et al., 2024a).1 To accom-
modate reports during training that have a missing
section, we employ two special tokens: [NF] for
‘no findings’ section and [NI] for ‘no impression’
section. They are used in place of the missing sec-
tions. They also facilitate the generation of specific
sections as needed. For example, if only the impres-
sion section is to be generated, [BOS][NF][SEP]
can be fed to the decoder to signal that the findings
section is not to be generated. Furthermore, to en-
courage the generation of the impression section,
the probability of the [NI] token can be set to zero.

2.3 Model

Our model, CXRMate-RRG24, is an evolution of
our previous model, CXRMate, and is illustrated
in Figure 1. We utilised UniFormer as the encoder
(in particular, the 384 × 384 base model warm
started with its token labelling fine-tuned check-
point) (Li et al., 2023), which, in preliminary test-
ing, performed comparably to the convolutional
vision Transformer (CvT) (which we found to be
the best performing encoder for CXR report gener-
ation in our previous work (Nicolson et al., 2023))
but significantly reduced the training time. The
image embedding prompt is formed by processing

1https://huggingface.co/aehrc/cxrmate

each image in the study separately with the encoder
and then projecting the encoder’s last hidden state
to match the decoder’s hidden size using a learn-
able weight matrix. Each image was resized using
bilinear interpolation so that its smallest side had a
length of 384 and its largest side maintained the as-
pect ratio. Next, the resized image was cropped to a
size of R3×384×384. The crop location was random
during training and centred during testing. Follow-
ing (Elgendi et al., 2021), the image was rotated
around its centre during training, where the angle
of rotation was sampled from U [−5◦, 5◦]. Finally,
the image was standardised using the statistics pro-
vided with the UniFormer checkpoint. A maximum
of five images per study were used during training.
If more were available, five were randomly sam-
pled uniformly without replacement from the study.

For the decoder, we employed the Llama archi-
tecture, which is notable for features such as its ro-
tary positional encoding (RoPE), root mean square
normalisation (RMSNorm), and SwiGLU activa-
tion function (Touvron et al., 2023). The decoder
was initialised randomly and used the CXRMate vo-
cabulary, which was derived from the MIMIC-CXR
training set. The hyperparameters of the Llama de-
coder mirror that of the CXRMate decoder, with
six hidden layers, a hidden size of 768, 12 atten-
tion heads per layer, and an intermediate size of
3 072. Following CXRMate, we added source type
embeddings to the input of the decoder to differ-
entiate between findings and impression section
tokens, as well as image embeddings. The max
number of position embeddings was set to 2048 to
accommodate both the image embeddings and the
report token embeddings. The maximum number
of tokens that could be generated was set to 512,
which was also the limit for the radiologist reports
during training. During testing, a beam size of four
was utilised. Another factor that led to the use of
the Llama decoder was the ease of providing a cus-

https://huggingface.co/aehrc/cxrmate
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Table 2: Hidden test set scores for the findings and impression sections (presented as findings/impression). The
order of the leaderboard for RRG24 was determined by RadGraph-F1. The best scores are indicated in boldface.

Team/Method BLEU-4 ROUGE-L BERTScore CheXbert-F1 RadGraph-F1

e-Health CSIRO
EAST 11.68/12.33 26.16/28.32 53.80/50.94 57.49/56.97 28.67/27.83
SCST 10.25/10.95 26.10/27.34 53.88/50.07 55.78/54.79 27.29/24.97

TF 11.12/9.89 25.43/24.94 51.10/42.49 50.02/47.24 22.99/21.27

Top three teams besides ours
maira 11.24/11.66 26.58/28.48 54.22/51.62 57.87/53.27 25.48/25.26
airi 9.97/10.91 25.82/27.46 52.42/49.55 54.25/52.32 25.29/24.67

gla-ai4biomedic 7.65/9.60 24.35/25.27 52.69/48.60 46.21/46.74 24.13/22.10

tom attention mask to current implementations.2

This enabled non-causal masking to be utilised for
the prompt and causal masking for the report token
embeddings, as shown in Figure 1. This ensured
that the self-attention heads were able to attend to
all of the image embeddings at each position.

2.4 Training

Two stages of training were performed; teacher
forcing (TF) (Williams and Zipser, 1989),
followed by RL (either EAST or SCST).
AdamW (Loshchilov and Hutter, 2022) was used
for mini-batch gradient descent optimisation with
an initial learning rate of 5e-5 for TF and 5e-6 for
RL, a mini-batch size of 16 for TF and 8 for RL,
a maximum of 32 epochs for TF and 1 epoch for
RL, executed on a 94GB NVIDIA H100 GPU with
FP32. For RL, validation was performed every
1
50 of an epoch. The validation macro-averaged
CheXbert F1 was the monitored metric for check-
point selection. For RL, the sample report was
generated with top-k sampling (k = 50). During
RL, the encoder was frozen. For EAST, the entropy
weight (λ) was set to 0.05.

3 Results and Discussion

The results for our key submissions on the public
and hidden test sets are shown in Tables 1 and 2, re-
spectively. The metrics utilised for RRG24 include
BLEU-4 (Papineni et al., 2001), ROUGE-L (Lin
and Och, 2004), BERTScore (Zhang et al., 2020),
CheXbert-F1 (Smit et al., 2020), and RadGraph-F1
(Delbrouck et al., 2022a), the later of which is the
primary metric used to rank the teams. Here, we
compare TF, to SCST, and to our proposed method,
EAST. EAST attained a higher score than TF for
each metric, something SCST was not able to do
(TF attained a higher BLEU-4 score than SCST for

2https://huggingface.co/blog/poedator/4d-masks

the findings section of both test datasets).
Comparing EAST to SCST, SCST attained a

higher ROUGE-L score on the public-test findings
sections, and a higher BERTScore on the public-
test findings and impression sections, as well as the
hidden-test findings sections. For all other cases,
EAST demonstrated an improvement over SCST.
Policies trained with entropy regularisation often
have improved generalisation, as they have learnt
to consider a broader set of possible actions. This
may have led EAST to be more robust to the dif-
fering characteristics of each of the datasets used
in the public and hidden test sets. With EAST,
team e-Health CSIRO achieved a first-place finish
amongst participants for the public-test impression
sections and the hidden-test findings and impres-
sion sections. We also also achieved a second-place
finish for the public-test findings sections. For a
comparison of CXRMate-RRG24 to state-of-the-
art methods in the literature, please see Nicolson
et al. (2024b).

3.1 Conclusion

Our proposed approach, EAST, was able to gener-
ate reports that were quantitatively more aligned
with radiologist reports than those generated us-
ing SCST. By incorporating entropy regularisation,
EAST is able to maintain a higher diversity in to-
ken selection and mitigate overfitting to maintain
generalisability. This was likely crucial in han-
dling the varied characteristics of the datasets used
in RRG24. While EAST shows promise, a more
thorough investigation is required to validate its po-
tential, including the impact of varying the entropy
coefficient.
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