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Abstract

Large-scale pretraining of vision-language
(VL) models brought dramatic improvements
across numerous tasks, from visual question-
answering to cross-modal retrieval but these
gains are mostly limited to English. Massively
multilingual VL encoder models (mVLMs)
hold promise for other languages: after fine-
tuning on only English task data, they can
perform the task in other languages in what
is termed zero-shot cross-lingual transfer (ZS-
XLT). Still, ZS-XLT sees a large performance
gap to English, especially for low-resource
languages. In this work, we reduce this gap
with a fine-tuning strategy known as Sched-
uled Unfreezing (SUF): instead of updating all
parameters from the start, we begin with the
top layer(s) of the vision-language encoder and
gradually unfreeze (i.e., update) its layers top
to bottom. SUF forces reliance on encoder’s
representations from higher layers: the fact
that in multilingual models these representa-
tions encode higher-level semantics rather than
low-level language-specific idiosyncrasies, we
hypothesize, should render SUF beneficial for
ZS-XLT. Experiments with two mVLMs (UC2
& CCLM) on three downstream tasks (xGQA,
XVNLI, xFlickrCo) show that SUF brings con-
sistent gains in ZS-XLT, especially for visual
Q&A (xGQA) by up to 10 points.

1 Introduction

Recent vision-language (VL) models (Zhou et al.,
2021; Zeng et al., 2022; Li et al., 2023a; Liu et al.,
2023c; Geigle et al., 2023, inter alia), trained on
massive amounts of image-text data, led to dra-
matic improvements on virtually all VL tasks (e.g.,
image-text retrieval or visual Q&A). This progress,
however, benefits primarily English. Large Vision-
Language models (LVLMs) (Li et al., 2023a; Liu
et al., 2023c,b; Dai et al., 2023; Bai et al., 2023)—
which align an image encoder to a Large Language
Model (LLM)—excel in generalizing zero-shot to
new tasks (without task-specific fine-tuning). Most

LVLMs use English LLMs and are not highly mul-
tilingual; they fail to follow instructions in other
languages or produce English output (Geigle et al.,
2023; Kew et al., 2023; Holtermann et al., 2024;
Shaham et al., 2024). Multilingual LVLMs are
much less available1 and generally underperform
their English counterparts (Geigle et al., 2023).

The alternative is task-specific fine-tuning of
smaller, but massively multilingually pretrained VL
encoder models (mVLMs) (Ni et al., 2021; Zhou
et al., 2021; Zeng et al., 2022). Here, however,
task-specific training data exists predominantly in
English which forces us to rely on zero-shot cross-
lingual transfer (ZS-XLT) (Conneau et al., 2020b;
Lauscher et al., 2020): due to the massively mul-
tilingual pretraining, the encoders fine-tuned on
English task data can be used for inference in other
languages. Still, ZS-XLT results in substantial
performance drops in other languages compared
to English, especially for less represented target
languages in m(V)LM’s pretraining. While few-
shot training for specific target languages can re-
duce this performance gap (Lauscher et al., 2020;
Schmidt et al., 2022), annotating sufficient data
(for training and model validation) is expensive
and does not scale to hundreds of languages.

In this work, we improve ZS-XLT with mVLMs
using a training method known as scheduled un-
freezing (SUF) (Howard and Ruder, 2018a; Liu
et al., 2024). SUF, which we apply in task-specific
fine-tuning of an mVLM on English data, grad-
ually increases the set of encoder’s (i.e., Trans-
former’s) parameters that are being fine-tuned
(i.e., updated), starting from the last layer(s) and
gradually adding lower layers of the Transformer
stack as the training progresses. Multilingual
language-only encoders have been shown to en-
code language-agnostic high-level semantic knowl-
edge in higher layers and language-specific idiosyn-

1Powerful multilingual LVLMs such as Google’s PaLI
models (Chen et al., 2023) are, unfortunately, not public.
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crasies in lower layers (Libovický et al., 2020; Hu
et al., 2020). If the same holds for mVLMs, then
SUF—by enforcing stronger reliance on represen-
tations from higher layers of an mVLM—should
facilitate ZS-XLT for VL tasks. Put differently,
with SUF fine-tuning on English-only data, idiosyn-
cratic English-specific knowledge from lower lay-
ers of the encoder is less available, forcing the
model to rely on more language-agnostic knowl-
edge from higher layers of the encoder.

We evaluate the effects of SUF fine-tuning on ZS-
XLT for two multilingual vision-language encoders:
UC2 (Zhou et al., 2021) and CCLM (Zeng et al.,
2022); and on three distinct downstream tasks: vi-
sual QA (xGQA (Pfeiffer et al., 2022)), image-
text retrieval (xFlickrCo (Bugliarello et al., 2022)),
and visual entailment (XVNLI (Bugliarello et al.,
2022)). We find that SUF consistently improves
performance compared to standard fine-tuning: by
up to 3 points in retrieval and entailment and by a
massive 10 points for visual QA.

Our further fine-grained analysis of model be-
havior on xGQA reveals that: (1) in standard fine-
tuning the performance for most target languages
stagnates or degrades over the course of (English)
training, while the English performance steadily
improves. (2) in SUF fine-tuning, in contrast, tra-
jectory of target language performance longer mir-
rors that of English performance, suggesting that
the model relies on more language-agnostic repre-
sentations; this results in massive improvements
especially for some languages distant from English,
such as Korean and Bengali. Using parallel data,
we show that SUF fine-tuning indeed leads to cross-
lingually more aligned representations of the se-
quence start token ([CLS]), which is input to the
classifier. Finally, we compare SUF against two
other strategies that similarly reduce reliance on
lower layers of the encoder: (1) layer-wise learning
rate decay and (2) fixed training of only the top
layers. While both these also yield some perfor-
mance gains, they underperform SUF. SUF-based
fine-tuning not only improves ZS-XLT of mVLMs
but is also computationally more efficient than stan-
dard fine-tuning: we thus hope that our work moti-
vates broader investigation of SUF strategies in the
context of multilingual VL models.

2 Related Work

Cross-lingual Transfer with Vision-Language
Models. Bugliarello et al. (2022) created the

IGLUE benchmark, which has become the de facto
benchmark for evaluating cross-lingual transfer
abilities of mVLMs. IGLUE comprises four VL
tasks: visual QA (xGQA (Pfeiffer et al., 2022)), vi-
sual entailment (XVNLI (Xie et al., 2019)), multi-
image reasoning (MaRVL) (Suhr et al., 2019; Liu
et al., 2021a), and image-text retrieval (Lin et al.,
2014; Plummer et al., 2015). Being designed
specifically for ZS-XLT, each dataset in IGLUE
comes with a training portion in English and test
portions in different target languages.

Bugliarello et al. (2022) compare several mul-
tilingual VL encoder models on IGLUE, namely:
M3P (Ni et al., 2021), x/mUNITER (Liu et al.,
2021a), and UC2 (Zhou et al., 2021)), primarily in
ZS-XLT, but also in few-shot cross-lingual transfer
(FS-XLT) in which few training instances in tar-
get languages are assumed to exist. Crucially, in
both setups they demonstrate significant gaps be-
tween models’ English performance and their per-
formance for other languages. Subsequent models
such as CCLM (Zeng et al., 2022), Li et al. (2023b),
and Ernie-UniX2 (Shan et al., 2022) improved
target-language performance, but since their En-
glish performance improved as well, this resulted
overall in similar ZS-XLT performance gaps.

For visual question answering in particular, there
has been work dedicated to reducing the cross-
lingual performance gap. Nooralahzadeh and Sen-
nrich (2023) assessed that a high ambiguity in
the label space makes learning more difficult, at-
tempting to remedy for this with several strate-
gies, including addition of a similarity-based loss
to standard classification cross-entropy loss, code-
switching at the instance level and a sparse fine-
tuning approach. Liu et al. (2023a) reduce the
ZS-XLT performance gap by replacing the stan-
dard single-layer classifier with a deeper two-layer
architecture. Observing stark performance differ-
ences across different question types, they also in-
troduced a special question-type token.

Finally, Geigle et al. (2023) find that fine-tuning
a multilingual LVLM that relies on mT0 (Xue et al.,
2021; Muennighoff et al., 2022) as the LLM back-
bone nearly closes the ZS-XLT gap. Training and
fine-tuning billion-parameter LVLMs is, however,
much more computationally expensive; crucially,
the same is true for inference, which hinders model
application for most users. Moreover, Geigle et al.
(2023) show that the cross-lingual performance
gap is highly dependent on the backbone LLM, ob-
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Figure 1: Illustration of Scheduled Unfreezing; each
rectangle shows one Transformer layer, green rectan-
gles denote unfrozen layers whereas gray ones indicate
frozen layers. The embedding layer (orange) is kept
unfrozen along with the task-specific classification head
(purple). In every epoch, we unfreeze a fixed number of
layers from top to bottom.

serving larger ZS-XLT gaps with BLOOMZ (Scao
et al., 2022; Muennighoff et al., 2022).

In this work, we focus on encoder mVLMs, due
to their smaller computational footprint and thus
broader applicability. To the best of our knowledge,
our SUF is the first strategy shown to substantially
reduce the ZS-XLT gap for VL encoders.

Unfreezing training strategies. Various strate-
gies for (un)freezing model parts have been pro-
posed in transfer learning scenarios. Howard and
Ruder (2018b) introduce Gradual Unfreezing for
fine-tuning a pretrained recurrent LM, to avoid
catastrophic forgetting across different text classi-
fication tasks; in each epoch, starting from the top
layer, they unfreeze one layer of the pretrained LM.
However, Raffel et al. (2020) find that this underper-
forms full model fine-tuning for Transformer-based
LMs. In the context of XLT with multilingual LMs,
in concurrent work Liu et al. (2024) propose a scor-
ing function that dynamically decides when and
which layers to unfreeze. In this work, in contrast,
we investigate a simpler fixed unfreezing sched-
ule and focus on bimodal vision-language models
rather than unimodal language-only models.

3 Scheduled Unfreezing

The exact setup on which we focus in this work
is zero-shot cross-lingual transfer (ZS-XLT) for
downstream vision-language tasks (e.g., visual QA)
with massively multilingual vision-language en-
coder models (mVLMs) as vehicles of the trans-
fer. In this setup, we fine-tune the mVLM on task-

specific data in English only and evaluate its per-
formance on task-specific data in other languages.

Based on the observation (from multilingual
language-only encoders) that multilingual encoders
encode more language-agnostic higher-order se-
mantics in their upper Transformer layers and
language-specific information in their lower lay-
ers (Libovický et al., 2020; Hu et al., 2020), we
propose fine-tuning based on top-to-bottom sched-
uled unfreezing (SUF) as a method to facilitate
cross-lingual transfer with mVLMs. The motiva-
tion for SUF in this context is as follows: by (ini-
tially) freezing lower Transformer layers, the clas-
sification head is forced to solve the task by tuning
language-agnostic knowledge from higher Trans-
former layers of the mVLM first. Contrary, in full
fine-tuning, the classifier can additionally leverage
language-specific knowledge from lower layers—
when fine-tuned on English tasks data only. This
means that the classifier is more likely to overfit to
English-specific features, harming the effectiveness
of cross-lingual transfer to other languages.

To test this hypothesis, we use a fixed-schedule
unfreezing in this work, illustrated in Figure 1. The
general idea is not to train the full model from the
start, but freeze (i.e., not update) all but the top k
layers at the beginning and then gradually unfreeze
k layers top-to-bottom in every epoch.

Architecture-specific Implementation. Com-
pared to unimodal language-only encoders (De-
vlin et al., 2019; Conneau et al., 2020b), mVLMs
additionally contain components for encoding the
visual modality (i.e., images). Moreover, mVLMs
come with different architectures, differing primar-
ily w.r.t. where cross-modal information aggrega-
tion occurs. As such, we introduce architecture-
specific unfreezing schedules for the two mVLMs
with which we experiment in this work: UC2 (Zhou
et al., 2021) and CCLM (Zeng et al., 2022).

UC2 is an encoder Transformer model, architec-
turally identical to the language-only XLM-R en-
coder (Conneau et al., 2020a). UC2 encodes an
image offline, relying on an object detection model
(Ren et al., 2015)2; the features for image regions
given by this model are linearly projected and then
concatenated with the text embeddings as input to
the model. The image region vectors are treated
by the Transformer like any other text token. As a
result, we can use general SUF without any adjust-

2All images are processed prior to training and the detec-
tion model is not used during training of UC2.
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ments: UC2, using a base-size XLM-R architec-
ture, has 12 Transformer layers. In the first epoch,
the task-specific classification head, the embedding
layer3, and the top k = 3 Transformer layers re-
main unfrozen. After every training epoch, we
unfreeze 3 additional layers, top to bottom.

CCLM, also a Transformer-based encoder, com-
prises n layers for processing only the text input,
followed by m more cross-modal layers, which
additionally have a cross-attention component.
Through this cross-attention, the model attends to
the image features extracted by a separate Vision
Transformer (ViT) (Dosovitskiy et al., 2020). For
CCLMbase, which we use in our experiments, there
are n=12 layers for pure text encoding (initialized
from XLM-R), followed by m=6 cross-modal lay-
ers (initialized from X2-VLM (Zeng et al., 2023)).
We keep the ViT fully unfrozen during training.
The motivation for this is twofold: (i) the resolu-
tion of images in fine-tuning is larger (384x384)
than in its pretraining (224x224), requiring ViT
to adapt; and (ii) we employ SUF to reduce the
impact of language-specific (i.e., English) overfit-
ting in fine-tuning and image encoding with ViT
is inherently language-agnostic. We thus keep the
ViT, task-specific classification head, and embed-
ding layer unfrozen throughout training. In the first
epoch, we additionally start with the top k = 3
Transformer layers (out of m + n=18) unfrozen
and then unfreeze 3 more layers after each epoch.

4 Evaluation

We provide details of our experimental setup and
then consider results over three downstream tasks
with the two architectures (UC2 & CCLM).

4.1 Experimental Setup

Datasets. We evaluate SUF on the multilingual
IGLUE benchmark (Bugliarello et al., 2022) for
ZS-XLT. IGLUE spans 4 different tasks: vi-
sual QA (xGQA (Pfeiffer et al., 2022; Hud-
son and Manning, 2019)), image-text retrieval
(xFlickrCo (Bugliarello et al., 2022)), visual entail-
ment (XVNLI) (Xie et al., 2019; Bugliarello et al.,
2022), and multi-image reasoning (MaRVL (Liu
et al., 2021b)). We exclude MaRVL, because it
requires changes to the model architecture in order
to support multi-image input.

3Initial experiments showed that keeping the embedding
layer unfrozen was critical for good performance.

xGQA contains diverse questions over multiple
question types – Verify (yes/no), Query (open),
Choose (one of two options), Logical (true or false),
Compare (across multiple objects) – with nearly
2000 unique labels. This dataset is obtained by ex-
tending the monolingual GQA (Hudson and Man-
ning, 2019) with human translations in 7 languages.
The English training portion contains 943K exam-
ples. We report classification accuracy.

For image-text retrieval, the task is to retrieve
the best caption for an image (Text Retrieval, TR)
or the corresponding image given a caption (Image
Retrieval, IR). We use xFlickrCo which couples 1K
images from Flickr30K (Plummer et al., 2015) test
portion with 1K images from the COCO (Lin et al.,
2014) test portion with human-written captions in
7 languages (plus the original English Flickr30k
and MSCOCO captions). For training, we use the
Flickr30k training split with 145K examples. As
metric, we report recall@1 (R@1)—the proportion
of images (in TR) or captions (in IR) for which
the matching caption (in TR) or image (in IR) is
positioned at the very top of the ranking.

For visual entailment on XVNLI, a model must
predict if a statement (i.e., a hypothesis), is en-
tailed, contradicts, or is neutral to an image (as
the “premise”). The training portion of the dataset
consists of 541K English examples and the test
portion covers 4 other languages (Arabic, Spanish,
French, and Russian). We report results in terms of
classification accuracy.

Training Setup. We mirror the training proce-
dures from IGLUE and (Zeng et al., 2022) for task-
specific fine-tuning of of UC2 and CCLM. For
xGQA with UC2, we add a 2-layer classification
head (with ∼ 2000 classes, i.e., valid answers from
the training data). CCLM casts VQA as a gen-
eration task, adding a full-blown 6-layer decoder
Transformer (the input to which is the representa-
tion of the [CLS] token, output of the last layer of
the CCLM’s cross-encoder). The decoder Trans-
former is trained on the task and as such not frozen.

Hyperparameters: We train for the same number of
epochs for each task as in IGLUE: 5/10/10 epochs,
for xGQA, XVNLI, and xFlickrCo, respectively.
Regarding other hyperparameter values, we follow
IGLUE for training UC2, using the learning rate
of 4 · 10−5 for xGQA and 2 · 10−5 for XVNLI
and xFlickrCo. We train in batches of size 256
for xGQA, 64 for xFlickrCo, and 128 for XVNLI.
For CCLM (the original work did not report fine-
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tuning hyperparameter values), we use a learning
rate of 2·10−5 for the image encoder (i.e., ViT) and
3 · 10−5 for the rest of the model. We use an effec-
tive batch size of 256/128/144 for xGQA, xFlick-
rCo, and XVNLI, respectively, resorting to gradient
accumulation, due to limited GPU VRAM4. For
both models and in all fine-tuning procedures, we
use AdamW (Loshchilov and Hutter, 2019) opti-
mizer, with linear warm-up for 10% of steps and
weight decay of 0.01. We use exactly the same
hyperparameters for standard and SUF fine-tuning.

Evaluation Setup. We compare SUF fine-tuning
against standard full fine-tuning for ZS-XLT. In
other words, we fine-tune the model on the task-
specific English training split and then evaluate its
performance on the same task on the test splits
in English and other languages. We evaluate all
models, with and without SUF, after the last train-
ing epoch. For xFlickrCo, with CCLM, we first
pre-filter 128 best image (in IR) or captions (in
TR) matches based on the cosine similarity of their
image and text representations (computed indepen-
dently from the other modality using the image
encoder and the text-only layers), and then re-rank
the candidates by jointly scoring all candidates.
With UC2, we directly compute the pairwise simi-
larity of all possible image-text pairs. For xGQA
with CCLM, we perform constrained generation to
the set of task-specific class labels.

4.2 Results

The overview of the ZS-XLT results (together with
English performance), aggregated over all target
languages for each task, is given in Table 1. Sched-
uled unfreezing (SUF) yields consistent ZS-XLT
performance gains over standard fine-tuning for all
three tasks and both UC2 and CCLM. At the same
time, the English performance in SUF is compa-
rable to that of standard fine-tuning. This means
that not only does (1) SUF fine-tuning truly reduce
the cross-lingual performance gap for mVLMs, but
(2) freezing of lower layers does not seem to hurt
the source language performance. While SUF fine-
tuning of CCLM brings moderate 2-3 point im-
provements on XVNLI and xFlickrCo, on xGQA
we observe a massive 10-point average gain over
the 7 target languages. We next investigate the
xQGA performance in more detail.

4For xFlickrCo, where we use in-batch negatives, this
yields lower scores than reported in Zeng et al. (2022).
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Figure 2: Results on xGQA for CCLMbase after each
epoch for each language. We compare the standard
finetuning (left) with scheduled unfreezing (SUF) fine-
tuning (right).

In-Depth Analysis for xGQA. Motivated by
the large performance gains that SUF fine-tuning
brings in ZS-XLT for xGQA, we next inspect
model behavior on this task in more detail, across
two performance dimensions: (i) individual target
languages and (ii) different question types, aim-
ing to unravel factors that specifically contribute to
good ZS-XLT performance.

Per-Language Performance. We first analyze how
training on English data affects the transfer to other
languages for different training duration. In Fig-
ure 2, we show the per-epoch accuracy of CCLM
for all target languages (and EN as the source lan-
guage. With standard fine-tuning, English perfor-
mance improves throughout the training; the per-
formance for most other languages, however, ei-
ther stagnate or decreases. The only exception to
this pattern is German (DE), which is not only a
high-resource language but also linguistically clos-
est to English. For languages most distant from
English, Korean and Bengali, we observe largest
performance drops with prolonged English training.
Scheduled unfreezing, on the other hand, prevents
this performance decay and most languages ben-
efit from longer English training under SUF fine-
tuning. Additionally, we see that most languages
also start at a higher accuracy with scheduled un-
freezing. This suggests that the freezing of lower
layers at the start forces the model to rely on more
language-agnostic features that transfer better.

Per-Question Type Performance. GQA is con-
structed around 5 question types: Verify (yes/no),
Query (open), Choose (one out of two options),
Logical (true or false), and Compare (across mul-
tiple objects). Figure 3 summarizes the ZS-XLT
performance for different question types across the
training epochs. We see that SUF fine-tuning pre-
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Setup xGQA XVNLI xFlickrCo
TR IR

EN ZS-XLT EN ZS-XLT EN ZS-XLT EN ZS-XLT

UC2 57.1 31.9 77.1 61.7 36.8 18.0 43.0 20.0
UC2+SUF 57.1 41.3 77.2 61.2 36.4 20.0 41.8 22.3

CCLM 62.0 42.8 81.2 68.6 77.7 63.4 78.0 64.2
CCLM+SUF 62.8 51.5 80.6 70.6 78.5 66.7 78.6 67.1

Table 1: Evaluation of SUF on UC2 and CCLMbase across multiple V&L tasks. We report results for English (en)
and averaged (avg) across all non-English languages. We bold the best results. We report accuracy for xGQA and
XVNLI, and recall@1 for xFlickrCo for both Text Retrieval (TR) and Image Retrieval (IR).
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Figure 3: Accuracy every epoch for each question type in xGQA for SUF and standard fine-tuning with CCLMbase.

vents language-specific overfitting to English in
particular for Compare, Logical, and Verify ques-
tions. It is worth noting that all three question types
effectively have only ‘yes’ and ‘no’ as answer la-
bels. This means that SUF is not improving ZS-
XLT by reducing label space ambiguity (like, e.g.,
Nooralahzadeh and Sennrich (2023)), but rather
by preventing early overfitting to English-specific
idiosyncrasies in the questions.

Expectedly, all models generally exhibit the low-
est performance on the open-ended Query ques-
tions, which account for the largest portion of the
xQGA data. For both Query and Choose ques-
tions, English training with both standard and SUF
fine-tuning generally increases the performance for
target languages throughout the training; for SUF
fine-tuning, however, the starting accuracy scores
are higher than for standard fine-tuning, resulting

in overall better scores at the end of training.

5 Further Analysis

We further analyze SUF fine-tuning through the
lens of cross-language similarity of [CLS] tokens
for parallel data. We then compare SUF with con-
ceptually similar alternatives: (i) layer-wise learn-
ing rate decay and (ii) updating only the top layers
Transformer layers throughout the whole training.
Finally, we report the results of few-shot cross-
lingual transfer (FS-XLT).

5.1 Cross-Lingual Semantic Alignment
Our previous findings suggest that SUF can retain
the cross-lingual transfer abilities of the mVLM
better than standard finetuning. We thus further
test cross-lingual semantic alignment for both fine-
tuning regimes (with UC2), using parallel data.
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SF bn de en id ko pt ru zh
bn 100 45 33 48 58 47 55 48
de 45 100 61 58 48 55 60 57
en 33 61 100 53 39 49 52 56
id 48 58 53 100 50 57 60 60
ko 58 48 39 50 100 54 57 56
pt 47 55 49 57 54 100 58 56
ru 55 60 52 60 57 58 100 60
zh 48 57 56 60 56 56 60 100

(a) xGQA: Standard Finetuning (Unpaired similarity: 20)
SUF bn de en id ko pt ru zh
bn 100 50 43 54 61 54 55 52
de 50 100 78 71 65 71 74 70
en 43 78 100 69 59 68 70 70
id 54 71 69 100 68 71 72 67
ko 61 65 59 68 100 67 67 66
pt 54 71 68 71 67 100 72 67
ru 55 74 70 72 67 72 100 70
zh 52 70 70 67 66 67 70 100

(b) xGQA: Scheduled Unfreezing (Unpaired similarity: 22)
SF ar en es fr ru
ar 100 41 48 47 48
en 41 100 48 70 56
es 48 48 100 49 49
fr 47 70 49 100 58
ru 48 56 49 58 100

(c) XVNLI: Standard Finetuning (Unpaired similarity: 17)
SUF ar en es fr ru

ar 100 76 83 79 83
en 76 100 79 89 84
es 83 79 100 82 83
fr 79 89 82 100 85
ru 83 84 83 85 100

(d) XVNLI: Scheduled Unfreezing (Unpaired similarity: 62)

Figure 4: Average pairwise CLS-similarity (in percent-
age points) between the translation-parallel examples
of xGQA and XVNLI, compared between scheduled
unfreezing (SUF) and standard fine-tuning (SF), evalu-
ated on the last epoch of fine-tuning with UC2. For a
baseline of similarity between unpaired examples, we
report the average similarity between all examples over
all languages (unpaired similarity).

With UC2, the predictions are made from the
transformed vector of the sequence start token
[CLS]. We thus analyze how similar representa-
tions of the [CLS] token are for parallel sentences
(same meaning, but in different languages): The
more language-agnostic the representations are, the
more aligned should the [CLS] token vectors of
parallel sentences be.

For this analysis, we leverage the multi-parallel
instances of xGQA and XVNLI. We use simple co-
sine similarity to quantify the similarity of [CLS]
vectors of mutual translations. Given that it is pos-
sible that a fine-tuning procedure can make inputs
appear generally more similar, we also measure
“baseline” average similarity between non-parallel
sentences (randomly sampled).

Figure 4 displays the results of this analysis on
the multi-parallel xGQA and XVNLI test data. We
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Figure 5: Result of different values for the decay factor
d for layer-wise learning rate decay on zero-shot perfor-
mance for xGQA compared to standard fine-tuning and
scheduled unfreezing (SUF). Note that the y-axis starts
at 40 to better show performance differences.

make two observations. First, the average similar-
ity with English is highly correlated with the rela-
tive zero-shot performance between the languages
with a Pearson correlation of over 0.9. This, unsur-
prisingly, means that there are higher cross-lingual
similarities between instances, e.g., for English-
German in xGQA or English-French for XVNLI,
which also means better transfer results. This con-
firms the common assumption that good semantic
alignment between representations of different lan-
guages is key for successful cross-lingual transfer:
we show that the same is true for mVLMs. Second,
we see that for xGQA, the pairwise similarity be-
tween the languages increases substantially more
for SUF fine-tuning than for standard fine-tuning
(also relatively, compared to the baseline similar-
ity). This suggests that scheduled unfreezing yields
more language-agnostic final representations for
this task. For XVNLI, where SUF yielded no gains
for UC2, the pairwise similarity also increases but
so does the baseline similarity, suggesting no im-
provement in cross-lingual semantic alignment.

5.2 Layer-wise Learning Rate Decay

Our experiments suggest that ZS-XLT, especially
with xGQA, profits when the lower layers are
trained less. As an alternative to SUF, where a
layer is either trained or not (with the same learning
rate for all layers), we consider layer-wise learning
rate decay. Here, the model is fully trained but
we decay the learning rate exponentially between
the layers, with a decay factor d, so that parame-
ters of lower layers are trained with much smaller
learning rates: For N layers and learning rate l, the
actual learning rate l(i) for layer i (counted bottom
to top) is: l(i) = ldN−i. This means that the top
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Setup en avg

Standard 62.0 42.8
SUF 62.8 51.5
CM only 61.9 49.7

Table 2: Results with CCLM on xGQA comparing stan-
dard finetuning, scheduled unfreezing (SUF) , and cross-
modal layers only (CM only), where we only train the
top 6 cross-modal layers and freeze the rest.

layers are trained throughout with the same learn-
ing rate as in SUF, but the lower layers, instead of
being “flicked-on”, after some number of epochs,
are instead trained from the start but with a much
smaller learning rate. This, in principle, should also
limit the overfitting to language-specific knowledge
from lower layers.

To evaluate a reasonable range for the decay,
we train CCLMbase on xGQA and choose: d ∈
{0.98, 0.95, 0.88, 0.75} with otherwise the same
hyperparameters. As a result, the learning rate of
the bottom layer (of 18) is 70% to 0.5% of the
learning rate for the top layer.

We present the results in Figure 5. For d =
0.98, which decays the least, we see results close
to the standard fine-tune setup. For d = 0.75,
which effectively does not train the lowest layers,
performance decreases. We see the best results for
d = 0.88. While it achieves better results than
the standard setup, it underperforms compared to
scheduled unfreezing. Looking at per-language
results here, we again observe that accuracy for
languages like Bengali and Korean, which drop
during standard training, are better retained with
layer-wise decay.

5.3 Training Top-Layers Only

In Table 2, we test for CCLM, which has 12 XLM-
R-initialized text-only layers and 6 cross-modal
layers, a setup where we only train the upper 6
cross-modal layers (CM only in Table 2). While
results are notably better compared to standard fine-
tuning for zero-shot transfer, they are slightly worse
than with SUF. Allowing the model to adapt the full
model, albeit not fully from the start, is important
for best performance though results on English are
close to standard finetuning.

5.4 SUF in Few-Shot Training

While the focus of this work is on zero-shot cross-
lingual transfer, we want to briefly explore if SUF

Setup Zero-Shot Few-Shot

Standard 31.9 44.3
SUF 41.3 46.7

Table 3: Results for UC2 on xGQA for zero-shot and
few-shot when trained with and without SUF on the
English train split (not for few-shot step).

can also further improve results in a few-shot setup.
In a few-shot setup, the model is first trained on the
large English train split (as in zero-shot) but then
also trained on a few dozen to hundred examples in
the target language. This can help reduce the perfor-
mance gap for multiple IGLUE tasks (Bugliarello
et al., 2022; Zeng et al., 2022).

Following the few-shot setup in IGLUE for
xGQA with UC2 (with the maximum 48 shots), we
compare a model trained on the English data with
and without scheduled unfreezing. During the few-
shot training, both setups are trained identically,
that is, scheduled unfreezing is not used. As shown
in Table 3, SUF is only around 2 points better af-
ter few-shot training. While the more language-
agnostic representations learned with SUF might be
a slightly better starting point for few-shot training,
we also see that with a few examples, the model can
‘rectify’ the performance drop seen during training
on English for most languages.

6 Conclusion

Cross-lingual zero-shot allows us to train massively
multilingual vision-language models on English
task-specific data and then use them for other lan-
guages without additional target language training
data. Still, there is a large performance gap to
English. In this work, we leverage scheduled un-
freezing – a finetuning strategy where we initially
keep all but the upper model layers frozen and grad-
ually unfreeze the model top-down during training
– as a method for reducing the transfer gap.

Experiments with two different models on three
downstream vision-language tasks show that sched-
uled unfreezing can help improve non-English per-
formance; results in visual question answering are
especially promising with massive gains in accu-
racy. Subsequent analysis suggests that scheduled
unfreezing can help the zero-shot transfer by forc-
ing the model to learn more language-agnostic fea-
tures and overfit less on English-specific idiosyn-
crasies in the training data.
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Gurevych. 2022. xgqa: Cross-lingual visual question
answering. In Findings of the Association for Com-
putational Linguistics: ACL 2022, pages 2497–2511.

Bryan A. Plummer, Liwei Wang, Chris M. Cervantes,
Juan C. Caicedo, Julia Hockenmaier, and Svetlana
Lazebnik. 2015. Flickr30k Entities: Collecting
Region-to-Phrase Correspondences for Richer Image-
to-Sentence Models. In 2015 IEEE International
Conference on Computer Vision, ICCV 2015, Santi-
ago, Chile, December 7-13, 2015, pages 2641–2649.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21:140:1–140:67.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian
Sun. 2015. Faster r-cnn: Towards real-time object
detection with region proposal networks. Advances
in neural information processing systems, 28.

Teven Le Scao, Angela Fan, Christopher Akiki, El-
lie Pavlick, Suzana Ilic, Daniel Hesslow, Roman
Castagné, Alexandra Sasha Luccioni, François Yvon,
Matthias Gallé, Jonathan Tow, Alexander M. Rush,
Stella Biderman, Albert Webson, Pawan Sasanka Am-
manamanchi, Thomas Wang, Benoît Sagot, Niklas
Muennighoff, Albert Villanova del Moral, Olatunji
Ruwase, Rachel Bawden, Stas Bekman, Angelina

164

https://doi.org/10.48550/arXiv.2301.12597
https://doi.org/10.48550/arXiv.2301.12597
https://doi.org/10.48550/arXiv.2301.12597
https://doi.org/10.18653/v1/2023.acl-long.327
https://doi.org/10.18653/v1/2023.acl-long.327
https://doi.org/10.18653/v1/2023.acl-long.327
https://doi.org/10.18653/v1/2023.acl-long.327
https://doi.org/10.18653/v1/2020.findings-emnlp.150
https://doi.org/10.18653/v1/2020.findings-emnlp.150
http://arxiv.org/abs/2301.05487
http://arxiv.org/abs/2301.05487
http://arxiv.org/abs/2301.05487
https://doi.org/10.18653/v1/2021.emnlp-main.818
https://doi.org/10.18653/v1/2021.emnlp-main.818
https://doi.org/10.48550/ARXIV.2310.03744
https://doi.org/10.48550/ARXIV.2310.03744
https://doi.org/10.48550/arXiv.2304.08485
https://doi.org/10.48550/arXiv.2211.01786
https://doi.org/10.48550/arXiv.2211.01786
https://doi.org/10.1109/ICCV.2015.303
https://doi.org/10.1109/ICCV.2015.303
https://doi.org/10.1109/ICCV.2015.303
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html


McMillan-Major, Iz Beltagy, Huu Nguyen, Lucile
Saulnier, Samson Tan, Pedro Ortiz Suarez, Vic-
tor Sanh, Hugo Laurençon, Yacine Jernite, Julien
Launay, Margaret Mitchell, Colin Raffel, Aaron
Gokaslan, Adi Simhi, Aitor Soroa, Alham Fikri
Aji, Amit Alfassy, Anna Rogers, Ariel Kreisberg
Nitzav, Canwen Xu, Chenghao Mou, Chris Emezue,
Christopher Klamm, Colin Leong, Daniel van Strien,
David Ifeoluwa Adelani, and et al. 2022. BLOOM:
A 176B-Parameter Open-Access Multilingual Lan-
guage Model. CoRR, abs/2211.05100. ArXiv:
2211.05100.

Fabian David Schmidt, Ivan Vulić, and Goran Glavaš.
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A Per-Language Results

We report the per-language results for all our mod-
els and tasks.

Zero-Shot en ar es fr ru Ø

UC2 77.1 56.6 58.1 68.1 64.9 61.9
UC2 + SUF 77.2 55.6 58.5 69.2 63.7 61.7
CCLM 81.2 60.9 69.6 75.6 68.5 68.6
CCLM + SUF 80.6 63.6 70.9 77.6 70.4 70.6

Table 4: Accuracy of SUF compared with our baseline
on XVNLI on CCLMbase and UC2.

Zero-Shot en de bn id ko pt ru zh Ø

UC2 57.1 44.4 20.8 30.7 25.3 34.1 35.4 32.8 31.9
UC2 + SUF 57.1 51.6 26.5 40.5 38.6 41.2 43.8 47.0 41.3
CCLM 62.0 57.2 33.7 49.8 29.1 46.4 39.9 43.3 42.8
CCLM + SUF 62.8 59.0 49.5 52.5 42.2 51.7 48.2 57.5 51.5

Table 5: Zero-shot evaluation of scheduled unfreezing
on CCLM and UC2.

Zero-Shot en de es id ja ru tr zh Ø

Text Retrieval

UC2 36.8 25.8 16.0 12.8 21.6 16.9 7.3 25.8 18.0
UC2 + SUF 36.4 26.0 17.8 16.3 23.5 19.7 8.2 29.0 20.0
CCLM 77.7 68.8 66.4 55.3 69.6 64.5 45.6 73.6 63.4
CCLM + SUF 78.5 71.0 69.5 58.1 71.1 68.9 50.7 73.2 66.1

Image Retrieval

UC2 43.0 39.3 15.9 12.7 26.3 19.7 6.4 33.4 20.0
UC2 + SUF 41.8 30.2 18.7 15.1 28.1 22.8 8.0 33.5 22.3
CCLM 78.0 69.2 68.6 54.8 72.7 64.8 45.7 73.7 64.2
CCLM + SUF 78.6 70.5 70.9 60.0 74.3 68.7 50.4 74.6 67.1

Table 6: Results of SUF compared with our baseline on
text and image retrieval (r@1, xFlickrCo) on CCLMbase
and UC2.
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