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Abstract

Large Language Models (LLMs) offer an ap-
pealing alternative to training dedicated models
for many Natural Language Processing (NLP)
tasks. However, outdated knowledge and hallu-
cination issues can be major obstacles in their
application in knowledge-intensive biomedi-
cal scenarios. In this study, we consider the
task of biomedical concept recognition (CR)
from unstructured scientific literature and ex-
plore the use of Retrieval Augmented Genera-
tion (RAG) to improve accuracy and reliabil-
ity of the LLM-based biomedical CR. Our ap-
proach, named REAL (Retrieval Augmented
Entity Linking), combines the generative ca-
pabilities of LLMs with curated knowledge
bases to automatically annotate natural lan-
guage texts with concepts from bio-ontologies.
By applying REAL to benchmark corpora on
phenotype concept recognition, we show its
effectiveness in improving LLM-based CR per-
formance. This research highlights the poten-
tial of combining LLMs with external knowl-
edge sources to advance biomedical text pro-
cessing. Source code is available at: https:
//github.com/dash-ka/REAL-BioCR.

1 Introduction

Biomedical Concept Recognition (CR) aims to
identify and link textual mentions of biomedical
concepts to entries in expert-curated knowledge
bases and ontologies. CR combines two subtasks
from the standard information extraction pipeline:
entity recognition (NER) and entity linking (EL),
sometimes referred to as named entity disambigua-
tion (NED) or grounding. NER aims to detect
strings in text that refer to classes of biomedical
entities, such as phenotypes, diseases, or genes. EL
maps those strings to terms in an ontology, such as
Human Phenotype Ontology (HPO) (Köhler et al.,
2014) for phenotypic features, Mondo (Vasilevsky
et al., 2020) for disease terms, and HGNC (Eyre
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et al., 2006) for human genes. Automated CR meth-
ods represent an active research area and are essen-
tial for a range of downstream biomedical appli-
cations. In genomic medicine, for instance, accu-
rately recognizing phenotype concepts from free-
text medical notes is the starting point to improve
genetic disease diagnostics (Labbé et al., 2023).

State-of-the-art CR systems rely on fine-tuning
transformer-based language models pretrained on
biomedical texts, such as BioBERT (Lee et al.,
2020), and have restricted scope, targeting a sin-
gle or few application domains (Feng et al., 2022;
Luo et al., 2021). The major limitation of these
approaches is the need for domain-specific training
with expert-labeled corpora, which is not always
feasible due to the scarsity of annotated data in the
biomedical field (Fries et al., 2022). On the other
hand, general-purpose Large Language Models
(LLM), such as OpenAI’s Generative-Pretrained
Transformer (GPT), have demonstrated remarkable
zero and few-shot learning abilities, offering signif-
icant potential for biomedical NLP. Recent studies
have shown promising results when using LLMs
in clinical information extraction without domain-
specific training (Agrawal et al., 2022; Meoni et al.,
2023). However, challenges persist regarding fac-
tual accuracy in generated responses, hindering
their usability for knowledge-intensive tasks in spe-
cialized domains (Gao et al., 2023; Reese et al.,
2023). To address these challenges, Retrieval-
Augmented-Generation (RAG) (Lewis et al., 2020)
has been recently proposed as a technique to en-
hance LLMs with relevant information retrieved
from external knowledge bases through semantic
similarity calculation.

Our study aims to explore the application of
the RAG paradigm in the context of biomedical
CR. To this end, we developed REAL, a Retrieval-
Augmented Entity Linking approach for ontology-
based CR. To overcome the limitation of training
dedicated NER and EL models, our approach lever-
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ages prompting techniques with general purpose
LLMs to handle both tasks in a unified pipeline.
Given a text, REAL first identifies mentions of
concepts belonging to some target biomedical do-
main through a zero-shot NER, and then associates
these mentions to terms in the domain ontology
using retrieval-enhanced Entity Linking. By em-
bedding the mention and ontology concepts into a
common dense space, the retrieval mechanism pro-
vides the LLM with a selection of candidates from
a bio-ontology identified through nearest neigh-
bor search. By synergistically combining the re-
trieval mechanism with prompt-engineering, REAL
aims to leverage up-to-date knowledge with exist-
ing knowledge bases, thereby improving the accu-
racy and reliability of LLM-based CR.

We summarize our contributions as follows:

• We propose a novel RAG-based approach
that leverages general-purpose LLMs for au-
tomatic annotation of unstructured scientific
literature with concepts from bio-ontologies.
Our approach is versatile and can be easily
adopted in various application domains with-
out requiring domain-specific training.

• We conduct experiments with two benchmark
corpora, studying the effectiveness of our ap-
proach on the phenotype concept recognition
task. The results show that REAL can achieve
competitive performance, indicating a great
promise for the RAG paradigm in the context
of biomedical concept recognition.

2 Related Work

2.1 Biomedical Concept Recognition
Biomedical CR tools predominantly rely on dic-
tionary-based methods, using lexical matching with
lookup tables. The OBO annotator (Taboada et al.,
2014), the NCBO annotator (Jonquet et al., 2009),
and the Monarch Initiative platform (Putman et al.,
2023) are examples of tools that achieve high pre-
cision, but often suffer from low recall.

To overcome the limitations of dictionary-based
methods, the recent research explored the use of
neural-based models, with significant performance
improvements. State-of-the-art approaches lever-
age pretrained BERT (Bidirectional Encoder Rep-
resentations from Transformers) architectures. For
instance, PhenoBert (Feng et al., 2022) implements
a complex pipeline exploiting convolutional neu-
ral networks (CNNs) with BERT to automatically

recognize HPO terms from free text. Phenotag-
ger (Luo et al., 2021) is a hybrid approach that
combines dictionary and deep learning methods.
Specifically, Phenotagger fine-tunes a pretrained
BioBERT model on weakly supervised datasets.
These solutions necessitate task-specific training,
requiring extensive computational resources and
significant human effort for the manual annotation
of large training corpora.

With the the advent of ChatGPT, researchers
started to consider prompt-based approaches that
leverage impressive language understanding capa-
bilities of instruction-based generative models to
address a wide spectrum of NLP tasks with no do-
main or task-specific training. One of the most
prominent examples is SPIRES (Structured Prompt
Interrogation and Recursive Extraction of Seman-
tics) (Caufield et al., 2024) that leverages LLMs
to assist the automatic construction of knowledge
bases. Given an input text and a user-defined con-
ceptual schema, the method recursively prompts
an LLM to extract structured knowledge conform-
ing with the schema’s classes relevant for a given
domain. The schema guides the LLM in extract-
ing named entities that meet specific property con-
straints. To map extracted entities to ontology iden-
tifiers, SPIRES adopts the Ontology Access Kit
library (OAKlib), which provides interfaces for
external annotation tools, including the OBO anno-
tator, and the Ontology Lookup Service.

2.2 Prompt-based Phenotyping
Several recent studies have employed prompt engi-
neering techniques with LLMs to evaluate their
capability in performing end-to-end phenotype
concept recognition. Labbé et al. (2023) prompt
GPT3.5 model to directly extract HPO term la-
bels alongside corresponding IDs from medical
texts. Their study highlights the limitations associ-
ated with purely prompt-based concept recognition,
suggesting that potential improvements could be
achieved by integrating factual knowledge from ref-
erence resources to aid in the generation process.

Groza et al. (2024) evaluated the OpenAI GPT-
3.5 and GPT-4.0 models on phenotype concept
recognition by testing alternative prompting strate-
gies, including pipelined and in-context learning
approaches. The former involves two sequential
prompts: one for phenotype extraction and another
for linking to HPO IDs. The latter approach incor-
porates the target subset of HPO label - ID pairs
from the reference ontology inside the prompt as
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Figure 1: A high-level overview of the REAL approach.

context. Their findings demonstrate that in-context
learning with pre-filtered ontology terms has the
potential to surpass state-of-the-art CR systems.

The idea to couple parametric knowledge of an
LLM with vast external knowledge repositories to
improve the factuality and accuracy of the LLM
responses forms the foundation of RAG. This tech-
nique involves chunking and embedding the knowl-
edge resource into a set of vectors, followed by
retrieving top-k relevant chunks based on seman-
tic similarity with the user query, which are then
incorporated into the LLM prompt. To the best of
our knowledge, ours is the first work to explore the
application of RAG in the field of biomedical con-
cept recognition (CR). In REAL, we employ RAG
to assist the LLM in linking textual mentions of
biomedical entities to terms in domain ontologies.

3 Methodology

The ontology-based CR problem can be formally
presented as two consecutive tasks, NER and
EL, as follows. Let O denote a set of concepts
{C1, . . . , Cn} defined in the domain ontology used
for text annotation. Given a text T , the NER task
identifies textual mentions of biomedical entities
from the target domain, m1, . . . ,mh. Then, the EL
task consists in assigning each entity mention mi

to a concept C ∈ O that best represents it.
As shown in Figure 1, REAL implements CR

in a pipeline consisting of three main phases: On-
tology Indexing, NER, and Retrieval-enhanced En-
tity Linking. The ontology indexing is executed
only once during the pre-processing to convert the

concepts in O into a searchable index. The main
workflow starts with the zero-shot NER (in the left
bottom of the figure), where we prompt the LLM to
extract instances of a specified entity type from T
and generate a short definition for each of them. In
the Retrieval-enhanced Entity Linking phase (right
bottom part of the figure), we search in the ontol-
ogy index the top-k most similar concepts to the
embedding of m. They are the candidates for en-
tity linking and the best matching is identified by
properly instructing an LLM prompt. Details of the
approach are provided in the remainder.

3.1 Ontology Indexing
To implement RAG for CR with the domain on-
tology O as a reference knowledge resource, we
create vector embeddings for concepts in O and in-
dex them inside a vector store. This process creates
an ontology index I, that we can query to retrieve
ontology concepts with the most similar embedding
vector to the embedding of a given query.

In this study, we used ChromaDB1, an open-
source vector database, to store concept embed-
dings and perform semantic similarity search in
the embedding space using the cosine similarity
function. However, the proposed method can em-
ploy any database that enables efficient vector
search capabilities. Unlike other vector stores,
ChromaDB provides interfaces to popular LLM
providers, and automatically computes the em-
bedding from text using the specified embedding
model. Specifically, this study uses the OpenAI

1https://www.trychroma.com/

https://www.trychroma.com/
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Figure 2: Prompt template for generating a definition
for a given concept name.

text-embedding-ada-002 model for concept em-
bedding. We store the computed embeddings along-
side the concept properties inside the index I. To
construct input texts for the embedding model, we
employ the concept name and its definition pro-
vided among concept properties in a given ontology.
This design choice stems from the need to create
a vector representation that captures the meaning
of a concept, with the concept name and definition
providing the minimal necessary information to
achieve this goal. Whenever a textual definition
is not available in the concept properties, we auto-
matically generate one from the concept name by
prompting an LLM using the prompt in Figure 2
(the variable part of the prompt is colored in green).

Example 1 Suppose we are interested in creating
an ontology index for the HPO. A vectorial repre-
sentation for each HPO concept is generated by
concatenating its name and definition and stored
into ChromaDB with other concept properties. For
instance, for the HPO term “Breast carcinoma”
(id: HP:0003002), the following text has been used
for generating the concept embedding:

name: Breast carcinoma

definition: Presence of carcinoma in breast

The prompt template in Figure 2 is used to gen-
erate a single sentence definition for 2,586 HPO
terms that do not have a definition in the ontology.

3.2 NER

Given the input text T and the specification of the
target biomedical entities to be extracted, the NER
step produces a set of pairs P = {(mi, di) | 0 ≤
i ≤ h}, where mi represents a mention of the
target entity extracted from T , and di denotes a
concise definition for that entity mention. This
step employs zero-shot prompting with LLMs us-
ing two consecutive prompts: the NER prompt
for entity extraction and the Describe prompt for
definition generation. The NER prompt in Fig-
ure 3 incorporates the input text T and directs the

Figure 3: Prompt template for NER.

LLM to extract spans in T that represent instances
of the target entity type defined for a given ap-
plication domain. The domain adaptation of the
NER task is performed by changing the type of
the target biomedical entity specified in the prompt,
e.g., genes, phenotypes. The Describe prompt in
Figure 4 operates on the list of entity mentions
m1, . . . ,mh, produced with the NER prompt, and
tasks the LLM to generate a definition for each ex-
tracted mention. Besides the list of entity mentions,
this prompt also includes the original text T to help
the LLM to compose contextually informed entity
definitions.

Figure 4: Prompt template for entity description.

Example 2 Let T be the following text:

The combination of either the skin tumours

or multiple odontogenic keratocysts.

Suppose we are interested in extracting mentions
of human phenotypes from T . Then, in the NER
prompt, we specify the following target entities:

“human phenotypes, including physical abnormali-
ties, symptoms of disease, and inherited disorders”.
Given T , the NER prompt extracts the entities:
skin tumors and odontogenic keratocysts.
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For each of them (and considering T ) a definition is
generated using the prompt in Figure 4 as follow:

skin tumors: Abnormal growths or masses

that occur in the skin and can be benign

or malignant.

odontogenic keratocysts: Cysts that

develop in the jawbones and are derived

from the remnants of dental tissue.

3.3 Retrieval Augmented Entity Linking
Given the Ontology index I, and a set P of pairs
(m, d) obtained as a result of the NER phase, for
each element in P , the EL phase is realized in two
steps: Candidate Retrieval and Entity Linking.

3.3.1 Candidate Retrieval
Given the entity mention m with its definition d
and a user-defined parameter k, we first embed
(m, d) into the same embedding space with ontol-
ogy concepts, and then retrieve top-k semantically
similar concepts {C ′

1, . . . C
′
k} from I by approxi-

mate k-nearest neighbor search. We adopt the same
embedding strategy for ontology concepts to enable
consistent representation of the entity mentions in
the common vector space (see Section 3.1).

Example 3 Consider the first entity mention iden-
tified in Example 2. The following text is used to
compute the mention embedding q:

name: skin tumors

definition: Abnormal growths or masses

that occur in the skin and can be benign

or malignant.

By querying I with q, we can retrieve the top-3
concepts in HPO with the highest similarity score,
according to cosine similarity function:

• ID: HP:0008069

name: Neoplasm of the skin

definition: A tumor (abnormal growth of tissue)

of the skin.

score: 0.9329

• ID: HP:0000951

name: Abnormality of the skin

definition: An abnormality of the skin.

score: 0.8974

• ID: HP:0012056,
name: Cutaneous melanoma

definition:The presence of a melanoma of skin.

score: 0.8937

Figure 5: Prompt template for EL.

3.3.2 Entity Linking
To ground m using the retrieved candidate set
{C ′

1, . . . C
′
k} ⊂ O, we re-frame the EL task as

a multiple-choice selection and prompt the LLM to
identify the ontology concept among the provided
candidates that best matches an entity description
(m, d). The candidate concepts are provided as
part of the prompt with their properties, including
concept ID, name and definition. When selecting
a concept for a given mention m, the LLM is in-
structed to associate a confidence level with its
answer (a value in {HIGH, MEDIUM, LOW}), which
we use as a filtering mechanism when parsing the
EL results. The EL prompt is generated according
to the template in Figure 5, and adopts a few-shot
learning technique, where the LLM learns to per-
form the EL task in-context by following a set of
examples provided as part of the prompt.

Examples are ontology-specific and present the
following structure: i) a list of concepts with the
ID, name, and definition; ii) a text describing the
entity mention to be grounded; iii) the expected
answer; and iv) the associated confidence level. In
the case of the HPO, Figure 6 shows the example
that can be included in the EL prompt for one-shot
Entity Linking. This negative example serves the
purpose of instructing the LLM to be conserva-
tive and refrain from mapping any entity mention
extracted with NER unless the matching concept
belongs to the provided candidates.
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Figure 6: An HPO-specific example for the EL task.

Example 4 Consider the mention and the set of
retrieved candidates in Example 3. The template
in Figure 5 is filled with: the name of the domain
ontology (HPO); the HPO-specific example in
Figure 6; the retrieved candidates and their
properties; the description of the entity to be
grounded. Invoking the LLM with EL prompt, the
following result is returned:

answer: HP:0008069

confidence: HIGH

4 Experiments

4.1 Benchmark Corpora
To validate our approach, we evaluate the per-
formance of REAL for clinical phenotyping and
phenotype annotation using two publicly available
benchmark datasets: the HPO GSC+ (Lobo et al.,
2017) and the dev component of the corpus pub-
lished by BioCreative VIII Track 3 (Weissenbacher
et al., 2023), referred to as BIOC-GS hereafter.
HPO GSC+ consists of 228 manually annotated
PubMed abstracts, with a total of 1933 annotations
that cover 497 unique HPO IDs. The BIOC GS
consists of 454 clinical observations manually an-
notated for phenotypes identified during dysmor-
phology physical examinations, that cover a total
of 358 unique HPO IDs. As a reference resource
for grounding, we use HPO, that provides a stan-
dardized vocabulary of phenotypic abnormalities
associated with human hereditary and other dis-
eases (Köhler et al., 2019). After preprocessing the
ontology file, we indexed a total of 18.536 HPO
concepts (See Section 3.1).

4.2 Experimental Setting

Currently, the REAL implementation relies on the
OpenAI GPT models and feeds the prompts to the
LLM by calling the OpenAI API. For evaluation,
we use the gpt-3.5-turbo-16k model accessed
through the GPT-3 completion endpoint, with de-
fault settings for temperature and max tokens. The
number of LLM calls per document is estimated
as follows: 2 requests sent to the OpenAI com-
pletion API endpoint2 in the NER step, one for
entity extraction and one for definition generation.
Followed by h calls in the EL step, one call for
each extracted mention. Additionally, for candi-
date retrieval, each entity mention requires a call
to the OpenAI embedding API endpoint3, which
is handled automatically by the ChromaDB vec-
tor store. Due to constraints on the context win-
dow size (16,385 tokens for gpt-3.5-turbo-16k
model), we limit the retrieved candidate set to a
small number. In our experiments, we set k = 3,
and included three candidate concepts in the EL
prompt, as we observed no substantial improve-
ments when using a larger number of candidates
(see Section 4.4 for further discussion). Moreover,
to ensure precise results in the EL phase, we opt
to consider only mention/concept pairs associated
with a HIGH confidence level, discarding less confi-
dent answers generated by the LLM.

To evaluate the effectiveness of the RAG
paradigm in the context of the LLM-based biomed-
ical concept recognition, we benchmark against a
base case, where we directly instruct the GPT-3.5
model to extract and align HPO concepts from the
input text using a single instructional prompt. The
baseline prompt used in the experiments is adopted
from Groza et al. and reported in Appendix 8.

In assessing the role of the LLM component
in the entity linking step, our evaluation involves
two distinct grounding strategies: one relies on
the LLM to select the appropriate candidate con-
cept for a given entity mention, while the other
always selects the first matching concept retrieved
by the embedding-based search. We refer to this
latter strategy, which does not utilize the LLM in
the linking phase, as REAL-1st HIT to differenti-
ate it from the strategy using GPT3.5 for ground-
ing, which we denote as REAL-GPT3.5. For a
fair comparison with existing unsupervised meth-
ods for concept recognition, our evaluation in-

2https://api.openai.com/v1/chat/completions
3https://api.openai.com/v1/embeddings

https://api.openai.com/v1/chat/completions
https://api.openai.com/v1/embeddings
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Document level Mention level
System P R F1 P R F1
GPT-3.5 0.12 0.28 0.16 0.07 0.17 0.10
SPIRES 0.84 0.31 0.45 0.84 0.19 0.31
REAL-1st hit 0.40 0.49 0.44 0.33 0.36 0.39
REAL-GPT3.5 0.68 0.48 0.56 0.67 0.32 0.43

Table 1: Evaluation results on HPO GSC+

cludes SPIRES, a close prompt-based alternative
to the REAL approach, accessible with local in-
stallation of the OntoGPT Python package 4. For
entity linking, SPIRES uses the OBO annotator
(Taboada et al., 2014), a state-of-the-art dictionary-
based method, designed for automatic annotation
of biomedical literature with HPO terms. To exe-
cute HPO concept recognition with SPIRES, we
utilize a predefined template for extracting human
phenotypes, which is provided with the OntoGPT
installation.5 For phenotype extraction, SPIRES
uses the gpt-3.5-turbo-16k model.

We evaluate the results by computing standard
metrics for the concept recognition task: precision
(P), recall (R) and F1-score (F1). The evaluation is
performed at both document and mention levels. At
the document level, we compute true positives as a
set of target concepts that were found at least once
in a given document and assigned a correct HPO
identifier. At the mention-level, we account for all
occurrences of a target concept within a document.

4.3 Results

Tables 1 and 2 present the evaluation results for
the HPO concept recognition on HPO GSC+ and
BIOC GS datasets, respectively. To facilitate the
performance comparison across systems, Figure 7
illustrates the precision, recall, and F1 score values
considering the document level evaluation, which
closely reflects the pattern observable at the men-
tion level. Consistent results are also observed
when conducting testing on the two datasets, as
discussed in this section. Among other methods,
REAL-GPT3.5 can correctly recognize more HPO
concepts, achieving the best F1 scores at both men-
tion and document level. The dictionary match-
ing method used with the OBO annotator, allows
SPIRES to achieve the highest precision, which
does not compensate for poor recall rates. The re-
sults show that the retrieval mechanism integrated

4https://github.com/monarch-initiative
5https://github.com/monarch-initiative/

ontogpt/blob/main/src/ontogpt/templates/

Document level Mention level
System P R F1 P R F1
GPT-3.5 0.26 0.33 0.29 0.22 0.29 0.25
SPIRES 0.93 0.31 0.47 0.93 0.19 0.47
REAL-1st hit 0.59 0.49 0.42 0.59 0.48 0.41
REAL-GPT3.5 0.69 0.67 0.66 0.68 0.66 0.65

Table 2: Evaluation results on BIOC GS

in REAL significantly improves the recall, com-
pared to other methods. In fact, REAL-1st hit, that
uses the 1st retrieved concept for entity linking,
achieves similar F1 score as SPIRES while balanc-
ing the precision and recall rates. Comparing the
two grounding strategies, we observe that REAL-
GPT3.5 improves the precision over REAL-1st hit
at both mention and document level. Leveraging
the LLM for entity linking produces more precise
results as it enables reasoning over the best match
through multiple-choice selection and effectively
filters out spurious extractions, that is, entity men-
tions erroneously identified as phenotypes by NER.
In summary, the results on the GSC+ and BIOC GS
datasets demonstrate the effectiveness of the REAL
approach for phenotype concept recognition. Our
experiments here were limited to GPT-3.5, but it is
likely that GPT-4 will yield even better results.

4.4 Error analysis and discussions

The formulation of the NER prompt represents one
of the critical aspects for the success of the ap-
proach. Poor results on NER propagate down the
pipeline affecting the usefulness of the entity link-
ing step. We assess the completeness of the NER
results through a manual analysis of the generated
extractions. Our evaluation suggests that the NER
prompt achieves pertinent extractions providing a
comprehensive coverage of the phenotypic features
in both corpora. Some extractions from the HPO
GSC+ include concepts not covered in the HPO
ontology, such as mentions of diseases (Prader-
Willi syndrome, Angelman syndrome), or generic
phenotype-related concepts (human anomaly, ge-
netic abnormalities). Additionally, we observe
that a number of HPO terms extracted by REAL
lack annotation in HPO GSC+. For instance, the
phenotype “Uniparental disomy” is recognized 17
times in the corpus, but it is not present in the
gold standard annotations, despite the existence
of the exact match in the HPO: “Uniparental di-
somy” (HP:0032382). Such extractions represent
the main cause of false positives and frequently in-

https://github.com/monarch-initiative
https://github.com/monarch-initiative/ontogpt/blob/main/src/ontogpt/templates/
https://github.com/monarch-initiative/ontogpt/blob/main/src/ontogpt/templates/
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Figure 7: Document level evaluation results on HPO GSC+ and BIOC GS.

volve HPO terms close to the root of the taxonomic
tree, such as phenotypic abnormality (HP:0000118)
and mode of inheritance (HP:0000005).

Upon examining the frequently missed HPO
terms, we identified two main causes of false neg-
atives. The first issue is specific to HPO GSC+
and stems from the overlapping concepts, where
phrases contain multiple nested HPO terms. For in-
stance, the phrase “skin tumors” is annotated with
both “Neoplasm of the skin” (HP:0008069) and

“Neoplasm” (HP:0002664). By design, REAL, ex-
tracts mentions of entities as a whole and annotates
to the most specific HPO term, failing to produce
identifiers for nested concepts. This explains a
high number of omissions for generic terms such as,

“Nurofibroma”, “Schwannoma”, and “Meningoma”,
usually nested within more specific HPO concepts.

The second issue involves complex entity men-
tions, frequently found in clinical notes, that have
a form of compound and prepositional phrases,
such as, “scarring between 2 and 3” and “2,3 syn-
dactyly bilaterally in feet”. These extractions may
produce definitions where the meaning of the en-
tity is altered with respect to the target HPO term,
yielding a poor set of retrieved candidates. For
instance, the extracted mention, “scars on axil-
lary lines bilaterally” produces a definition (“Per-
manent marks or blemishes that have formed on
the skin in the areas of the armpits, appearing on
both sides of the body.”), that shifts the entity’s
meaning away from the target concept , “Scarring”
(HP:0100699), towards related HPO terms, such as

“Axillary freckling”, and “Axillary lymphadenopa-
thy”. Moreover, due to the high level of granu-
larity of the extracted mentions in the BIOC GS

dataset, entities are often grounded in HPO terms
that are more specific than those provided in the
annotations. For example, the mention “skins on
the right foot feet thickend” is mapped to “Hyper-
trophy of skin of soles”(HP:0007403) (i.e., “Thick
skin of soles”), instead of the target “Thickend skin”
(HP:0001072). These and similar issues can arise
as a consequence of annotation idiosyncrasies that
vary across benchmarks and could be addressed via
additional post-processing of the NER results.

By analyzing the retrieval results, we found that
around 65% of target concepts in HPO GCS+ (78%
in BIOC GS) were effectively retrieved among
candidates using approximate k-nearest neighbor
search with k = 3. Preliminary experiments with
greater values of k show no significant improve-
ment, suggesting that the effectiveness of the can-
didate retrieval step mostly depends on the abil-
ity of the LLM to produce entity descriptions that
are semantically close to target HPO terms. Our
approach relies on the LLM to produce factual
definitions for extracted mentions. However, fu-
ture research might explore alternative strategies to
ensure the factuality of the generated definitions.
(Remy and Demeester, 2023).

It is important to stress that the domain exper-
tise requirements vary across different phases of
the concept recognition pipeline. In the grounding
step using RAG, the domain knowledge is provided
from outside, significantly reducing the expertise
required by the LLM for entity normalization. In
contrast, the biomedical NER task relies on the
domain knowledge encoded within the model’s pa-
rameters, demanding greater familiarity with the
target domain to accurately recognize and define
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entities. This makes the NER task more knowledge-
intensive and crucial for the overall success of the
approach.

5 Concluding remarks

In this work, we introduced a novel approach for
ontology-based concept recognition, that leverages
RAG to harness general-purpose LLMs for auto-
matic annotation of biomedical texts with classes
from domain ontologies. The approach does not re-
quire domain specific training, but relies on prompt-
engineering for both NER and EL tasks, integrat-
ing a retrieval mechanism to dynamically source
domain knowledge from biomedical ontologies.
We discussed the effectiveness of our approach
on clinical phenotyping and phenotype annotation
with experiments conducted on HPO GSC+ and
BIOC GS benchmark corpora. Ongoing efforts
focus on refining the prompt design to enhance per-
formance and consider the integration with other
GenAI providers. Using GPT models through Ope-
nAI’s API hinders the reproducibility of the results,
which represents the main limitation of the current
implementation. We plan to address this issue using
a local installation of open-source LLMs. Further-
more, future research activities include conducting
a comprehensive cross-domain evaluation to assess
the generalizability of the proposed solution to di-
verse application domains.
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