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Abstract

Pre-trained Language Models (PLMs) are in-
tegral to many modern natural language pro-
cessing (NLP) systems. Although multilin-
gual models cover a wide range of languages,
they often grapple with challenges like high
inference costs and a lack of diverse non-
English training data. Arabic-specific PLMs
are trained predominantly on modern standard
Arabic, which compromises their performance
on regional dialects. To tackle this, we con-
struct an Arabic dialectal corpus comprising
3.4M sentences gathered from social media
platforms. We utilize this corpus to expand the
vocabulary and retrain a BERT-based model
from scratch. Named AlcLaM, our model
was trained using only 13 GB of text, which
represents a fraction of the data used by ex-
isting models such as CAMeL, MARBERT,
and ArBERT, compared to 7.8%, 10.2%, and
21.3%, respectively. Remarkably, AlcLaM
demonstrates superior performance on a va-
riety of Arabic NLP tasks despite the lim-
ited training data. AlcLaM is available at:
https://github.com/amurtadha/Alclam.

1 Introduction

Pre-trained Language Models (PLMs) utilizing self-
supervised learning techniques, such as BERT (De-
vlin et al., 2018a) and RoBERTa (Liu et al., 2019),
have become pivotal in advancing the field of
natural language processing (NLP) through trans-
fer learning. These models have significantly en-
hanced performance across a variety of NLP tasks
by leveraging vast amounts of textual data and ex-
tensive computational resources. However, the ne-
cessity for large corpora and the substantial compu-
tational demand, often requiring weeks of training
time (Conneau et al., 2020; Raffel et al., 2020; Adi-
wardana et al., 2020), has primarily confined the
development of such models to the English lan-
guage and a few other major languages.

This limitation has sparked an increased interest
in creating multilingual models capable of under-
standing and processing multiple languages simul-
taneously. Innovations such as mBERT (Devlin
et al., 2018a), XLM-RoBERTa (Conneau et al.,
2020) and LaBSE (Feng et al., 2022) aim to address
this gap. Despite these efforts, the performance
of these multilingual models typically lags behind
their monolingual counterparts. This discrepancy
is largely due to smaller, language-specific vocab-
ularies and less comprehensive language-specific
datasets (Virtanen et al., 2019; Antoun et al., 2020;
Dadas et al., 2020; de Vries et al., 2019; Malmsten
et al., 2020; Nguyen and Nguyen, 2020).

Furthermore, while languages with similar struc-
tures and vocabularies may benefit from shared rep-
resentations (Conneau et al., 2020), this advantage
does not extend to languages such as Arabic. Ara-
bic’s unique morphological and syntactic structures
share little in common with the morphosyntactic
frameworks of more abundantly represented Latin-
based languages. To address this, various Arabic-
specific PLMs have been developed, including
AraBERT (Antoun et al., 2020), ArBERT (Abdul-
Mageed et al., 2021), and CAMeL (Inoue et al.,
2021). These models significantly enhance Ara-
bic NLP tasks over multilingual models. However,
they are predominantly trained on Modern Stan-
dard Arabic (MSA) datasets. This focus on MSA
introduces two primary limitations: first, there is
reduced recognition of dialectal tokens, which vary
widely across different Arabic-speaking regions;
second, there is a biased weighting towards MSA
tokens in the models, which may not accurately
reflect the linguistic nuances present in everyday
Arabic usage.

In this paper, we first introduce a new cor-
pus of 3,372,744 Arabic dialectal texts, meticu-
lously sourced from social media platforms such
as YouTube and Facebook. Second, we outline the
procedure for pretraining the transformer model
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(Devlin et al., 2018a) specifically for the Arabic lan-
guage, which we dub AlcLaM. Note that we only
train AlcLaM on 13GB text due to computational
resources limitation. Finally, we assess AlcLaM’s
performance on three Arabic NLU downstream
tasks, each distinct in nature: (i) Arabic Dialect
Identification (DID), (ii) Sentiment Analysis (SA),
and (iii) Hate Speech and Offensive Language De-
tection. Despite the limited training data, our ex-
perimental results demonstrate that AlcLaM attains
state-of-the-art results on most datasets, surpassing
several baseline models, including previous multi-
lingual and single-language approaches.

In summary, our contributions are twofold.

• We constructed a massive corpus of Arabic di-
alects, derived from the content and comments
on Arabic pages on Facebook and videos from
Arabic-speaking YouTubers. This corpus rep-
resents a rich variety of regional dialects and
everyday language usage that has been under-
represented in previous models.

• We developed an Arabic pre-trained language
model, namely AlcLaM, specifically opti-
mized to handle the diversity and complexity
of Arabic dialects based on the newly created
corpus, enhancing its applicability across a
wider range of NLP tasks involving Arabic
text.

2 Related Work

Pre-trained language models (PLMs) using a self-
supervised masking objective, such as BERT (De-
vlin et al., 2018a) and RoBERTa (Liu et al., 2019),
have significantly advanced NLP. These models
have multilingual versions, including mBERT (De-
vlin et al., 2018a), XLM-RoBERTa (Conneau et al.,
2020) and LaBSE (Feng et al., 2022). Addition-
ally, models featuring different objectives or archi-
tectures, such as ALBERT (Lan et al., 2020), T5
(Raffel et al., 2020), its multilingual variant mT5
(Xue et al., 2021), and GPT-3 (Brown et al., 2020),
LLaMA (Touvron et al., 2023), PaLM (Chowdh-
ery et al., 2023), GPT-4 (OpenAI, 2023), and Ro-
Former (Su et al., 2024) have been introduced.

Non-English PLMs have also been developed.
These include Bertje for Dutch (de Vries et al.,
2019), CamemBERT (Martin et al., 2020) and
FlauBERT (Le et al., 2020) for French, PhoBERT
for Vietnamese (Nguyen and Nguyen, 2020), as
well as models for Finnish by Virtanen et al. (2019),

for Polish by Dadas et al. (2020), and for Swedish
by Malmsten et al. (2020). Pyysalo et al. (2021)
have created monolingual LMs using Wikipedia
data for 42 languages. For Arabic, MSA-based
PLMs includes AraBERT (Antoun et al., 2020) Ara-
bicBERT (Safaya et al., 2020), ArBERT (Abdul-
Mageed et al., 2021). Another line of research
involves pre-training models on a combination of
MSA and dialectal data, such as MDBERT (Abdul-
Mageed et al., 2021) and CAMeL (Mubarak et al.,
2021). Our contributions to this field include a
comprehensive Arabic dialectal corpus spanning
various dialects and the development of an Ara-
bic PLM. Our model, named AlcLaM, enhances
the representation of linguistic diversity in Arabic
NLP.

3 Methodology

In this paper, we develop AlcLaM, an Arabic di-
alect language representation model that enhances
the performance on several Arabic NLP tasks.
This model builds upon the BERT architecture, a
stacked Bidirectional Transformer Encoder (Devlin
et al., 2018a). Recognized as the foundation for
many state-of-the-art results in various NLP tasks
across multiple languages, BERT’s architecture has
proven highly effective. Below, we detail the di-
alectal corpus used for AlcLaM’s pretraining, the
pretraining setup, and the fine-tuning process.

3.1 Arabic Dialectal Corpus.

The original BERT model was trained on a corpus
comprising 3.3 billion words extracted from En-
glish Wikipedia and the Book Corpus (Zhu et al.,
2015). Due to the comparatively smaller size of
Arabic Wikipedia dumps in comparison to English
ones, we opted to utilize Arabic text from the
English-Arabic bilingual corpora of opensubtitles
1 (Itamar and Itai, 2008).

It is noteworthy that publicly available Arabic
corpora are heavily dominated by MSA, while so-
cial media and online reviews predominantly fea-
ture Arabic dialects. This creates a bias towards
MSA tokens in Arabic PLMs, potentially leading
to tokenizers failing to recognize a significant por-
tion of dialectal vocabulary. To address this, we
manually scraped Arabic texts from social media
platforms. Initially, we scrape posts and comments
from popular Arabic YouTube channels and Face-
book Pages. However, we observed that many of

1opensubtitles
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these comments consisted of verses from the Holy
Quran and Hadith, typically written in MSA. Since
our focus was on dialectal texts, we trained a binary
classifier (MSA-Dialect) to filter out MSA texts.
Specifically, we treated all dialectal instances of
the MADAR corpus as one class, labeled "Dialect"
(Bouamor et al., 2019; Murtadha et al., 2022), and
utilized it to fine-tune the CAMeL model (Inoue
et al., 2021), which achieved a remarkable 98%
accuracy. Our final corpus comprises 3,372,744
dialectal sentences with 54,557,408 tokens. To the
best of our knowledge, this marks the first attempt
to assemble such a comprehensive Arabic dialectal
corpus.

3.2 Model Training

For AlcLaM, we adhere to the original BERT (De-
vlin et al., 2018a). Each training input sequence
is generated using whole word masking, where
15% of the N input tokens are chosen for replace-
ment. These selected tokens undergo replacement
as follows: 80% are substituted with the [MASK]
token, 10% with a random token, and 10% remain
unchanged. Following Liu et al. (2019), we ex-
clude the next sentence prediction (NSP) loss from
our training process. This decision is based on
the observation that removing the NSP loss either
matches or slightly improves downstream task per-
formance. We employ the same network configu-
ration as BERT-base: consisting of 12 layers, 768
hidden units, and 12 attention heads, resulting in ap-
proximately 125 million parameters. During train-
ing, we utilize a batch size of 64 sequences and set
a maximum sequence length of 128 tokens and 5
training epochs. Throughout training, we set the
learning rate to 5e´ 5.

3.3 Fine-tuning

To fine-tune AlcLaM for sequence classification,
we utilize the final hidden state of the first to-
ken, corresponding to the embedding of the special
“[CLS]” token that is prepended to the beginning
of each sentence (Murtadha et al., 2024). A sim-
ple feed-forward layer with a Softmax activation
function is added to compute the probability dis-
tribution over the predicted output classes. During
fine-tuning, both the classifier and the pre-trained
model weights are jointly trained to maximize the
log-probability of the correct class (Ahmed et al.,
2023).

4 Empirical Evaluation

4.1 Datasets
We evaluated AlcLaM on the following datasets
that cover various NLP tasks in Arabic. Senti-
ment analysis (SemEval 2017 task 4 (Kiritchenko
et al., 2016), ASAD (Alharbi et al., 2020), ASTD
(Nabil et al., 2015), ArSAS (Elmadany et al., 2018),
LABR (Aly and Atiya, 2013)), offensive language
detection (Adult (Mubarak et al., 2021), Offensive
and HateSpeech (Mubarak et al., 2020)), dialect
identification (MADAR-6, MADAR-26(Bouamor
et al., 2019) and NADI (Abdul-Mageed et al.,
2020)). For experiments, MADAR-2 and MADAR-
9 are derived from MADAR-26. MADAR-2 is bi-
nary (MSA-dialect), while MADAR-9 categorizes
dialects into 9 regions: Yemen, MSA, Maghreb,
Nile Egypt, Libya, Gulf, Nile Sudan, Iraq, and
Levant.

4.2 Baselines
We compare our AlcLaM model with:

1. Multilingual PLMs like mBERT (Devlin et al.,
2018b) and LaBSE (Feng et al., 2022);

2. MSA-based Arabic PLMs such as AraBERT
(Antoun et al., 2020) and ArBERT (Abdul-
Mageed et al., 2021);

3. MSA-Dialect-based PLMs, including Md-
BERT (Talafha et al., 2020), and MARBERT
(Abdul-Mageed et al., 2021) and CAMeL (In-
oue et al., 2021).

4.3 Results
For each dataset, we report the average results of
five runs, each with different random seeds, to en-
sure statistical significance. The results for various
Arabic NLP tasks are presented in Table 1 and Ta-
ble 2 in terms of F1 and accuracy metrics, respec-
tively. From these results, we make the following
observations:

1. Multilingual models such as mBERT and
LaBSE are outperformed by Arabic-specific
models that are pre-trained with larger vocab-
ularies and more extensive language-specific
datasets. This observation aligns with the find-
ings of Abdul-Mageed et al. (2021).

2. Models that incorporate dialectal data during
pre-training, such as MdBERT, CAMeL and
MARBERT, not only excel in DID task, but
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Dataset
Multilingual PLMs MSA-based PLMs MSA-Dialect-based PLMs

mBERT LaBSE AraBERT ArBERT MdBERT CAMeL MARBERT AlcLaM

DID

MADAR-2 72.9 ˘ 16.9 86.6 ˘ 0.5 87.1 ˘ 0.2 87.1 ˘ 0.2 86.0 ˘ 0.6 87.5 ˘ 1.0 85.3 ˘ 3.8 98.2 ˘ 0.1
MADAR-6 91.3 ˘ 0.1 91.1 ˘ 0.2 91.6 ˘ 0.1 91.6 ˘ 0.2 91.6 ˘ 0.0 92.0 ˘ 0.1 92.2 ˘ 0.2 93.2 ˘ 0.1˚
MADAR-9 75.5 ˘ 0.5 75.7 ˘ 0.2 76.8 ˘ 0.3 74.5 ˘ 4.3 75.9 ˘ 0.5 77.5 ˘ 0.4 78.2 ˘ 0.3 81.9 ˘ 0.3
MADAR-26 60.5 ˘ 0.2 62.0 ˘ 0.2 62.0 ˘ 0.1 61.7 ˘ 0.1 60.2 ˘ 0.4 62.9 ˘ 0.1 61.5 ˘ 0.4 66.3 ˘ 0.1˚
NADI 17.6 ˘ 0.5 17.6 ˘ 0.5 22.6 ˘ 0.5 22.6 ˘ 0.5 24.9 ˘ 0.6 25.9 ˘ 0.5 28.6 ˘ 0.8˚ 25.6 ˘ 0.6

SA

SemEval 51.3 ˘ 1.3 64.2 ˘ 0.7 65.4 ˘ 0.5 64.4 ˘ 0.9 65.6 ˘ 0.3 67.1 ˘ 0.7 66.4 ˘ 0.3 69.2 ˘ 0.4˚
ASAD 59.8 ˘ 0.0 62.4 ˘ 0.0 41.3 ˘ 0.0 66.9 ˘ 0.0 67.5 ˘ 0.0 65.8 ˘ 0.0 66.8 ˘ 0.0 66.7 ˘ 0.0
AJGT 86.4 ˘ 0.3 92.4 ˘ 0.7 92.7 ˘ 0.3 92.6 ˘ 0.4 93.6 ˘ 0.0 93.6 ˘ 0.3 93.7 ˘ 0.1 95.0 ˘ 0.3˚
ASTD 46.3 ˘ 1.4 55.7 ˘ 0.4 57.5 ˘ 2.3 59.7 ˘ 0.1 61.9 ˘ 0.4 60.2 ˘ 0.2 61.0 ˘ 0.5 64.6 ˘ 0.1˚
LABR 81.1 ˘ 0.0 85.4 ˘ 0.0 85.9 ˘ 0.0 85.9 ˘ 0.0 84.7 ˘ 0.0 86.3 ˘ 0.0 85.0 ˘ 0.0 84.9 ˘ 0.0
ARSAS 73.2 ˘ 0.7 76.2 ˘ 0.6 76.8 ˘ 0.3 76.1 ˘ 0.2 76.3 ˘ 0.2 77.1 ˘ 0.3 76.2 ˘ 0.2 77.9 ˘ 0.3˚

HSOD
HateSpeech 67.9 ˘ 1.4 73.7 ˘ 1.1 76.4 ˘ 1.2 76.8 ˘ 1.4 80.0 ˘ 0.1 78.8 ˘ 0.6 80.0 ˘ 0.8 81.4 ˘ 0.5˚
Offense 85.3 ˘ 0.5 87.2 ˘ 0.5 90.5 ˘ 0.4 90.5 ˘ 0.4 90.8 ˘ 0.2 89.2 ˘ 0.5 90.8 ˘ 0.3 91.3 ˘ 0.3˚
Adult 87.9 ˘ 0.1 87.2 ˘ 0.3 88.6 ˘ 0.1 88.4 ˘ 0.6 88.1 ˘ 0.0 88.6 ˘ 0.3 88.3 ˘ 0.1 89.3 ˘ 0.3˚

Table 1: F1 Score Evaluation of Various Arabic NLP Models. Best scores are highlighted in bold. An asterisk
(*) denotes statistical significance, determined by a t-test with a p-value (ă 0.05). Our AlcLaM not only excels
in DID task but also shows improvements in most other tasks. This performance is expected as most Arabic NLP
datasets are collected from social media, which is dominated by dialectal expressions.

Dataset
Multilingual PLMs MSA-based PLMs MSA-Dialect-based PLMs

mBERT LaBSE AraBERT ArBERT MdBERT CAMeL MARBERT AlcLaM

DID
MADAR-2 97.3 ˘ 0.8 98.0 ˘ 0.1 98.1 ˘ 0.0 98.1 ˘ 0.0 98.0 ˘ 0.1 98.1 ˘ 0.1 97.2 ˘ 0.7 99.7 ˘ 0.0
MADAR-6 91.3 ˘ 0.1 91.1 ˘ 0.2 91.6 ˘ 0.1 91.6 ˘ 0.2 91.6 ˘ 0.0 92.0 ˘ 0.1 92.2 ˘ 0.2 93.2 ˘ 0.1˚
MADAR-9 78.5 ˘ 0.5 79.1 ˘ 0.1 80.4 ˘ 0.2 77.7 ˘ 3.6 79.1 ˘ 0.5 80.5 ˘ 0.2 81.1 ˘ 0.3 83.4 ˘ 0.4
MADAR-26 60.6 ˘ 0.2 61.9 ˘ 0.2 61.9 ˘ 0.1 61.7 ˘ 0.2 60.1 ˘ 0.3 62.9 ˘ 0.2 61.3 ˘ 0.3 66.1 ˘ 0.2˚
NADI 33.4 ˘ 0.6 33.4 ˘ 0.6 38.9 ˘ 1.7 38.9 ˘ 1.7 41.9 ˘ 1.9 42.7 ˘ 1.6 47.3 ˘ 0.1˚ 46.6 ˘ 1.0

SA
SemEval 53.4 ˘ 1.5 65.0 ˘ 0.6 66.1 ˘ 0.5 65.1 ˘ 0.8 66.1 ˘ 0.3 68.0 ˘ 0.3 66.9 ˘ 0.3 69.5 ˘ 0.3˚
ASAD 74.6 ˘ 0.0 75.2 ˘ 0.0 70.6 ˘ 0.0 78.4 ˘ 0.0 77.6 ˘ 0.0 77.0 ˘ 0.0 77.6 ˘ 0.0 79.5 ˘ 0.0
AJGT 86.4 ˘ 0.3 92.4 ˘ 0.7 92.8 ˘ 0.3 92.6 ˘ 0.4 93.6 ˘ 0.0 93.6 ˘ 0.3 93.8 ˘ 0.1 95.0 ˘ 0.3˚
ASTD 46.7 ˘ 1.7 55.6 ˘ 0.6 57.7 ˘ 2.4 59.7 ˘ 0.3 62.0 ˘ 0.3 60.1 ˘ 0.2 61.0 ˘ 0.3 64.9 ˘ 0.1˚
LABR 90.4 ˘ 0.0 92.3 ˘ 0.0 92.8 ˘ 0.0 92.8 ˘ 0.0 91.9 ˘ 0.0 93.0 ˘ 0.0 92.6 ˘ 0.0 92.6 ˘ 0.0
ARSAS 74.5 ˘ 0.8 77.2 ˘ 0.7 77.6 ˘ 0.3 77.0 ˘ 0.3 77.5 ˘ 0.3 78.0 ˘ 0.3 77.4 ˘ 0.4 78.6 ˘ 0.5˚

HSOD
HateSpeech 75.2 ˘ 2.2 80.0 ˘ 0.7 80.5 ˘ 1.4 80.8 ˘ 1.9 84.3 ˘ 0.3 83.3 ˘ 0.6 84.4 ˘ 0.4 84.6 ˘ 0.7˚
Offense 91.7 ˘ 0.1 92.8 ˘ 0.4 94.5 ˘ 0.2 94.6 ˘ 0.4 94.6 ˘ 0.2 93.6 ˘ 0.2 94.8 ˘ 0.0 94.9 ˘ 0.1˚
Adult 95.0 ˘ 0.0 94.4 ˘ 0.2 95.2 ˘ 0.1 94.9 ˘ 0.4 95.1 ˘ 0.1 95.2 ˘ 0.2 95.1 ˘ 0.0 95.6 ˘ 0.0

Table 2: Accuracy Evaluation of Various Arabic NLP Models

also perform significantly across a broader
range of Arabic NLP tasks. This suggests that
the similarities among Arabic dialects may
not always have positive effects on other tasks
beyond ADI. The experimental results under-
score the value of integrating more dialectal
information during training, as the tokeniz-
ers in these models are likely to recognize
more dialect-specific tokens, which are often
unidentified in other models.

3. Despite being trained on less MSA text and
fewer training steps, due to computational re-
source constraints, our model outperforms its
alternatives in most tasks and achieves com-
petitive performance in others. Although the
improvements in tasks other than ADI are
modest, they are significant given the inherent
complexities of the Arabic language.

In tasks beyond DID, AlcLaM may show mod-

est improvements, but it introduces vital empiri-
cal factors like stability and statistical significance,
supported by a t-test (p ă 0.05). MSA-Dialect
PLMs consistently demonstrate superior perfor-
mance across a range of Arabic NLP tasks. These
empirical findings clearly support our claim regard-
ing the critical importance of incorporating Arabic
dialectal data in the pre-training process.

5 Conclusion

In this paper, we present AlcLaM, a novel BERT-
based model trained specifically to address the chal-
lenge of Arabic dialectal variation. Leveraging a
carefully curated corpus sourced from social media
platforms, AlcLaM its alternatives across various
Arabic NLP tasks, despite being trained on signif-
icantly less data. For future work, expanding the
dialectal vocabulary without increasing inference
costs, inspired by Chinese character modeling.
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Limitations

Despite the advancements achieved by AlcLaM, it
is important to acknowledge its current limitations:

• AlcLaM is trained from scratch to build its
vocabulary. However, incorporating weights
of new dialectal vocabulary from existing Ara-
bic PLMs and adjusting through continued
training is a potential avenue for enhancement.
Nevertheless, expanding the vocabulary size
to encompass more dialectal tokens might lead
to increased inference costs.

• Given that AlcLaM was trained on approxi-
mately 10% of the training data used by its al-
ternatives, due to computational resource con-
straints, its performance on generative tasks
may not be as significant. Nonetheless, this
limitation can be mitigated by continued train-
ing on our open-source AlcLaM model.
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