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Abstract
The interplay between microbiota and dis-
eases has emerged as a significant area of re-
search facilitated by the proliferation of cost-
effective and precise sequencing technologies.
To keep track of the many findings, domain
experts manually review publications to ex-
tract reported microbe-disease associations and
compile them into knowledge bases. How-
ever, manual curation efforts struggle to keep
up with the pace of publications. Relation
extraction has demonstrated remarkable suc-
cess in other domains, yet the availability of
datasets supporting such methods within the
domain of microbiome research remains lim-
ited. To bridge this gap, we introduce the
Microbe-Disease Relation Extraction Dataset
(MiDRED); a human-annotated dataset contain-
ing 3,116 annotations of fine-grained relation-
ships between microbes and diseases. We hope
this dataset will help address the scarcity of
data in this crucial domain and facilitate the
development of advanced text-mining solutions
to automate the creation and maintenance of
microbiome knowledge bases.

1 Introduction

Microbiota play a pivotal role in human health in
diverse environments such as the gut, skin, and oral
cavity, influencing various physiological processes
and disease mechanisms (Cho and Blaser, 2012;
Lynch and Pedersen, 2016; Singh et al., 2017). The
significance of microbiome research is underscored
by its immense potential to unlock new understand-
ings and treatments for various health conditions
(Stefano et al., 2022; Yu et al., 2022; Kustrimovic
et al., 2023). For example, perturbations in gut
microbiota composition, exemplified by fluctua-
tions in Bacteroidetes and Firmicutes populations,
have been linked to obesity and type 2 diabetes,
respectively, providing valuable insights into the
pathophysiology of these conditions (Baek et al.,
2023; Kusnadi et al., 2023). The growth of micro-
biome research introduces significant challenges

in knowledge consolidation and utilization (Badal
et al., 2019; Huang et al., 2022). Current efforts
often involve domain experts spending countless
hours manually curating experimentally validated
associations between diverse microbiota and dis-
eases to form knowledge bases (KBs) (Li et al.,
2021; Dai et al., 2021; Qi et al., 2022; Zhang et al.,
2022). These KBs are invaluable for researchers
and practitioners, providing a consolidated view of
current findings, yet their maintenance is becom-
ing unsustainable due to the rapid pace of publi-
cation. Advanced text-mining methods designed
to extract knowledge from biomedical texts are a
well-established area of research (Wei et al., 2016;
Zhang et al., 2018; Hogan et al., 2021; Xu et al.,
2022; Li, 2022; Lai et al., 2023; Liu et al., 2023).
Methods often leverage human-annotated data to
train and validate a model’s performance; however,
robust datasets annotating microbe-disease associa-
tions are lacking.

To address these challenges, we introduce
MiDRED; a comprehensive text-mining dataset
designed to automate the construction and main-
tenance of microbiome KBs. MiDRED consists
of 3,116 annotated relationships between microbe-
disease pairs extracted from 1,655 scholarly arti-
cles. We specifically craft relation classes to align
with classes used in major microbe-disease KBs
to ensure MiDRED’s compatibility with existing
databases. Importantly, MiDRED annotates nega-
tive instances (e.g., a “no relation” class) to miti-
gate positive bias from trained models (Zhang et al.,
2017). MiDRED also includes span-level annota-
tions of entities, which are crucial for training in
Named Entity Recognition (NER) and Named En-
tity Normalization (NEN) tasks. See Table 2 for
statistics on the complete dataset. We conducted
experiments on MiDRED using a variety of gener-
ative and discriminative large language models to
obtain robust baselines to serve as a foundation for
future research. We openly release the MiDRED
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dataset on Hugging Face.1

2 Related Work

MiDRED is designed as a text-mining dataset
and draws inspiration from numerous biomedi-
cal (Khettari et al., 2023; Bossy et al., 2019; Luo
et al., 2022; Li et al., 2016; Taboureau et al., 2010;
Janssens et al., 2018) and general domain text-
mining datasets (Zhang et al., 2017; Stoica et al.,
2021; Yao et al., 2019). Text-mining datasets typi-
cally consist of manually annotated texts which can
be used to train and evaluate automated NER, NEN,
and relation extraction algorithms (Zhang et al.,
2017; Yao et al., 2019). Works such as Herrero-
Zazo et al. (2013), Luo et al. (2022), González et al.
(2019) are similar in task but differ either in entity
types, association types, or both.

The Human Microbe-disease Dataset (HMDAD)
(Ma et al., 2016) is a database of associations be-
tween human microbes and diseases. However, the
dataset does not provide span-level information de-
noting entity pairs which limits the dataset’s use in
training NER and NEN algorithms. Microbes in
HMDAD were primarily curated at the genus level
due to the sequencing technologies available when
the dataset was annotated. MiDRED benefits from
advancements in sequencing technologies, allow-
ing for a majority (95.4%) of microbial concepts to
be annotated at the species level. Furthermore, HM-
DAD relation annotations are done at the article-
level. Article-level annotation is commonly used
in microbiome knowledge bases (Janssens et al.,
2018; Cheng et al., 2019; Li et al., 2021; Skoufos
et al., 2020) and fails to denote the location of tex-
tual evidence supporting an association, making it
challenging to train automated text-mining tools.
Lastly, MiDRED differs from HMDAD in that it
does not limit its annotations based on host type,
leading to more diverse associations.

The Species-species Interaction (SSI) dataset
(Khettari et al., 2023) is a dataset that annotates bi-
nary associations between species of microbes. SSI
does not provide human-annotated entities and re-
lies on automated methods for NER. MiDRED dif-
fers from SSI in entity types and the number of re-
lation classes—in MiDRED, we annotate four rela-
tion classes (see Section 3.2 for more details), mov-
ing beyond binary associations. Bacteria Biotope
(BB 2019) (Bossy et al., 2019) is an NER/RE

1https://huggingface.co/datasets/
shangdatalab-ucsd/midred

dataset featuring microbes, diseases, habitats, and
locations. BB 2019 seeks to mine associations
of microbes and environments (habitats) to better
understand how microbes interact within various
environments. MiDRED, in contrast, focuses on
how microbes relate to diseases more generally
and offers a large number of annotated entities and
relations.

3 Methods

3.1 Data Collection and Entity Normalization

We collect an initial set of abstracts from PubMed
(Sayers et al., 2020) using the PubTator tool (Wei).
To ensure the subset of abstracts are relevant to
microbiome studies, we prioritize PMIDs found
within the Disbiome database (Janssens et al.,
2018). From this subset, we randomly select ab-
stracts and annotate microbes and diseases. Micro-
bial entities were normalized to the List of Prokary-
otic Names with Standing in Nomenclature (LPSN)
ontology (Parte et al., 2020). Disease entities were
normalized to the Comparative Toxicogenomics
Database (CTD)(Davis et al., 2020). See Appendix
A.1 for details about our entity annotation process.

3.2 Relation Annotation

As stated in Section 1, a primary goal of MiDRED
is compatibility with existing microbiome KBs. As
such, we align our relation classes to those used by
major microbiome KBs and annotate four classes:
connecting, contrasting, pathogen, and no rela-
tion. The connecting class aligns with positive
classes (e.g., “associated,” “increase,” and “posi-
tive”), signifying a microbe is associated with a
disease, while the contrasting class signifies a mi-
crobe that contrasts with a disease, aligning defi-
nitionally to negative classes (e.g., “reduce,” “de-
crease,” and “inhibit”) (Qi et al., 2022; Janssens
et al., 2018; Li et al., 2021; Zhang et al., 2022; Dai
et al., 2021). We also include pathogen, which is a
stronger, more causal relation compared to connect-
ing, as well as no relation to help prevent positive
bias. Each instance is double annotated by different
annotators and conflicting annotations are resolved
in a third annotation round. With this systematic
approach, we achieved a high inter-annotator agree-
ment (Fleiss’ Kappa) of 0.710. See Appendix A.1.1
for additional details about the relation annotation
process, class definitions, and examples (Table 7).

MiDRED’s data splits are constructed by col-
lecting the set of unique fact-triples (e.g., ⟨head

https://huggingface.co/datasets/shangdatalab-ucsd/midred
https://huggingface.co/datasets/shangdatalab-ucsd/midred
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Dataset Entity Types Relation
Classes

Host
Type

Negative
Instances

Entity
Spans # Microbes # Relation

Instances
HMDAD (Ma et al., 2016) Microbes/diseases 2 Human ✕ ✕ 292 483
SSI (Khettari et al., 2023) Microbes/microbes 2 Human ✔ ✔ N/A* 999
Bacteria Biotope (Bossy et al., 2019) Microbes/diseases/habitats/locs 2 Varied ✕ ✔ 1,760 2,639
MiDRED Microbes/diseases 4 Varied ✔ ✔ 5,590 3,116

Table 1: A comparison between our proposed dataset, MiDRED, and other microbiome text-mining datasets.
MiDRED features a multi-class relation classification task with annotated negatives (the “no relation” class) and
span-level entity annotations (*the SSI dataset does not provide manually annotated entities).

entity, relation, tail entity⟩). Unique triples are di-
vided into train, development, and test splits using
0.8/0.1/0.1 ratios, resulting in no overlapping fact-
triples between data splits. See Appendix A.2 for
statistics on each data split.

Documents: 1,655
Entities: All 12,027 (678)

Microbes 5,590 (197)
Diseases 6,437 (482)

Relationships: All 3,116
Connecting 1,744
Contrasting 161
Pathogen 920
No relation 291

Table 2: Counts of annotated entities and relationships
in MiDRED. Parenthesized values denote the number
of unique concepts. For detailed statistics on train, de-
velopment, and test splits, see Appendix A.2.

4 Baseline Experiments

We explore the performance of popular NLP mod-
els using MiDRED on Named Entity Recognition
(NER) and Relation Extraction (RE) tasks to estab-
lish the baseline performance and highlight chal-
lenging areas for future development.

4.1 Named Entity Recognition

In our NER experiments, we treat each entity men-
tion span individually. We tested three NER mod-
els on our corpus: BiLSTM-CRF (Hochreiter and
Schmidhuber, 1997), BioBERT-CRF (Lee et al.,
2019), and PubMedBERT-CRF (Gu et al., 2020).
Sentences were transformed into hidden state vec-
tor sequences by the respective models. Each
model was tasked with predicting the labels for
each token within these sequences. Subsequently,
a fully connected layer was employed to calculate
the network score, and a conditional random field
(CRF) layer decoded the optimal tag path from all
possible paths, utilizing the BIO (Begin, Inside,

Outside) tagging scheme to categorize each token
accurately. See Appendix A.4 for hyperparameter
details.

Model P R F1
BiLSTM-CRF 0.877 0.891 0.884
PubMedBERT-CRF 0.947 0.972 0.959
BioBERT-CRF 0.957 0.981 0.969

Table 3: Precision, recall, and F1-micro scores of vari-
ous NER models on the MiDRED test set. Results are
averages from three runs.

4.2 Relation Extraction
For RE experiments, we explore fine-tuning
encoder-only biomedical language models (Bi-
oLinkBERT (Yasunaga et al., 2022) and PubMed-
BERT (Gu et al., 2020)). We send representations
for the [CLS] token through a fully connected layer
trained with cross-entropy. Additionally, we ex-
plore the current in-context learning abilities of
frontier LLMs (GPT 3.5 (OpenAI, 2021) and GPT
4 (OpenAI et al., 2024))2. For details on the prompt
we use, see Appendix A.5.

5 Results and Discussion

Figure 1 displays the top ten microbes and diseases
and the distribution of relation classes in MiDRED.
We observe a long-tail distribution for both entity
types. The distribution of microbes, in particular,
features a steep drop-off in mention frequency after
the most mentioned microbe, Helicobacter pylori,
indicating that current research focuses on a rela-
tively narrow set of microbes.

We observe relatively high scores for both the
NER (Table 3) and RE (Table 4) experiments when
looking at performance across all test instances us-
ing small, fine-tuned biomedical language models
(PubMedBERTbase and BioLinkBERTlarge), indi-
cating the effectiveness of modern information ex-

2Specifically, we use gpt-3.5-turbo-16k-0613 and gpt-4-
turbo-preview via OpenAI’s API, accessed on 5/3/2024.
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No relation
Contrasting

Connecting
Pathogen

(a) Top ten most frequent microbes (b) Top ten most frequent diseases (c) Distribution of relation classes

Figure 1: Counts of the top ten most frequent (a) microbial and (b) disease concepts, as well as (c) the distribution
of relation classes found in the combined splits of MiDRED.

Model P R F1
PubMedBERTbase 0.867 0.855 0.861
BioLinkBERTlarge 0.907 0.904 0.905
GPT 3.5 0.542 0.562 0.552
GPT 4 0.716 0.725 0.721

Table 4: Precision, recall, and F1-micro scores of rela-
tion extraction models on the test set.

Model Q1 Q2 Q3 Q4
PubMedBERTbase 0.895 0.852 0.800 0.571
BioLinkBERTlarge 0.929 0.839 0.801 0.601
GPT 3.5 0.512 0.533 0.402 0.600
GPT 4 0.696 0.710 0.606 0.667

Table 5: F1-micro scores of RE models on test instances
decomposed into quartiles based on microbe frequency,
where Q1 is the performance on triples containing the
top 25% most frequent microbes across all of MiDRED,
followed by Q2, Q3, and finally, the least frequent quar-
tile of microbes in Q4.

traction methods. Large, general domain language
models (GPT 3.5 and GPT 4) leveraging in-context
learning struggle to identify relations compared to
smaller biomedical language models. This aligns
with Peng et al. (2024)’s findings, offering addi-
tional evidence that large language models have
yet to overtake smaller language models in infor-
mation extraction tasks.

Furthermore, Table 5 shows a steady drop-off in
PubMedBERTbase and BioLinkBERTlarge’s perfor-
mance across quartiles of test triples decomposed
based on microbe frequency, while the performance
of GPT 3.5 and 4 remains relatively stable. This
indicates that the smaller models generalize poorly
and signify an area for future development.

Annotation Challenges: Numerous challenges

were encountered when annotating microbes, dis-
eases, and their associations. Challenges with
acronyms and abbreviations arose due to variations
in naming conventions, which sometimes differed
from standard classifications. Relation types posed
difficulties in accurately describing the links be-
tween microbe-disease pairs, particularly in cases
involving numerical data or complex biological se-
mantics. We record these and other challenges in
Appendix A.3 in hopes of improving future ver-
sions of MiDRED and biomedical annotation ef-
forts in general.

6 Conclusion

Microbiota, integral to human health and prevalent
in various body environments like the gut, skin,
and oral cavity, are at the forefront of promising
research avenues that could revolutionize our under-
standing and treatment of numerous health condi-
tions. However, the manual curation of microbiome
knowledge bases, though invaluable, faces scala-
bility challenges in keeping pace with the rapid
influx of new research findings. In this paper, we
introduce MiDRED, a dataset that aims to bridge
this gap by providing a resource to help automate
the creation and maintenance of microbiome bases.
MiDRED can be used to train and validate state-
of-the-art NLP models on various tasks such as
named entity recognition, named entity normaliza-
tion, bacteria-disease relationship extraction, and
knowledge graph creation. We hope MiDRED will
unlock new applications and innovations within
microbiome research.
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Limitations

MiDRED is a sentence-level annotated dataset,
which inherently limits its scope to capturing re-
lationships expressed within individual sentences.
Consequently, the dataset does not encompass inter-
sentence relationships, which could provide addi-
tional context and depth to understanding microbe-
disease interactions. Furthermore, MiDRED main-
tains a focused thematic scope, exclusively concen-
trating on relationships between microbes and dis-
eases. While beneficial for depth and specificity in
this area, this focus excludes potential relationships
involving other biological entities or environmental
factors that could influence or be influenced by the
microbe-disease dynamics. Such annotations could
offer deeper insights into the context and contin-
gencies of the documented relationships. We aim
to address these limitations in future versions of
the dataset.

Ethics Statement

In the development and release of the MiDRED
dataset, we have carefully considered ethical as-
pects and do not anticipate any major ethical con-
cerns. The dataset is constructed from publicly
available academic articles, focusing solely on the
relationships between microbes and diseases with-
out involving individual patient data or personal
information. By openly releasing the MiDRED
dataset, we commit to facilitating transparency in
our research process. This open access approach
allows for peer review, replication of results, and
collaborative improvements to the dataset.
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A Appendix

A.1 Annotation Details
We developed an in-house annotation tool with
functionality similar to open-source annotation
tools such as Islamaj et al. (2020) to aid in anno-
tating entities and relationships. When annotating
articles, annotators can tag text and select “disease”
or “microbe” based on the entity they intend to
annotate. Depending on their choice, a select box
displays a list of microbes from the List of Prokary-
otic names with Standing in Nomenclature (LPSN)
(Parte et al., 2020) dictionary or diseases based on
the Comparative Toxicogenomics Database (CTD)
(Davis et al., 2020) dictionary, allowing for the se-
lection of an ontology concept. The annotation tool

presents annotators with a list of potential microbe
or disease concept matches sorted based on the
mention text’s similarity to the concepts and con-
cept synonyms in the corresponding ontology. In-
dividual diseases and microbe concepts can also be
searched for using quotes. The selection of either
the disease or microbe allows for the normalization
of entities.

Additionally, the annotation tool we developed
has multiple features to aid the annotating process.
It underlines the annotated text based on selected
entities, with microbe entities underlined in purple
and disease entities underlined in orange, allowing
for quick verification by the annotator. Further-
more, annotators can quickly cycle through, delete,
and clear annotations using select keys, decreasing
the annotating process’s time-intensiveness.

Normalization is a classification process that
classifies the different named entities of the same
disease or microbe into a unique concept. Annota-
tors were instructed to label microbes and diseases,
including full names, abbreviations, synonyms, and
acronyms. Adjectives and entities beyond LPSN
and CTD databases were not annotated.

A.1.1 Annotating Relationships
After our entity annotation process, single sen-
tences containing at least one microbe-disease pair
were extracted and split into two subgroups. Sen-
tences that had 80 characters or less and contained
a rule-based keyword (Table 6) were placed into
Group A, while all other sentences were placed
into Group B. Group A sentences were then given
pre-labels by rule-based algorithms (Table 6) con-
cluded from observations in pilot annotation trials.
Each assigned relation type was later manually ver-
ified by human annotators. Sentences in Group
B were all manually labelled with relation types
by human annotators. Each sentence across both
groups were doubly-annotated to ensure the accu-
racy of the annotations. Instances of conflicting
annotations were re-visited and relabeled in a third
round of annotation. Using this process, we ob-
serve an inter-annotator agreement (Fleiss’ Kappa)
of 0.710, indicating high annotator agreement.

In pilot observation trials, we found that in de-
scribing relationships in which the microbial entity
favored the development of the disease entity, a pos-
itive relation type was insufficient to encompass all
associations. Thus, we employed two positive rela-
tion types of pathogen and connecting. Pathogen
is used for more explicitly defined cases, where the
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Relation type Rule-based Keywords
Connecting Associated, antibody, initiate,

increase, develop, positive, ac-
celerate, triggered, recognized,
identify, colonized, diagnose,
eradication+decrease, isolate

Contrasting Reduce, decrease, erad-
ication+increase, in-
hibit+proliferation, in-
duced+delayed, inhibit

Pathogen Caused, pathogen, agent, in-
duce, due to

No relation Not associated with, not
present in, no effect against

Table 6: Keywords for pre-labelling rules used for anno-
tating relationships.

microbe is a pathogen or causative agent for the
disease or characterizes a particular sub-type of the
disease. Connecting is used when the microbe is
associated with or is a risk factor for the disease.
See Table 7 for definitions of each relation class.

A.2 Data Splits
As mentioned in Section A.1.1, MiDRED is split
using a holdout set of fact triples. This ensures that
trained models cannot simply memorize relation-
ships between head and tail entities. In Table 8, we
show the statistics of each data split in MiDRED.

A.3 Challenges
In this section, we openly discuss the challenges
we faced in annotating microbe and disease entities
and associating relations. We hope these lessons
will inform subsequent versions of MiDRED and
future biomedical annotation efforts.

A.3.1 Challenges with acronyms and
abbreviations:

While microbial and disease entities in this dataset
were fully normalized to respective classification
standards, challenges and limitations were encoun-
tered during the annotation process. As a nomen-
clature convention, bacterium names are often ab-
breviated after the first introduction. As a result,
bacteria mentions had to be normalized, with its
abbreviated form, which could differ from paper
to paper. Similar challenges were found in dis-
ease acronyms, while compounded and embedded
naming involving disease acronyms brings extra
complexity. Moreover, while bacteria mentions

follow relatively rigid and uniform nomenclature
standards, disease mentions are more flexible and
versatile according to authors’ naming and writ-
ing style. With the differing naming techniques of
authors, disease and bacteria entities were occasion-
ally not encompassed by LPSN or CTD dictionaries
and, therefore, unable to be annotated. Unnormal-
ized entities were excluded from MiDRED and
thus could be missed in developing computational
models.

A.3.2 Challenges with relation types:
We found that pathogen, connecting, contrasting,
and no relation relation types could not describe
the linking relation between all microbe-disease
pairs. As mentioned in the Limitations section, an-
notation units were annotated in single sentences,
which led to lost context and instances where we
could not determine a relation type and associa-
tions. A similar problem occurred when numbers
were involved, for instance:

Helicobacter pylori was found in 12 of
13 AIDP patients (92%), and in 10 of
20 controls (50%), (P = 0.02). (PMID:
15679702)

Although the four relation types, particularly
connecting and contrasting, could be inferred from
cases in which numbers were involved, more often
than not, we felt that the numbers were taken out
of context, and perceived relation types could be
inaccurate from just the sentence. Consequently,
we decided not to label all cases in which numbers
were needed to determine relation types.

As the proposed four relation types were used
to successfully label most annotation units, two
commonly encountered complexity issues need to
be further addressed in future annotation efforts:
1. Relations Dependent on Quantitative Seman-

tics: As connecting and contracting relation
types categorize the directions of associated de-
velopment, which are often hinted at by key-
words, more specific descriptions of experi-
ments are often presented in quantitative data.
As a single sentence can only provide limited
information, the implication of the quantities is
sometimes indefinite, as in the following exam-
ple:

During the study period, a total of
373 blood cultures were obtained
from patients in whom brucellosis
was suspected, and 27 (7.2%) of
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Relation type Definition Example

Connecting The microbe is a risk fac-
tor for the development of
the disease.

BACKGROUND: The presence of My-
coplasma pneumoniae has been associated
with worsening asthma in children.

The microbe is associated
with the disease.

The Helicobacter pylori (H. pylori) bacterium
has been classified by the World Health Orga-
nization as a type 1 carcinogen with associa-
tions to the development of peptic and gastric
ulcers, gastric carcinoma and primary B-cell
lymphoma.

Contrasting The microbe or substances
extracted from it is bene-
ficial for the treatment of
the disease.

Bacille Calmette-Gurin (BCG), an attenuated
strain of Mycobacterium bovis, is one of the
most effective agents in the treatment of su-
perficial bladder cancer.

The microbe is beneficial
in the improvement of the
disease.

CONCLUSION: Lactobacillus reuteri effec-
tively reduced the duration of acute diarrhea
and hospital stays in children hospitalised with
acute gastroenteritis.

No relation No association between
disease and microbe.

A high density of H. pylori colonization in
the gastric mucosa was not associated with a
higher frequency of dyspepsia (P > 0.80).

Pathogen The microbe is a
pathogen/causative
agent for the disease.

Orientia tsutsugamushi (O. tsutsugamushi),
the causative agent of scrub typhus, is an ob-
ligate intracellular pathogen.

The microbe name is used
immediately preceding the
disease name to form a
specific subtype of the dis-
ease

Fifteen children (41%) had ulcers associated
with H. pylori gastritis, including all 10 chil-
dren with a chronic ulcer.

Table 7: Classification standards for microbe-disease relation annotation used when annotating MiDRED. Annotated
microbe and disease concepts are in bold.

them, drawn from 21 different pa-
tients, were positive for B. melitensis.
(PMID: 7989539)

2. Relations Dependent on Biological Seman-
tics: The relations between microbe and host
are essentially dynamic biological processes
that, in many cases, can hardly be interpreted
without implementing biological semantics. For
instance, concepts such as vaccine, attenuated
strains, microbe eradication, and co-infections
are sometimes used in sentences, and excluding
these semantics in the annotation process often

leads to incorrect labels. Below is an example
that our annotators found ambiguous without
additional context from biological semantics:

These results demonstrate that B.
burgdorferi-specific T lymphocytes
primed by vaccination with a whole-
cell preparation of inactivated B.
burgdorferi sensu stricto isolate C-
1-11 in adjuvant are involved in the
development of severe destructive
arthritis. (PMID: 7890402)

In the current version of MiDRED, such instances
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Annotations Train Dev Test All
Documents 1,521 521 549 1,655
Entities All 8,985 (613) 1,452 (311) 1,590 (310) 12,027 (678)

Microbes 4,182 (179) 687 (100) 721 (95) 5,590 (197)
Diseases 4,803 (435) 765 (212) 869 (216) 6,437 (482)

Relationships All 2,169 447 500 3,116
Connecting 1,224 248 272 1,744
Contrasting 100 29 32 161
Pathogen 635 132 153 920
No relation 210 38 43 291

Table 8: Counts of entities and relationships annotated in the MiDRED dataset across the train, development, and
test data splits. Parenthesized values denote counts of unique concepts.

are excluded from the dataset as they cast chal-
lenges for human annotators and the design of the
classification standards. We intend to rectify these
issues in future versions of the dataset.

A.3.3 Challenges with relation annotations:
There were some limitations to the rule-based pre-
labelling that we employed, as we could not as-
sign rule-based pre-labels to Group B sentences.
The reasoning behind this was twofold. Group B
housed all the sentences without rule-based key-
words (Table 6), so we could not give pre-labels by
rule-based algorithms as we had done with Group A.
Furthermore, Group B sentences were longer, and
relations dependent on biological semantics were
encountered more often, which required human
annotators to interpret individual cases. Based on
these challenges, we decided to forego rule-based
pre-labeling on Group B sentences, resulting in
these sentences being subject to more ambiguity.

A.4 Baseline NER Settings
For our NER experiments in 4, we use the fol-
lowing hyperparameter settings: 1,024 embed-
ding dimensions, 512 max sequence length, and
64 batch size. We trained BioLinkBERT-CRF
and PubMedBERT-CRF over three epochs and the
BiLSTM-CRF for ten epochs.

A.5 GPT 3.5 and GPT 4 Prompts
GPT 3.5 and GPT 4 often perform better on tasks
with the help of in-context learning (Wei et al.,
2023; Wang et al., 2023). We construct a prompt
that lists all relation classes and offers a couple of
examples of extracted relationships. The following
is the prompt we used for soliciting predictions for
our tests:

You are a relation extraction expert tasked
with labeling relationships between head
and tail entities in a sentence. Each
example below has the head and tail entities
appended to the sentence in the form: (head:
head entity) (tail: tail entity). Predict if the
sentence expresses one of the four following
relation classes: “no relation”, “connecting”,
“contrasting”, “pathogen”. The following
are some examples:

### Sentence: At day 0 , 25 acute ul-
cers were associated with chronic H. pylori
gastritis ; one patient had neither gastritis
nor H. pylori infection (head: “H. pylori”)
(tail: “ulcers”)

### Label: connecting

. . . [We include 4x examples of each
relation class in the prompt.] . . .

### Sentence: Significant resistance
enhancement of mice pretreated with P.
acnes against vaccinia virus or herpes
simplex virus type 1 infection was observed.
(head: “P. acnes”) (tail: “herpes simplex”)

### Label: ?

GPT 3.5 and GPT 4 responses were then aligned
to ground truth classes via partial string matching
for evaluation.


