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Abstract

State-of-the-art performance by large pre-
trained models in computer vision (CV) and
natural language processing (NLP) suggests
their potential for domain-specific tasks. How-
ever, training these models requires vast
amounts of labelled data, a challenge in many
domains due to the cost and expertise required
for data labelling. Active Learning (AL) can
mitigate this by selecting minimal yet informa-
tive data for model training. While AL has
been mainly applied to single-modal tasks in
the fields of NLP and CV, its application in
multi-modal tasks remains underexplored. In
this work, we proposed a novel AL strategy,
Bidirectional Contrastive Active Learning strat-
egy (BiCAL), that used both image and text
latent spaces to identify contrastive samples
to select batches to query for labels. BiCAL
was robust to class imbalance data problems
by its design, which is a problem that is com-
monly seen in training domain-specific models.
We assessed BiCAL’s performance in domain-
specific learning on the clinical report genera-
tion tasks from chest X-ray images. Our exper-
iments showed that BiCAL outperforms State-
of-the-art methods in clinical efficacy metrics,
improving recall by 2.4% and F1 score by 9.5%,
showcasing its effectiveness in actively training
domain-specific multi-modal models.

1 Introduction

Active Learning (AL) is a branch of machine learn-
ing that aims to select a small set of the most infor-
mative data to annotate for model training (Settles,
2009). This technique allows the model to achieve
optimal performance while lowering the cost of
annotation. Moreover, by actively selecting data to
train on, a model trained under active learning can
sometimes surpass the performance that is trained
on the full dataset. AL has shown its great potential
in the field of natural language processing (NLP)
(Shelmanov et al., 2021; Dor et al., 2020; Shen

Figure 1: Flowchart of the querying process of BiCAL:
Image is passed to imaged encoder to obtain image em-
beddings, and the underlying training model to generate
reports. Reports generated are passed to a text encoder
to generate text embeddings. Together two embeddings
are compared and the contrastiveness of each data point
is calculated and queried. Refer detail to Algorithm 1.

et al., 2017; Margatina et al., 2021a) and computer
vision (CV) (Slade and Branson, 2022; Takezoe
et al., 2023). However, relatively few have explored
the application of active learning in a multi-modal
setting.

In addition, as the capabilities of general large-
pretrained models arise (Bai et al., 2023; OpenAI,
2023), a rising interest has been seen in fine-tuning
them to become domain-specific models. However,
when training models in specific domains, obtain-
ing quality labelled data is challenging due to the
domain expertise required for accurate annotation,
which is costly in both time and money. This mo-
tivates us to explore active learning’s application
in the domain-specific setting. We identify that in
domain-specific active learning, there exists one
key challenge – class imbalance in datasets is of-
ten seen in domain-specific settings, existing AL
methods struggle to actively select samples that
have less population but may be more important –
in medicine, common (healthy) samples often out
populate rare (unhealthy) samples. Models trained
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under such active learning strategies converge on
the commonly seen samples and perform poorly in
identifying rare sickness cases.

In this study, we introduce a novel AL strategy
Bidirectional Contrastive Active Learning strategy
(BiCAL) that is tailored to address the challenge in
domain-specific active learning. We assess BiCAL
and other established AL methods on clinical re-
port generation from chest X-ray images. Our key
contributions are:

1. We propose a novel AL strategy BiCAL that
is able to select rare but important cases inher-
ently to be robust against the class imbalance
limitations, which is a common problem in
clinical setting.

2. We present an in-depth analysis of existing
AL strategies for multi-modal task – clinical
report generation.

2 Related Work

This section provides the background of our pro-
posed AL strategy BiCAL. We first formalize the
active learning problem under the image-to-text
generation task and set up the notation for the rest
of the paper. Given a modelM, unlabelled image
data pool Xpool. We denote an unlabelled input
image as x ∈ Xpool, and the labelled text report
as y ∈ Y , where y = (y1, ..., yn), n is the number
of tokens in the generated report. We define the
labelled data pool Xlabel to contain image-report
pairs, where Xlabel ∩ Xpool = ∅ . The whole data
pool is Xall := Xlabel ∪ Xpool. The model is parame-
terized by vector w, as follows:

M = pw(y | x) = pw(y1, ..., yn | x) (1)

An acquisition function representing the query
heuristic in the AL setting is denoted as a(x,M).
At each active learning iteration, we acquire the
label of a batch Q of b number of unlabelled in-
stances from Xpool and add to the labelled data pool
Xlabel using a(x,M). The updated labelled data
pool Xlabel is used to train the underlying model
every iteration. This process iterates until a pre-
defined budget B is depleted. Sampling from the
pool is determined by the acquisition function as
follows :

x∗ = argmaxx∈Xpool
a(x,M) (2)

2.1 Uncertainty-based and Diversity-based
Active Learning

Uncertainty-based AL strategies often use a heuris-
tic that can measure the model’s uncertainty toward
unlabelled data and choose the unlabelled data with
the highest uncertainty (Lewis, 1995; Wang et al.,
2019; Shannon, 2001). Gal et al. (2017) demon-
strated the idea of measuring model uncertainty
by combining Bayesian Active Learning by Dis-
agreement (BALD) (Houlsby et al., 2011) with
Bayesian formulation of Neural Networks such as
Bayesian by Backprop (Blundell et al., 2015) and
MC dropout (Gal and Ghahramani, 2016). How-
ever, uncertainty-based active learning typically
depends on the underlying training model’s pre-
dictions for uncertainty measurements. This de-
pendence results in the “cold-start” problem (Yuan
et al., 2020; Ash and Adams, 2020), where these
methods are ineffective early in training due to the
initial model’s naivety.

On the other side, diversity-based Active Learning
aims to select a subset of the data that can best
represent the whole dataset, such that the model
achieves similar performance to full-tuning when
trained on the selected subset. There has been
much previous work in this stream of designing AL
strategies (Kim et al., 2006; Citovsky et al., 2021;
Sener and Savarese, 2018).

2.2 Hybrid Active Learning

There have also been some hybrid AL methods that
combine diversity and uncertainty in their design
(Ash et al., 2019; Yuan et al., 2020). Approaches
that infuse reinforcement learning into AL strate-
gies which learn the selection heuristic from scratch
were also seen (Fang et al., 2017; Liu et al., 2018;
Vu et al., 2019). There has been close work on
active learning to ours in natural language gen-
eration and abstractive text summarization, how-
ever, they focused on the single modal generation
task (Tsvigun et al., 2023; Gidiotis and Tsoumakas,
2021a; Perlitz et al., 2023; Gidiotis and Tsoumakas,
2021b).

The closest work to ours is Contrastive Active
Learning (CAL) proposed by (Margatina et al.,
2021b). They hypothesized that if two data points
are close in the underlying model feature space but
result in very different underlying model predictive
likelihood, then they may be lying on the model’s
decision boundary and therefore are a good can-
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didate to query. CAL uses K-Nearest Neighbors
(KNN) (Cover and Hart, 1967) to find and record
the top k neighbouring points by their model repre-
sentation encodings from the input. Then it com-
putes the KL divergence (Kullback and Leibler,
1951) between the model’s output probability of
each unlabelled instance with their recorded k
neighbours. The contrastive score of each unla-
belled instance is then calculated by the average of
all KL-divergence values of the neighbours. Ulti-
mately, the data point with the highest contrastive
score is selected to be queried.

3 Bidirectional Contrastive Active
Learning

We identify the following limitations that existing
AL methods have when training models in a clini-
cal setting. In clinical settings, data for healthy or
common sicknesses is often seen, while unhealthy
or rare sicknesses are rare in the population, lead-
ing to an imbalanced dataset. This leads to models
trained on such datasets that can converge easily
on the common cases, and have poor performance
on rare but important cases. Previous AL methods
have not yet addressed this problem, as they are not
able to explicitly identify important cases within
the dataset automatically. The original CAL would
identify two data points are neighbours if two data
points have the same sickness, and if the model
predicts differently for the two data points, they
are considered as ’contrastive’ and queried. Such
a heuristic cannot locate the positive (unhealthy)
cases efficiently, because negative (healthy) neigh-
bour pairs would outweigh the positive (unhealthy)
neighbour pair in the population, leading to the
sampling process suffering from class imbalance
and queries too many negative instances. There-
fore, models trained using CAL achieve a bad per-
formance in clinical efficacy and recalling positive
cases, as revealed by our experiments in Table 1.

3.1 BiCAL Algorithm

BiCAL is robust to class imbalance datasets by
its design and can automatically select rare but
valuable cases within a dataset for the model to
learn. This is done by bi-directionally augmenting
the contrastive definition and measuring the con-
trastiveness in pre-trained embedding space, em-
powering the algorithm to select rare samples in
domain datasets inherently.

We redefine two types of contrastive samples. For

BiCAL, contrastive examples have to satisfy one
of the following definitions:

1. Two data points with similar pre-trained em-
beddings but different pre-trained embed-
dings of their model generation outputs.

2. Two data points with different pre-trained em-
beddings but similar pre-trained embeddings
of their model generation outputs.

The intuition behind the second augmented defi-
nition is that common cases and rare cases will
most likely have the most different representations
of each other within the dataset. Therefore, if a
model generates similar outputs for two data points
that have different representations, this means it
is highly possible that at least one rare sample is
within the two data points, and the current model
hasn’t trained enough on at least one of the two
data points. Hence by augmenting the contrastive
definition in BiCAL, we have increased the chance
of querying a rare case, compared to CAL. More-
over, by leveraging pre-trained encoders, we isolate
the underlying model in generating the uncertainty
measure, alleviating the Cold-Start Learning prob-
lem (Yuan et al., 2020; Ash and Adams, 2020) – in
the initial stage of training, the underlying model is
naive due to the absence of domain knowledge, if
we use the underlying model’s encoder to generate
uncertainty measure it would result in a decrease
in the ineffectiveness of such uncertainty-based AL
strategies.

Formally, each data point xi should obtain k num-
ber of similar neighbours Xclose and k number of
dissimilar neighbours X f ar.

Xclose := f
(
Φ(xi),Φ(x j)) < ϵ

X f ar := f
(
Φ(xi),Φ(x j)) > γ

(3)

For the first contrastive sample, the data point
should satisfy the following condition:

f
(
Ω(M(xi)),Ω(M(xm

close))
)
> γ (4)

For the second contrastive sample, the data point
should satisfy the following conditions:

f
(
Ω(M(xi)),Ω(M(xm

f ar))
)
< ϵ (5)

Where Φ(.) ∈ Rd′ is a selected pre-trained image
encoder that maps input xi and x j to its feature
space. Ω(.) ∈ Rd′′ is the selected pre-trained text en-
coder that maps the predicted output of underlying
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Algorithm 1 Single iteration of BiCAL
Input: all data Xall, unlabeled data Xpool, acquisition size b, modelM, number of neighbours k, distance metric function f (.), pre-trained image

(encoding) function Φ(.), pre-trained text (encoding) function Ω(.), contrastive ratio c ∈ [0, 1], Total number of unlabelled data N, .
1 S close := ∅ ; S f ar := ∅
2 for i in 1, . . . ,N do
3 d j ← f

(
Φ(xi),Φ(x j)

)
▷ x j ∈ Xall, j = 1, ...,N

4 Xclose ← Select k number of x∈ Xall with lowest d j ▷ Xclose = {x1
close, ..., x

k
close}; j , i

5 X f ar ← Select k number of x∈ Xall with highest d j ▷ X f ar = {x1
f ar , ..., x

k
f ar}

6 Ŷclose ←M(Xclose)
7 Ŷ f ar ←M(X f ar)
8 ŷi ←M(xi)

9 si
close ←

1
k

k∑
m=1

f
(
Ω(ŷi),Ω(ŷ m

close)
)

10 si
f ar ←

1
k

k∑
m=1

f
(
Ω(ŷi),Ω(ŷ m

f ar)
)

11 S close := S close ∪ {si
close} ; S f ar := S f ar ∪ {si

f ar}

12 end
13 Q1 ← Select b × c number of x ∈ Xpool with the highest sclose ▷ sclose ∈ S close
14 Q2 ← Select b × (1 − c) number of x ∈ Xpool with the lowest s f ar ▷ s f ar ∈ S f ar

Output: Q1 ∪ Q2

model ŷi to its feature space. f(.) is a distance met-
ric, such as Euclidean distance or cosine similarity.
ϵ and γ represent the threshold for a very small and
a very large distance value respectively, although in
practice we adopt ranking instead of using a thresh-
old. M(.) is the underlying training model of the
active learning loop, such that ŷi ← M(xi). We
detail the single iteration of BiCAL’s algorithm as
follows:

Compute Neighbours We use the encoding func-
tion from the pre-trained model Φ(.) to map all the
data points to its pre-trained embedding space. For
each unlabelled instance xi, we use cosine simi-
larity f (.) to measure the distances between the
embeddings of xi and all the other data points in
the Xall (line 3). We record xi’s nearest (top k) and
furthest (bottom k) neighbours in the embedding
space by the distance calculated (lines 4-5).

Compute Contrastive Scores The unlabelled in-
stance xi and all its neighbours Xclose and X f ar will
be passed to the underlying modelM to generate
their text outputs ŷ (lines 6-8). The generated text
from the model is then encoded by the selected pre-
trained language model Ω(.) to obtain text embed-
ding of the generated text. Using these embeddings,
we can calculate two different contrastive scores
for the unlabelled instance xi (lines 9-10). The first
contrastive score si

close is calculated by the average
distance between the embedding of generated out-
put of the unlabelled instances with their nearest
neighbours, and the second one si

f ar is calculated
with its furthest neighbours.

Query Two Contrastive Batches For each unla-
belled instance xi, we obtain two lists of contrastive
scores S close and S f ar. We select the unlabelled in-
stances using the two contrastive scores separately.
For S close, we select the top b × c number of in-
stances, where b is the total intended batch size
for query, and c is a hyperparameter “contrastive
ratio” that controls the ratios of samples sampled
from the two contrastive definitions. This gives
us a batch of instances Q1 of the first contrastive
definition (line 13). For S f ar, we select the bottom
b × (1 − c) number of instances. This gives us a
batch of instances Q2 of the second contrastive def-
inition (line 12). Ultimately, two batches Q1 and
Q2 combines to give the output of BiCAL.

4 Experiment Settings

We assess BiCAL and other established AL meth-
ods’ performance in training general multi-modal
models to specify on the task of clinical report
generation from chest X-ray images. In every ac-
tive learning loop, the underlying model denoted
as M, was fine-tuned twice on the labelled pool
Xlabel. Subsequently, we evaluated the model on
the test dataset using various NLG metrics. Each
experiment was run in 3 folds with different ran-
dom seeds, each fold containing 10 active learning
iterations, where 100 data points were queried per
iteration, i.e. 1000 data points were queried in
total. This choice of 1000 data points reflects real-
world scenarios where active learning is applied
when labelled data is not available. Our goal was
to examine the efficiency and performance of ac-
tive learning methods under constrained labelling
budgets in a medical setting. In real-world AL sce-
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narios, labelling a large size of unlabelled data is
often impractical due to the significant expertise la-
belling effort required. Therefore, 1000 data points
were deemed sufficient to assess the performance
of the AL methods in our focus while mimicking
a real-world AL situation. Future work could ex-
plore varying the number of training examples (e.g.,
1500, 2000) to understand further the impact of la-
belled data quantity on active learning strategies in
training medical models.

4.1 Baselines
We evaluate our proposed BiCAL against various
literature Active Learning strategies:

1. Random Sampling (RS): Unlabelled in-
stances are drawn at random.

2. Normalized Sequence Probability (NSP):
Uses the probability of the generated sequence
by the model as a measure of uncertainty.

NSP = 1−exp

1
n

n∑
i=1

logP(yi | y1 . . . , yn, x)


(Tsvigun et al., 2023; Wang et al., 2019).

3. Expected Normalised Sentence Probability
(ENSP): Bayesian AL method where it has
the same intuition as NSP.

ENSP = 1 − Ew∼qθ̂ p̄w(y|x)

(Tsvigun et al., 2023; Ueffing and Ney, 2007;
Wang et al., 2019).

4. Expected Normalised Sentence Variance
(ENSV): Similar to ENSP but uses variance
instead of expectation between the sequence
probability.

ENSV = Varw∼qθ p̄w(y|x)

(Tsvigun et al., 2023; Ueffing and Ney, 2007;
Wang et al., 2019).

5. Contrastive Active Learning (CAL): SOTA
AL method described in section 3 (Margatina
et al., 2021b).

In addition, for BiCAL, we implemented two vari-
ants by varying the choice of pre-trained image
encoder Φ(.) in the BiCAL algorithm. We have
experimented with two types of pre-trained models,
Dinov2 and CheSS, to examine the effect of differ-
ent types of pre-trained image encoders in our algo-
rithm. Dinov2 is an image model that is pre-trained

on a general image dataset (Oquab et al., 2023),
whereas CheSS is pre-trained on a CXR dataset
(Cho et al., 2023). For the pre-trained text encoder
Ω(.), we have fixed the selection to GatorTron
(Yang et al., 2022) based on its SOTA performance
in clinical NLP tasks (that outperforms BioBERT
(Lee et al., 2019), ClinicalBERT (Huang et al.,
2020), BioMegatron (Shin et al., 2020)).

4.2 Datasets
We used the labelled datasets MIMIC-CXR (John-
son et al., 2019a) and IU X-Ray (Demner-Fushman
et al., 2015) for our simulation of active learning
conditions. The IU X-Ray dataset contains 3,955
radiology reports with 7,470 associated chest X-
ray images, while MIMIC-CXR includes 227,835
radiology reports with 377,110 associated chest
X-ray images. Following the methodology from
Chen et al. (2022), we excluded samples without
accompanying reports. We partitioned the IU X-
Ray dataset into training and testing sets using an
85%:15% ratio and used the official train-test split
for MIMIC-CXR.

In our simulated active learning experiments, we
queried only 1,000 data points. As it was imprac-
tical in terms of running time to run the experi-
ment on the entire MIMIC-CXR dataset of 377,110
images, we leveraged the structured labels from
MIMIC-CXR-JPG (Johnson et al., 2019b) and con-
ducted stratified sampling to obtain a 10% subset of
the training split (34,463 data points). This ensured
that the subset closely mirrored the label distribu-
tion of the full MIMIC-CXR dataset. We used this
stratified subset for training and the official test set
for evaluation. We release the processed reports
with their image IDs for both datasets in CSV files
in the repository and provide the data distribution
of MIMIC-CXR before and after subset sampling
in Table 5 and 6 in the Appendix.

4.3 Setup
Experiments were conducted on a single NVIDIA
RTX6000 GPU. We adopted the AdamW optimizer
(Loshchilov and Hutter, 2019) with a learning rate
of 3e-5 and a weight decay of 3e-7. A warm-up
scheduler was applied to the learning rate for the
initial 200 steps. Due to computational constraints,
we used a training batch size of 8 and limited the
maximum number of tokens for generation to 100.

In our experiment, we fine-tuned a vision encoder-
decoder model initialized with pre-trained Vision
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Precision Recall F-1 Score Amount of training data
RS 0.450 0.252 0.168 1000

NSP 0.436 0.241 0.194 1000
ENSP 0.558 0.266 0.200 1000
ENSV 0.451 0.268 0.195 1000
CAL 0.326 0.221 0.187 1000

BiCAL Dinov2 0.403 0.255 0.191 1000
BiCAL CheSS 0.429 0.274 0.219 1000

Full Tune 0.309 0.273 0.259 34,463 (full subset)
R2Gen 0.333 0.274 0.276 377,110 (full data)
CCR 0.586 0.237 <0.300* 377,110 (full data)

Table 1: Clinical Efficacy Metrics across AL Strategies after 1000 data queried on MIMIC-CXR Dataset. * stared
entries are estimated as the result is not found in the original paper. The best results over AL strategies of each
metric are highlighted in blue. The performance of all models is averaged from three runs.

Methods Example Outputs BLEU 1-4

Reference

The NG tube extends inferiorly beyond the diaphragm into the fundus of the stomach. Again
seen is moderate cardiomegaly. The pulmonary vascular congestion is stable. There are no new
focal consolidations. The fissural loculation of pleural fluid along the left chest wall has not
changed compared to the prior exam. There is no pneumothorax.

–

RS The lungs are well expanded and clear. There is no pleural effusion or pneumothorax. The
cardiomediastinal silhouette is within normal limits. There is no acute osseous abnormality. [0.42, 0.36, 0.30, 0.24]

NSP
The heart is normal in size. The mediastinal and hilar contours appear within normal limits.
The pulmonary vasculature is normal. There is no pleural effusion or pneumothorax. The lungs
appear clear. There is no pulmonary edema.

[0.60, 0.53, 0.43, 0.36]

CAL

The patient is status post median sternotomy, CABG, and mitral valve replacement. The
right-sided Port-A-Cath terminates in the low SVC. The right-sided pacemaker terminates in
the low SVC. The mediastinal and hilar contours are unchanged. There is no pleural effusion or
pneumothorax. The cardiac silhouette is top normal. There is no evidence of pneumothorax.

[0.85, 0.71, 0.56, 0.44]

BiCAL
CheSS

The lungs are clear without focal consolidation, effusion, or pneumothorax. The cardiac and
mediastinal silhouettes are within normal limits. No acute osseous abnormalities. [0.37, 0.31, 0.24, 0.19]

Table 2: Case study of Generation Result on Negative Cases using Different AL Methods.

Transformers (ViT) (Dosovitskiy et al., 2020) and
GPT-2 (Radford et al., 2019). These models were
chosen for their popularity and strong performance
in computer vision and natural language process-
ing, respectively. Our primary focus was to inves-
tigate active learning strategies in a multi-modal
task, so we did not explore other model choices.
We utilized HuggingFace (Wolf et al., 2020) and
Deepspeed (Rasley et al., 2020) to facilitate our
experiment setup.

5 Results and Analysis

We used two types of evaluation metrics: natural
language generation (NLG) metrics and domain-
specific (clinical efficacy) metrics. This provided
a comprehensive evaluation of the generated re-
ports in terms of general and domain-specific per-
formance. For NLG metrics, we reported BLEU
(Papineni et al., 2002) and ROUGE (Lin, 2004)
scores at each active learning iteration. For clini-
cal efficacy metrics, we used the CheXpert (Irvin
et al., 2019) model to label the generated and refer-
ence reports. We reported precision, recall, and F1
scores for the labeled categories of the generated
and reference reports. This evaluation approach
is widely used in chest X-ray clinical report gen-

eration tasks (Chen et al., 2022; Liu et al., 2019,
2021).

5.1 Clinical Efficacy Metrics

We first assessed the baseline methods and our
strategy after 1000 queries on MIMIC-CXR us-
ing domain-specific metrics to examine the perfor-
mance of active learning (AL) strategies, which
is crucial for training clinical models. Table 1
displays the clinical efficacy metrics of various
AL strategies based on 1000 data queries from
a MIMIC-CXR dataset subset. The table’s last
three rows show the performance of our underlying
model after fine-tuning for 10 epochs on the full
MIMIC-CXR dataset subset, R2Gen (Chen et al.,
2022), and the model (CCR) from Liu et al. (2019).
These latter two are fully supervised models trained
on the full MIMIC-CXR dataset, designed to ex-
cel in chest radiology report generation tasks, with
their performance referenced directly from their
published papers.

A notable observation is that BiCAL CheSS sur-
passed baseline methods in recall and F1 scores
while maintaining a competitive average precision
score. This suggests that the BiCAL CheSS ap-
proach effectively recognizes more rare cases (un-
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Method BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L
CAL 0.4978 0.4177 0.3313 0.2685 0.3115 0.0996 0.2143
RS 0.4487 0.3762 0.3008 0.2456 0.3040 0.0979 0.2138
NSP 0.4832 0.3997 0.3160 0.2563 0.2994 0.1026 0.2178
ENSP 0.4238 0.3569 0.2868 0.2355 0.3066 0.1013 0.2205
ENSV 0.3588 0.3060 0.2477 0.2047 0.2939 0.0969 0.2119
BiCAL Dinov2 0.5025 0.4200 0.3343 0.2726 0.3096 0.1001 0.2183
BiCAL CheSS 0.3930 0.3299 0.2636 0.2153 0.2870 0.0905 0.2078

Table 3: Average NLG performance of different AL strategies after 1000 queries on MIMIC-CXR

Figure 2: Average NLG Performance of AL Strategies and Best-performing Baselines on MIMIC-CXR

healthy scenarios) than other AL strategies, though
it may occasionally increase false positives, as in-
dicated by the precision score. In medical diagnos-
tics, catching every potential disease case (reducing
false negatives) is crucial. Therefore, high recall
is preferable to high precision, making BiCAL’s
performance desirable in our context and demon-
strating BiCAL CheSS’s superiority in generating
clinically accurate reports.

Remarkably, the BiCAL CheSS method achieved
a recall score that surpasses models fine-tuned on
the entire MIMIC-CXR subset (Full Tune). Addi-
tionally, it achieved competitive performance with
fully supervised models R2Gen and CCR, with a
better recall score and an F1 score not much lower.
This is noteworthy, considering this performance
was achieved with only 1000 data points (less than
0.3% of the whole MIMIC-CXR).

An interesting observation is that although CAL
performed well in the NLG metrics on the MIMIC-
CXR dataset (Figure 3), its clinical precision and
recall scores were the least impressive among all
methods. This suggests that while CAL trains mod-
els to produce seemingly accurate reports, these
might not be clinically sound. By augmenting the
contrastive bidirectionally and utilizing pre-trained
encoders, the domain-specific performance of this
contrastive active learning approach is largely en-
hanced, demonstrating the success of our approach.
We include a case study of generation performance
on rare cases using various AL methods in Table 7

in the Appendix.

Furthermore, evidence of the task’s complexity is
seen in the last three rows of Table 1. These rows in-
clude results from R2Gen and CCR, models specif-
ically tailored for chest X-ray report generation and
comprehensively trained on the full MIMIC-CXR
dataset. Despite their specialized design, their clini-
cal performance remains relatively low. This under-
scores the inherent challenge of our downstream
task—clinical report generation. The intricacies in
medical images may be difficult for the underlying
model’s capability to learn, suggesting that to truly
elevate clinical accuracy, superior clinical models
adept at the task may need to be designed.

5.2 Natural Language Generation Metrics

We found that for the IU X-ray dataset, no sin-
gle strategy consistently outperformed the others.
Notably, RS and NSP showed marginally better per-
formance during the initial four iterations in both
BLEU and ROUGE metrics. For the MIMIC-CXR
dataset, CAL performed slightly better in ROUGE
scores, while BiCAL was competitive with CAL in
BLEU scores, as shown in Figure 3.

The varying performance of CAL across the
MIMIC-CXR and IU X-ray datasets suggests that
CAL’s superiority did not extend to the IU X-ray
dataset. This may be due to the different data vol-
umes. Smaller datasets result in a limited unlabeled
data pool, potentially narrowing batch sample vari-
ance and minimizing observable performance vari-
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ance. Consequently, the queried batches of differ-
ent AL strategies on the IU X-ray dataset have more
overlap than on MIMIC-CXR, leading to similar
performance across strategies.

For the BLEU score, BiCAL Dinov2 performed
better than all strategies before 500 queries but was
surpassed by CAL afterwards (≥ 500), though it
remained competitive. For ROUGE scores, CAL
consistently retained slightly better performance
starting from 300 queried data. This comparison
demonstrates BiCAL’s competitiveness in NLG
metrics. As shown in Table 3, after 1000 queries,
BiCAL Dinov2 achieved the best performance in
all BLEU scores and the second-best performance
in all ROUGE scores.

Although BiCAL only surpassed other literature
AL methods in some NLG metrics, it remained
competitive with the best-performing baseline
methods. However, language models have been
criticized for producing hallucinated text (Ouyang
et al., 2022; Stiennon et al., 2020; Ziegler et al.,
2019). In a medical setting, our priority is creat-
ing accurate clinical reports, not just authoritative-
sounding ones. We believe the relatively worse
performance of BiCAL CheSS is due to the hallu-
cination problem of LLMs.

CAL and other methods suffer from class imbal-
ance data and may select more healthy cases for
training, leading to hallucinated models, that are
good at generating good negative (healthy) reports
containing many common phrases. In contrast,
BiCAL may have a higher proportion of positive
cases, training a model with higher clinical efficacy.
However, this model’s ability to write comprehen-
sive healthy reports that match the reference deteri-
orates. This results in worse performance on NLG
metrics due to the class imbalance problem (more
negative cases than positive in the test set, caus-
ing the model to generate negative reports more
often). This hypothesis is supported by our anal-
ysis of the generation results of the models under
different active learning methods, including a case
study in Table 2. It can be seen that although all
reports are saying the candidate contains no signif-
icant diseases, but other methods learn to give a
more comprehensive healthy report, which results
in a higher BLEU score. Thus due to the imbal-
anced dataset problem, the average NLG score of
the other methods may exceed BiCAL despite be-
ing less clinically accurate in positive cases (shown

c Precision Recall F-1 Score
0 0.381 0.254 0.177

0.25 0.376 0.241 0.170
0.50 0.430 0.274 0.219
0.75 0.516 0.250 0.188

1 0.417 0.264 0.199

Table 4: Micro Average of Precision, Recall, and F-1
Score on CheXpert classification Result of BiCAL using
different contrastive ratio c after 1000 data queried on
MIMIC-CXR Dataset

in clinical efficacy metrics in Table 1). We also
include a positive case study from our analysis to
show BiCAL’s ability to train clinically accurate
models in Table 7.

5.3 Ablation Study
In Sections 5.1 and 5.2, we discussed the impact
of different image encoders on the BiCAL algo-
rithm, comparing those pre-trained on a general
image dataset (Dinov2) and a Chest X-ray dataset
(CheSS). Additionally, a crucial component of the
BiCAL algorithm is the contrastive ratio, denoted
as c, which determines the sampling ratio between
two contrastive definitions in a batch. Our previous
experiments used a default c value of 0.5, meaning
an equal split between the two contrastive defini-
tions. As shown in Table 4, for clinical efficacy
metrics, BiCAL performs best when c is 0.5 in
terms of clinical recall and F1 scores. For clinical
precision, a c value of 0.75 seems optimal. The
poorest performance in terms of clinical recall is
observed at c = 0.25. This suggests that while a c
value of 0.5 may not be the best for NLG metrics,
it ensures the generation of higher clinical quality
reports by achieving the best recall of diseases in
the generated reports.

6 Conclusion

In this work, we present a study on the effective-
ness of current active learning methods for domain-
specific multi-modal learning, specifically on the
task of clinical report generation from chest X-
ray images. We identified the challenge of class
imbalance in domain-specific active learning and
addressed it by introducing BiCAL, a new active
learning technique. BiCAL excelled in both NLG
and domain-specific (clinical efficacy) metrics, no-
tably outperforming baselines in clinical recall and
F1-score.

We found that existing AL strategies demonstrate
similar performance in NLG metrics for the task
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of clinical report generation from chest X-ray im-
ages. This may be due to the complexity of our
task, which requires training the model to acquire
clinical expertise to generate accurate and clinically
sound reports. Interestingly, our tests revealed that
an AL strategy’s high performance in NLG metrics
does not ensure equal success in domain-specific
(clinical) performance, possibly due to the hallu-
cination properties of language models. We hope
this work provides valuable insights and can act
as a starting point for researchers in the future on
the task of active learning in multi-modal clinical
tasks.

Ethical Consideration and Limitations

We note that despite the success of BiCAL in our
study of clinical report generation, in practice, its
performance is yet to be confirmed. We have simu-
lated our experiments based on a labelled dataset
where the radiology report was collected under a
monitored condition such that their format may
achieve a certain level of consistency (Johnson
et al., 2019a; Demner-Fushman et al., 2015). How-
ever, in practice, the queried data’s label report may
vary based on different radiologist labellers, which
may cause noise in the training dataset, which may
affect the effectiveness of BiCAL.

We identify that for this work have used sensitive
personal data that is related to the health sector. We
used MIMIC-CXR (Johnson et al., 2019a) and IU
X-Ray (Demner-Fushman et al., 2015) datasets in
this project. We note that both datasets have been
de-identified, where they have removed all personal
health information (PHI). This has ensured the pri-
vacy and confidentiality of the individuals. During
this project, we handled the data responsibility and
used it only for the purpose of research. No at-
tempt at re-identification of the datasets is made.
We have also signed the data use agreement for
MIMIC-CXR before we use the data. We note that
MIMIC-CXR and IU X-rays, just like all datasets,
may contain inherent biases based on patient infor-
mation such as where the data is collected. More-
over, active learning is a technique that samples
data based on a certain heuristic, which therefore
may introduce additional bias in the sampling and
training of the model. This work researches the
effectiveness of active learning in clinical report
generation, we recognize this potential bias that
may be introduced by our research, and this also
comes along with our work’s contribution to the

improvement of the field of active learning in the
clinical sector.

Due to the difficulties in acquiring publicly avail-
able domain-specific image-report pair data, we
chose to work with the task of clinical report gen-
eration from chest X-rays. As we designed the
BiCAL algorithm, it was not tailored to the clin-
ical report generation task that we conducted our
experiments. Moreover, we believe that with the
intricacies and high level of expertise required in
the medical domain, we believe experiments con-
ducted in this domain can provide valuable insight
and act as a good reference for AL’s performance
on domain-specific learning in general. However,
further work should be done in the future to test
the performance of BiCAL in other domains, given
that the data is available.

References
Jordan T. Ash and Ryan P. Adams. 2020. On
warm-starting neural network training. Preprint,
arXiv:1910.08475.

Jordan T Ash, Chicheng Zhang, Akshay Krishnamurthy,
John Langford, and Alekh Agarwal. 2019. Deep batch
active learning by diverse, uncertain gradient lower
bounds. arXiv preprint arXiv:1906.03671.

Yutong Bai, Xinyang Geng, Karttikeya Mangalam,
Amir Bar, Alan Yuille, Trevor Darrell, Jitendra Malik,
and Alexei A Efros. 2023. Sequential modeling enables
scalable learning for large vision models. Preprint,
arXiv:2312.00785.

Charles Blundell, Julien Cornebise, Koray
Kavukcuoglu, and Daan Wierstra. 2015. Weight uncer-
tainty in neural networks. Preprint, arXiv:1505.05424.

Zhihong Chen, Yan Song, Tsung-Hui Chang, and Xiang
Wan. 2022. Generating radiology reports via memory-
driven transformer. Preprint, arXiv:2010.16056.

Kyungjin Cho, Ki Duk Kim, Yujin Nam, Jiheon Jeong,
Jeeyoung Kim, Changyong Choi, Soyoung Lee, Jun Soo
Lee, Seoyeon Woo, Gil-Sun Hong, Joon Beom Seo, and
Namkug Kim. 2023. CheSS: Chest x-ray pre-trained
model via self-supervised contrastive learning. Journal
of Digital Imaging.

Gui Citovsky, Giulia DeSalvo, Claudio Gentile, Lazaros
Karydas, Anand Rajagopalan, Afshin Rostamizadeh,
and Sanjiv Kumar. 2021. Batch active learning at scale.
Preprint, arXiv:2107.14263.

Thomas Cover and Peter Hart. 1967. Nearest neighbor
pattern classification. IEEE transactions on information
theory, 13(1):21–27.

Dina Demner-Fushman, Marc Kohli, Marc Rosenman,
Sonya Shooshan, Laritza Rodriguez, Sameer Antani,

https://arxiv.org/abs/1910.08475
https://arxiv.org/abs/1910.08475
https://arxiv.org/abs/2312.00785
https://arxiv.org/abs/2312.00785
https://arxiv.org/abs/1505.05424
https://arxiv.org/abs/1505.05424
https://arxiv.org/abs/2010.16056
https://arxiv.org/abs/2010.16056
https://doi.org/10.1007/s10278-023-00782-4
https://doi.org/10.1007/s10278-023-00782-4
https://arxiv.org/abs/2107.14263


337

George Thoma, and Clement Mcdonald. 2015. Prepar-
ing a collection of radiology examinations for distribu-
tion and retrieval. Journal of the American Medical
Informatics Association : JAMIA, 23.

Liat Ein Dor, Alon Halfon, Ariel Gera, Eyal Shnarch,
Lena Dankin, Leshem Choshen, Marina Danilevsky,
Ranit Aharonov, Yoav Katz, and Noam Slonim. 2020.
Active learning for bert: An empirical study. In Pro-
ceedings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages 7949–
7962.

Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer,
Georg Heigold, Sylvain Gelly, et al. 2020. An image
is worth 16x16 words: Transformers for image
recognition at scale. arXiv preprint arXiv:2010.11929.

Meng Fang, Yuan Li, and Trevor Cohn. 2017. Learning
how to active learn: A deep reinforcement learning
approach. Preprint, arXiv:1708.02383.

Yarin Gal and Zoubin Ghahramani. 2016. Dropout as
a bayesian approximation: Representing model uncer-
tainty in deep learning. In international conference on
machine learning, pages 1050–1059. PMLR.

Yarin Gal, Riashat Islam, and Zoubin Ghahramani. 2017.
Deep bayesian active learning with image data. In Inter-
national conference on machine learning, pages 1183–
1192. PMLR.

Alexios Gidiotis and Grigorios Tsoumakas.
2021a. Bayesian active summarization. Preprint,
arXiv:2110.04480.

Alexios Gidiotis and Grigorios Tsoumakas. 2021b.
Uncertainty-aware abstractive summarization. ArXiv,
abs/2105.10155.

Neil Houlsby, Ferenc Huszár, Zoubin Ghahramani, and
Máté Lengyel. 2011. Bayesian active learning for
classification and preference learning. arXiv preprint
arXiv:1112.5745.

Kexin Huang, Jaan Altosaar, and Rajesh Ranganath.
2020. Clinicalbert: Modeling clinical notes and predict-
ing hospital readmission. Preprint, arXiv:1904.05342.

Jeremy Irvin, Pranav Rajpurkar, Michael Ko, Yifan Yu,
Silviana Ciurea-Ilcus, Chris Chute, Henrik Marklund,
Behzad Haghgoo, Robyn Ball, Katie Shpanskaya, Jayne
Seekins, David A. Mong, Safwan S. Halabi, Jesse K.
Sandberg, Ricky Jones, David B. Larson, Curtis P. Lan-
glotz, Bhavik N. Patel, Matthew P. Lungren, and An-
drew Y. Ng. 2019. Chexpert: A large chest radiograph
dataset with uncertainty labels and expert comparison.
Preprint, arXiv:1901.07031.

Alistair EW Johnson, Tom J Pollard, Seth J Berkowitz,
Nathaniel R Greenbaum, Matthew P Lungren, Chih-
ying Deng, Roger G Mark, and Steven Horng. 2019a.
Mimic-cxr, a de-identified publicly available database
of chest radiographs with free-text reports. Scientific
data, 6(1):317.

Alistair EW Johnson, Tom J Pollard, Nathaniel R Green-
baum, Matthew P Lungren, Chih-ying Deng, Yifan
Peng, Zhiyong Lu, Roger G Mark, Seth J Berkowitz,
and Steven Horng. 2019b. Mimic-cxr-jpg, a large pub-
licly available database of labeled chest radiographs.
arXiv preprint arXiv:1901.07042.

Seokhwan Kim, Yu Song, Kyungduk Kim, Jeong-Won
Cha, and Gary Geunbae Lee. 2006. MMR-based ac-
tive machine learning for bio named entity recognition.
In Proceedings of the Human Language Technology
Conference of the NAACL, Companion Volume: Short
Papers, pages 69–72, New York City, USA. Association
for Computational Linguistics.

Solomon Kullback and R. A. Leibler. 1951. On informa-
tion and sufficiency. Annals of Mathematical Statistics,
22:79–86.

Jinhyuk Lee, Wonjin Yoon, Sungdong Kim, Donghyeon
Kim, Sunkyu Kim, Chan Ho So, and Jaewoo Kang.
2019. BioBERT: a pre-trained biomedical language
representation model for biomedical text mining. Bioin-
formatics, 36(4):1234–1240.

David D Lewis. 1995. A sequential algorithm for train-
ing text classifiers: Corrigendum and additional data. In
Acm Sigir Forum, volume 29, pages 13–19. ACM New
York, NY, USA.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summarization
Branches Out, pages 74–81, Barcelona, Spain. Associa-
tion for Computational Linguistics.

Fenglin Liu, Changchang Yin, Xian Wu, Shen Ge, Ping
Zhang, and Xu Sun. 2021. Contrastive attention for
automatic chest x-ray report generation. In Findings.

Guanxiong Liu, Tzu-Ming Harry Hsu, Matthew McDer-
mott, Willie Boag, Wei-Hung Weng, Peter Szolovits,
and Marzyeh Ghassemi. 2019. Clinically accurate chest
x-ray report generation. Preprint, arXiv:1904.02633.

Ming Liu, Wray L. Buntine, and Gholamreza Haffari.
2018. Learning how to actively learn: A deep imitation
learning approach. In Annual Meeting of the Associa-
tion for Computational Linguistics.

Ilya Loshchilov and Frank Hutter. 2019. De-
coupled weight decay regularization. Preprint,
arXiv:1711.05101.

Katerina Margatina, Loïc Barrault, and Nikolaos Ale-
tras. 2021a. On the importance of effectively adapt-
ing pretrained language models for active learning. In
Annual Meeting of the Association for Computational
Linguistics.

Katerina Margatina, Giorgos Vernikos, Loïc Barrault,
and Nikolaos Aletras. 2021b. Active learning by acquir-
ing contrastive examples. In Proceedings of the 2021
Conference on Empirical Methods in Natural Language
Processing, pages 650–663, Online and Punta Cana,
Dominican Republic. Association for Computational
Linguistics.

https://doi.org/10.1093/jamia/ocv080
https://doi.org/10.1093/jamia/ocv080
https://doi.org/10.1093/jamia/ocv080
https://arxiv.org/abs/1708.02383
https://arxiv.org/abs/1708.02383
https://arxiv.org/abs/1708.02383
https://arxiv.org/abs/2110.04480
https://api.semanticscholar.org/CorpusID:235125588
https://arxiv.org/abs/1904.05342
https://arxiv.org/abs/1904.05342
https://arxiv.org/abs/1901.07031
https://arxiv.org/abs/1901.07031
https://aclanthology.org/N06-2018
https://aclanthology.org/N06-2018
https://api.semanticscholar.org/CorpusID:120349231
https://api.semanticscholar.org/CorpusID:120349231
https://doi.org/10.1093/bioinformatics/btz682
https://doi.org/10.1093/bioinformatics/btz682
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://api.semanticscholar.org/CorpusID:235422047
https://api.semanticscholar.org/CorpusID:235422047
https://arxiv.org/abs/1904.02633
https://arxiv.org/abs/1904.02633
https://api.semanticscholar.org/CorpusID:51874674
https://api.semanticscholar.org/CorpusID:51874674
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1711.05101
https://api.semanticscholar.org/CorpusID:247218674
https://api.semanticscholar.org/CorpusID:247218674
https://doi.org/10.18653/v1/2021.emnlp-main.51
https://doi.org/10.18653/v1/2021.emnlp-main.51


338

OpenAI. 2023. Gpt-4 technical report. Preprint,
arXiv:2303.08774.

Maxime Oquab, Timothée Darcet, Théo Moutakanni,
Huy Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fer-
nandez, Daniel Haziza, Francisco Massa, Alaaeldin El-
Nouby, Mahmoud Assran, Nicolas Ballas, Wojciech
Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li,
Ishan Misra, Michael Rabbat, Vasu Sharma, Gabriel
Synnaeve, Hu Xu, Hervé Jegou, Julien Mairal, Patrick
Labatut, Armand Joulin, and Piotr Bojanowski. 2023.
Dinov2: Learning robust visual features without super-
vision. Preprint, arXiv:2304.07193.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instructions
with human feedback. Advances in Neural Information
Processing Systems, 35:27730–27744.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalua-
tion of machine translation. In Proceedings of the 40th
Annual Meeting of the Association for Computational
Linguistics, pages 311–318, Philadelphia, Pennsylvania,
USA. Association for Computational Linguistics.

Yotam Perlitz, Ariel Gera, Michal Shmueli-Scheuer,
Dafna Sheinwald, Noam Slonim, and Liat Ein-Dor.
2023. Active learning for natural language generation.
Preprint, arXiv:2305.15040.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and
Yuxiong He. 2020. Deepspeed: System optimizations
enable training deep learning models with over 100
billion parameters. KDD ’20, page 3505–3506, New
York, NY, USA. Association for Computing Machinery.

Ozan Sener and Silvio Savarese. 2018. Active learning
for convolutional neural networks: A core-set approach.
Preprint, arXiv:1708.00489.

Burr Settles. 2009. Active learning literature survey.

Claude Elwood Shannon. 2001. A mathematical theory
of communication. ACM SIGMOBILE mobile comput-
ing and communications review, 5(1):3–55.

Artem Shelmanov, Dmitri Puzyrev, Lyubov
Kupriyanova, Denis Belyakov, Daniil Larionov,
Nikita Khromov, Olga Kozlova, Ekaterina Artemova,
Dmitry V. Dylov, and Alexander Panchenko. 2021.
Active learning for sequence tagging with deep
pre-trained models and bayesian uncertainty estimates.
Preprint, arXiv:2101.08133.

Yanyao Shen, Hyokun Yun, Zachary C Lipton, Yakov
Kronrod, and Animashree Anandkumar. 2017. Deep
active learning for named entity recognition. arXiv
preprint arXiv:1707.05928.

Hoo-Chang Shin, Yang Zhang, Evelina Bakhturina,
Raul Puri, Mostofa Patwary, Mohammad Shoeybi, and

Raghav Mani. 2020. Biomegatron: Larger biomedical
domain language model. Preprint, arXiv:2010.06060.

Emma Slade and Kim M. Branson. 2022. Deep rein-
forced active learning for multi-class image classifica-
tion. Preprint, arXiv:2206.13391.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel
Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford, Dario
Amodei, and Paul F Christiano. 2020. Learning to sum-
marize with human feedback. Advances in Neural In-
formation Processing Systems, 33:3008–3021.

Rinyoichi Takezoe, Xu Liu, Shunan Mao, Marco Tianyu
Chen, Zhanpeng Feng, Shiliang Zhang, and Xiaoyu
Wang. 2023. Deep active learning for computer vision:
Past and future. APSIPA Transactions on Signal and
Information Processing, 12(1).

Akim Tsvigun, Ivan Lysenko, Danila Sedashov, Ivan
Lazichny, Eldar Damirov, Vladimir Karlov, Artemy Be-
lousov, Leonid Sanochkin, Maxim Panov, Alexander
Panchenko, Mikhail Burtsev, and Artem Shelmanov.
2023. Active learning for abstractive text summariza-
tion. Preprint, arXiv:2301.03252.

Nicola Ueffing and Hermann Ney. 2007. Word-level
confidence estimation for machine translation. Compu-
tational Linguistics, 33(1):9–40.

Thuy-Trang Vu, Ming Liu, Dinh Q. Phung, and Gho-
lamreza Haffari. 2019. Learning how to active learn
by dreaming. In Annual Meeting of the Association for
Computational Linguistics.

Shuo Wang, Yang Liu, Chao Wang, Huanbo Luan, and
Maosong Sun. 2019. Improving back-translation with
uncertainty-based confidence estimation. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Interna-
tional Joint Conference on Natural Language Process-
ing (EMNLP-IJCNLP), pages 791–802, Hong Kong,
China. Association for Computational Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pierric
Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe
Davison, Sam Shleifer, Patrick von Platen, Clara Ma,
Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao,
Sylvain Gugger, Mariama Drame, Quentin Lhoest, and
Alexander M. Rush. 2020. Huggingface’s transformers:
State-of-the-art natural language processing. Preprint,
arXiv:1910.03771.

Xi Yang, Aokun Chen, Nima PourNejatian, Hoo Chang
Shin, Kaleb E Smith, Christopher Parisien, Colin Com-
pas, Cheryl Martin, Mona G Flores, Ying Zhang, Tanja
Magoc, Christopher A Harle, Gloria Lipori, Duane A
Mitchell, William R Hogan, Elizabeth A Shenkman,
Jiang Bian, and Yonghui Wu. 2022. Gatortron: A large
clinical language model to unlock patient information
from unstructured electronic health records. Preprint,
arXiv:2203.03540.

Michelle Yuan, Hsuan-Tien Lin, and Jordan Boyd-
Graber. 2020. Cold-start active learning through

https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2304.07193
https://arxiv.org/abs/2304.07193
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://arxiv.org/abs/2305.15040
https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:160025533
https://doi.org/10.1145/3394486.3406703
https://doi.org/10.1145/3394486.3406703
https://doi.org/10.1145/3394486.3406703
https://arxiv.org/abs/1708.00489
https://arxiv.org/abs/1708.00489
https://arxiv.org/abs/2101.08133
https://arxiv.org/abs/2101.08133
https://arxiv.org/abs/2010.06060
https://arxiv.org/abs/2010.06060
https://arxiv.org/abs/2206.13391
https://arxiv.org/abs/2206.13391
https://arxiv.org/abs/2206.13391
https://doi.org/10.1561/116.00000057
https://doi.org/10.1561/116.00000057
https://arxiv.org/abs/2301.03252
https://arxiv.org/abs/2301.03252
https://doi.org/10.1162/coli.2007.33.1.9
https://doi.org/10.1162/coli.2007.33.1.9
https://api.semanticscholar.org/CorpusID:196196163
https://api.semanticscholar.org/CorpusID:196196163
https://doi.org/10.18653/v1/D19-1073
https://doi.org/10.18653/v1/D19-1073
https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/2203.03540
https://arxiv.org/abs/2203.03540
https://arxiv.org/abs/2203.03540


339

self-supervised language modeling. arXiv preprint
arXiv:2010.09535.

Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B
Brown, Alec Radford, Dario Amodei, Paul Chris-
tiano, and Geoffrey Irving. 2019. Fine-tuning lan-
guage models from human preferences. arXiv preprint
arXiv:1909.08593.



340

7 Appendix
Table 5: Label Distribution for Full MIMIC-CXR Dataset

-1.0 0.0 1.0 N/A
Atelectasis 4.53% 0.67% 20.11% 74.69%
Cardiomegaly 2.65% 6.98% 19.68% 70.68%
Consolidation 1.90% 3.50% 4.73% 89.87%
Edema 5.78% 11.25% 11.86% 71.10%
Enlarged Cardiomediastinum 4.11% 2.32% 3.15% 90.42%
Fracture 0.24% 0.39% 1.93% 97.44%
Lung Lesion 0.50% 0.38% 2.76% 96.36%
Lung Opacity 1.68% 1.35% 22.62% 74.36%
No Finding 0.00% 0.00% 33.12% 66.88%
Pleural Effusion 2.55% 11.92% 23.83% 61.69%
Pleural Other 0.34% 0.06% 0.88% 98.73%
Pneumonia 8.03% 10.68% 7.27% 74.02%
Pneumothorax 0.50% 18.59% 4.55% 76.36%
Support Devices 0.10% 1.53% 29.21% 69.15%

Table 6: Label Distribution for Stratified Subset of MIMIC-CXR Dataset

-1.0 0.0 1.0 N/A
Atelectasis 4.62% 0.72% 19.94% 74.72%
Cardiomegaly 2.62% 6.83% 19.82% 70.73%
Consolidation 1.83% 3.52% 4.62% 90.03%
Edema 5.79% 11.53% 11.51% 71.17%
Enlarged Cardiomediastinum 4.06% 2.29% 3.10% 90.55%
Fracture 0.24% 0.38% 1.93% 97.45%
Lung Lesion 0.55% 0.42% 2.64% 96.38%
Lung Opacity 1.68% 1.40% 22.71% 74.21%
No Finding 0.00% 0.00% 33.26% 66.74%
Pleural Effusion 2.57% 11.99% 23.54% 61.90%
Pleural Other 0.32% 0.06% 0.87% 98.75%
Pneumonia 8.09% 10.56% 7.39% 73.97%
Pneumothorax 0.50% 18.36% 4.65% 76.48%
Support Devices 0.09% 1.48% 29.43% 69.00%

Figure 3: Average NLG Performance of AL Strategies and Best-performing Baselines on IU X-ray
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Methods Example Outputs

Reference

Lung volumes are low. Mild to moderate enlargement cardiac silhouette is unchanged, accentuated by the presence of low lung volumes.
The aorta remains tortuous. Mediastinal and hilar contours are stable. There is continued mild pulmonary vascular congestion without
overt pulmonary edema. Patchy and linear opacities in the lung bases likely reflect areas of atelectasis. No pneumothorax or pleural
effusion is clearly evident. Percutaneous gastrostomy catheter is incompletely imaged.

RS The lungs are clear. There is no pleural effusion or pneumothorax. Cardiomediastinal silhouette is within normal limits. No acute
osseous abnormalities.

NSP The heart is normal in size. The mediastinal and hilar contours appear within normal limits. There is no pneumothorax. The pulmonary
vasculature is normal. There is no pleural effusion or pneumothorax. There is no pneumomediastinum.

CAL The heart is mildly enlarged. There is mild prominence of pulmonary vascularity with mild interstitial edema. There is no pleural
effusion or pneumothorax. The mediastinal and hilar contours are unremarkable. There is no evidence of pneumomediastinum.

BiCAL CheSS The cardiac silhouette is mildly enlarged. The aorta is tortuous. There is mild cardiomegaly. There is no pleural effusion or
pneumothorax. The hilar contours are normal. There is mild pulmonary vascular congestion.

Table 7: Case study of Generation Result on Positive Cases using Different AL Methods. Green: The generated
diagnosis is matched with reference. Red: The generated diagnosis is incorrect compared to the reference. Yellow:
The generated diagnosis is not mentioned in the reference.

Disease RS NSP ENSP ENSV CAL BiCAL Dinov2 BiCAL CheSS Full Tune
No Finding 0.0738 0.0799 0.0766 0.0843 0.0911 0.0750 0.1068 0.1507
Enlarged Cardiomediastinum 0.2183 0.2410 0.2378 0.2333 0.2462 0.2318 0.2386 0.2958
Cardiomegaly 0.2475 0.2592 0.1783 0.2354 0.2781 0.1829 0.4177 0.5113
Lung Lesion 1.0000 1.0000 1.0000 0.0000 0.0000 1.0000 1.0000 0.0000
Lung Opacity 1.0000 0.6667 0.6667 1.0000 0.4333 0.3333 0.5000 0.3798
Edema 0.1781 0.1869 0.1555 0.1548 0.1757 0.1669 0.1584 0.2315
Consolidation 0.2879 0.4248 0.3455 0.3292 0.3029 0.3241 0.2981 0.3160
Pneumonia 0.2000 0.1221 1.0000 0.1176 0.0870 0.0000 0.1481 0.0887
Atelectasis 0.3846 0.3509 0.3636 0.3333 0.2773 0.5000 0.3333 0.2739
Pneumothorax 0.5621 0.6102 0.5876 0.5701 0.5569 0.5713 0.5917 0.5949
Pleural Effusion 0.4567 0.5131 0.4949 0.4945 0.4558 0.4906 0.4876 0.6016
Pleural Other 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000
Fracture 0.0000 0.0000 1.0000 1.0000 0.0323 0.0000 0.0000 0.1667
Support Devices 0.6939 0.6418 0.6986 0.7545 0.6253 0.7610 0.7282 0.7096
Macro Average 0.4502 0.4355 0.5575 0.4505 0.3258 0.4026 0.4292 0.3086

Table 8: Precision on CheXpert classification Result between reference and generated report across AL Strategies
after 1000 queries on MIMIC-CXR

Disease RS NSP ENSP ENSV CAL BiCAL Dinov2 BiCAL CheSS Full Tune
No Finding 0.9042 0.8314 0.9042 0.8391 0.7011 0.7893 0.6590 0.7356
Enlarged Cardiomediastinum 0.4196 0.3924 0.4030 0.3970 0.3587 0.4267 0.4237 0.3869
Cardiomegaly 0.1221 0.1512 0.1042 0.1753 0.2267 0.1945 0.4083 0.3757
Lung Lesion 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Lung Opacity 0.0005 0.0010 0.0010 0.0010 0.0199 0.0005 0.0005 0.1921
Edema 0.1357 0.1614 0.1801 0.1376 0.0752 0.1402 0.1961 0.1145
Consolidation 0.6344 0.1336 0.4760 0.5180 0.2395 0.4812 0.5120 0.2372
Pneumonia 0.0022 0.0229 0.0000 0.0022 0.0131 0.0000 0.0218 0.0196
Atelectasis 0.0041 0.0164 0.0296 0.0008 0.0961 0.0041 0.0008 0.0895
Pneumothorax 0.7024 0.8285 0.7880 0.8968 0.7810 0.7900 0.8297 0.5608
Pleural Effusion 0.5581 0.5395 0.5318 0.6064 0.4310 0.5322 0.5302 0.6205
Pleural Other 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Fracture 0.0000 0.0000 0.0000 0.0000 0.0034 0.0000 0.0000 0.0034
Support Devices 0.0400 0.2928 0.3039 0.1717 0.1452 0.2040 0.2551 0.4797
Macro Average 0.2517 0.2408 0.2658 0.2676 0.2208 0.2545 0.2741 0.2725

Table 9: Recall on CheXpert classification Result between reference and generated report across AL Strategies after
1000 queries on MIMIC-CXR

Disease RS NSP ENSP ENSV CAL BiCAL Dinov2 BiCAL CheSS Full Tune
No Finding 0.1365 0.1458 0.1412 0.1531 0.1612 0.1370 0.1838 0.2502
Enlarged Cardiomediastinum 0.2872 0.2986 0.2991 0.2939 0.2920 0.3004 0.3053 0.3353
Cardiomegaly 0.1635 0.1910 0.1315 0.2010 0.2498 0.1886 0.4129 0.4331
Lung Lesion 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Lung Opacity 0.0010 0.0020 0.0020 0.0020 0.0381 0.0010 0.0010 0.2552
Edema 0.1540 0.1732 0.1669 0.1457 0.1054 0.1524 0.1753 0.1532
Consolidation 0.3961 0.2033 0.4004 0.4026 0.2675 0.3873 0.3768 0.2710
Pneumonia 0.0043 0.0385 0.0000 0.0043 0.0227 0.0000 0.0380 0.0321
Atelectasis 0.0081 0.0314 0.0547 0.0016 0.1427 0.0081 0.0016 0.1349
Pneumothorax 0.6245 0.7028 0.6732 0.6971 0.6502 0.6631 0.6907 0.5773
Pleural Effusion 0.5023 0.5260 0.5127 0.5448 0.4431 0.5105 0.5080 0.6109
Pleural Other 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Fracture 0.0000 0.0000 0.0000 0.0000 0.0062 0.0000 0.0000 0.0067
Support Devices 0.0756 0.4021 0.4236 0.2797 0.2357 0.3217 0.3779 0.5724
Macro Average 0.1681 0.1939 0.2004 0.1947 0.1868 0.1907 0.2194 0.2594

Table 10: F1 Score on CheXpert classification Result between reference and generated report across AL Strategies
after 1000 queries on MIMIC-CXR


