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Abstract

Visual Question Generation is a task at
the crossroads of visual and language learn-
ing, impacting broad domains like education,
medicine, and social media. While existing
pre-trained models excel in fact-based queries
with image pairs, they fall short of captur-
ing human-like inference, particularly in un-
derstanding causal and temporal relation-
ships within videos. Additionally, the computa-
tional demands of prevalent pre-training meth-
ods pose challenges. In response, our study
introduces a framework that leverages vision-
text matching pre-trained models to guide lan-
guage models in recognizing event-entity rela-
tionships within videos and generating inferen-
tial questions. Demonstrating efficacy on the
NExT-QA dataset, which is designed for causal
and temporal inference in visual question an-
swering, our method successfully guides pre-
trained language models in recognizing video
content. We present methodologies for abstract-
ing causal and temporal relationships between
events and entities, pointing out the importance
of consistent relationships among input frames
during training and inference phases and sug-
gesting an avenue for future exploration1.

1 Introduction

Visual Question Generation (VQG) is an emerg-
ing task of multi-modal learning, integrating vision
and language. Since its inception (Lin and Parikh,
2016), VQG has influenced diverse domains like
education (Zhao et al., 2022), social media (Yeh
et al., 2022), and human-computer interaction (Lee
et al., 2018). Existing datasets primarily cater to
factoid question answering, extracting direct an-
swers from visual content (Yeh et al., 2022). How-
ever, factoid question answering lacks inherent
depth in human thinking, exemplified by the dispar-
ity between a fact-based query like "Was anyone
injured in the crash?" and a more insightful, causal

1The code is available at this address.

question "Why do these drivers have accidents in
the middle of intersections?" or a temporal question
"What will the police do after the crash?"

This research addresses a critical gap in the VQG
landscape: the absence of studies exploring infer-
ence aligned with human thinking. Moreover, un-
like singular images, videos offer richer details of
relationships between events and entities, prompt-
ing our focus on two fundamental types of rea-
soning—causal inference and temporal inference.
Through this approach, we aim to introduce a new
challenge of inferential question generation origi-
nating from videos and auxiliary text and advance
the field of VQG.

Meanwhile, despite advancements in VQG, the
computational demands (Radford et al., 2021) of
pre-training models, particularly visual transform-
ers (Dosovitskiy et al., 2020), pose challenges.
Our work distinguishes itself by harnessing pre-
trained vision-to-text matching models instead of
embarking on resource-intensive model training
from scratch. Inspired by prior successes (Mokady
et al., 2021), our approach expedites question gen-
eration by leveraging the knowledge embedded in
existing models, thereby enhancing the quality and
efficiency of the process.

The contributions of this paper are as follows:

1. As far as we know, we are the first to explore
the task of causal and temporal video question
generation. We propose a framework (figure
1) and establish a baseline step by step by com-
paring video encoders, language model sizes,
and stage fine-tuning strategies. Additionally,
we propose an evaluation metric to enhance
VQG grounding assessment.

2. Experiments on the NExT-QA dataset display
the efficacy of our methods in combining vi-
sion and language. We highlight the impor-
tance of consistent frame relationships dur-
ing training and inference for deriving event-
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Figure 1: The overall framework for visual question generation. It comprises four essential components: a visual
encoder, an auxiliary text encoder (T5), multi-modal interaction, and an output question decoder (T5). Videos and
auxiliary text are respectively encoded into embeddings and be concatenated through multilayer perception (MLP)
layers. Temporal and causal questions will be generated by the question decoder.

entity relationships within videos. This re-
search suggests the direction of enhancing
frame-based consistency in causal and tem-
poral video inference for future work.

2 Background and Related Work

Visual Question Generation: The field of VQG
has seen notable progress since its introduction
(Mostafazadeh et al., 2016). Existing research
has extensively explored single-image VQG (Vedd
et al., 2021; Krishna et al., 2019), while multiple-
image VQG (Chan et al., 2022) and video VQG
(Khurana and Deshpande, 2021), which present
promising avenues for inferring causality and tem-
poral relationships between visual elements, re-
main unexplored. To the best of our knowledge, no
prior research has specifically focused on the chal-
lenges of generating questions that involve causal
and temporal inference in VQG tasks. This repre-
sents a critical research gap, as inferential questions
have the potential to unlock deeper insights of vi-
sual content, going beyond mere factual queries.
Multi-modal Generative Task with Pre-trained
Models: Existing research in visual question gener-
ation adopts large pre-trained models for tasks like
image captioning (Li et al., 2022), visual question
answering (Khan et al., 2023), and visual ground-
ing (Peng et al., 2023), showcasing impressive re-
sults but facing high computational costs (Doso-

vitskiy et al., 2020). An alternative, leveraging
vision-text matching pre-trained models like CLIP
(Radford et al., 2021), BLIP (Li et al., 2022), and
BLIP2 (Li et al., 2023), efficiently bridges vision
and language domains. Despite success in vari-
ous generative tasks, no prior research explores
these models for vision-based question generation,
particularly those involving causal and temporal
inference. This research aims to utilize various
vision-text matching pre-trained models in captur-
ing causal and temporal relationships.

3 Methods

The overall framework for VQG is displayed in Fig-
ure 1. This section introduces our training strate-
gies and inferential relationship abstraction meth-
ods.

3.1 Multi-modal Fusion

Visual information and textual context are often
complementary in nature. The visual content pro-
vides rich details and cues that are not present in
the text, and vice versa. The core issues are how to
unify the multi-modal embedding space between vi-
sion and language, and how to effectively guide the
language model in recognizing visual information
and generating temporal and causal questions.

Concatenate Vision and Language: Inspired
by one of the latest methods (Liu et al., 2023b,a),
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we propose a direct but powerful technique to con-
nect vision and language spaces. Specifically, given
auxiliary text input words which are "Text Infor-
mation" shown in Figure 1 w1

V , w
2
V , ..., w

p
V , for a

video V , we process them by language models
and get a series of word embeddings t1V , t

2
V , ..., t

i
V .

Given a video V , we first divide the video V as sep-
arate frames x1V , x

2
V , ..., x

m
V . Next, after processing

the frames by visual encoders, we employ a light
mapping network (multilayer perceptron), denoted
by F , to map the visual embedding to k embedding
vectors (we set the k as 5 in our experiments):

p1V , p
2
V , ...p

k
V = F (visual_encoder(x1V , ..., x

m
V )).

(1)
where each vector pkV has the same dimension as
the word embedding of language models. We then
concatenate the obtained visual embedding to the
auxiliary input text embeddings:

ZV = p1V , ..., p
k
V , t

1
V , ..., t

i
V . (2)

During fine-tuning, we feed the language models
with the prefix-text concatenation {Zi}Ni=1, where
N is the number of videos. Our training objective
is to predict the temporal and causal question to-
kens conditioned on the prefix in an auto-regressive
fashion. To this purpose, we train the mapping
component F using the simple, yet effective, cross-
entropy loss:

L =

N∑

i=1

ℓ∑

j=1

log pθ(q
i
j |ZV , q

i
1, ...q

i
j−1), (3)

where ℓ is the length of the predicted questions, pθ
is the probability of ground-truth tokens,.

Two Stage Fine Tuning: Inspired by prior re-
search (Liu et al., 2023b,a), a two-stage fine-tuning
methodology is introduced to tackle the challenge
of multi-modal fusion in visual question generation
by effectively aligning visual and textual informa-
tion. In the first stage, we prioritize feature align-
ment fine-tuning, aligning the visual encoder with
the language model through a parameter mapping
network F . This ensures alignment between video
features and language model word embeddings,
streamlining visual tokenizers. In the second stage,
a fine-tuning end-to-end strategy takes place after
the convergence of the first stage. Visual encoder
weights are frozen, and both pre-trained weights
of the projection layer and the language model are
updated. This two-stage process, acting on the
"Fusion model" shown in Figure 1, optimizes the
language model’s performance.

3.2 Causal and Temporal Inference
Abstraction Methods

This section introduces two methods which aim
to enhance the abstraction of causal and temporal
inference from events and entities within a video.

Vision Projection Matrix Choice: An intu-
itively straightforward approach is taken by cre-
ating distinct MLP layers for individual frames
similar to equation 1 (In this experiment we set the
number of the MLP layers as 16), aiming to capture
nuanced characteristics. Each frame’s embeddings
are projected onto a linguistic embedding using an
additional MLP with a prefix length of 5.

Contradictory Frame Comparison aims to
abstract causal and temporal relationships in a
video by exploiting differences between consec-
utive frames. Two strategies are employed using
the CLIP vision encoders. (1) Global Frame Com-
parison: 16 frames at uniform intervals are trans-
formed into vision embeddings through the CLIP
encoder. Pairs of frames with the lowest cosine
similarity represent the most contradictory frames,
projected onto the language embedding through an
MLP layer. (2) Local Frame Comparison: Once
again, we select pairs of frames and calculate their
cosine similarity. But during training, firstly the
CLIP model is invoked to determine the most rel-
evant frame in relation to the given question and
answer since at training time we have all relevant in-
puts. Then, we select the rest frame which displays
the lowest cosine similarity with the contextually
chosen frame. Again, an MLP layer projects the
selected frame pair onto the language embedding.

4 Experiment

4.1 Data and Evaluation
Existing video question-answering datasets primar-
ily address factoid questions with direct visual an-
swers (Xu et al., 2016; Jang et al., 2017) but lack
inference questions. To fill this gap and integrate
causal and temporal inference, this study opts for
the NExT-QA dataset (Xiao et al., 2021), which is
designed for inferential visual-question-answering,
offering about 52K diverse questions (48% causal,
29% temporal, 23% descriptive).

The assessment of visual question generation
(VQG) systems traditionally relies on language
metrics like BLEU (Papineni et al., 2002), ME-
TEOR (Banerjee and Lavie, 2005), ROUGE (Lin,
2004), and CIDEr (Vedantam et al., 2015), de-
signed for machine translation, lacking inference
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evaluation. To address this gap, our study intro-
duces new metrics—precision, recall, and F1-score
grounding—examining word overlap between pre-
dicted and ground-truth questions. The ground-
ing metrics consider matching overlaps of content-
bearing words and exclude irrelevant words2. We
define the formula of the grounding metrics:

PG =Nmatching overlap/Npredicted question tokens

RG =Nmatching overlap/Nground truth question tokens

FG =
2 ∗ PG ∗RG

PG+RG
,

(4)
Where PG means Precision Grounding, RG

means Recall Grounding, FG means F1 score
Grounding, Nmatching overlap counts matching over-
laps between predicted and ground truth questions.
Npredicted question tokens and Nground truth question tokens
represent the respective token counts.

4.2 Experiment Setup

Baseline Models: In establishing baseline models
for a fair comparison on the NExT-QA datasets,
we employ the Heterogeneous Graph Attention
(HGA) model (Jiang and Han, 2020) and a pre-
trained language model with text-only input: (1)
The HGA model utilizes 3D motion and 2D appear-
ance vectors, abstracted from ResNet (He et al.,
2016) and ResNeXt-101 (Xie et al., 2017).(2) The
pre-trained language model T5 (Radford et al.,
2021) is explored with text-only input as a baseline,
to assess its ability to recognize visual content in
videos in the following experiments.

Video Encoder: To enhance visual question
generation for temporal and causal inference, tradi-
tional 2D and 3D convolutional networks face limi-
tations in generative tasks. Leveraging pre-trained
vision-text matching models like CLIP (Radford
et al., 2021), BLIP (Li et al., 2022) and BLIP2 (Li
et al., 2023), we conduct a comprehensive perfor-
mance comparison against convolutional networks.

Language Model Size Selection: To explore
the impact of language model size on recognizing
relationships in videos, we employ T5 Small and
T5 Large. In addition, we adopt two tuning strate-
gies. "One Stage" in Table 4 and Table 5 means
we directly train the mapping network F in section
3.1 from scratch and "Two Stage" represents the
fine-tuning strategy explained in section 3.1.

2We exclude the words of POS types “CC", “DT", “IN",
“TO" and “UH" in our experiments.

4.3 Experiment Results

4.3.1 Baseline
We evaluated our baseline models with results sum-
marized in Table 1. The HGA model, incorporating
video and text input, achieves the highest ground-
ing score but exhibits lower question quality due to
stop-word repetition and shorter length generation
(Figure 2). Although BLEU has a brevity penalty
and METEOR and ROUGEL consider the recall
evaluation metrics, with higher precision, the eval-
uation performance of the HGA model still gets
close to that of the T5 model. In addition, as shown
in Table 2, since our grounding metric ignores stop-
words and considers only relevant words to the
vision content such as nouns and verbs, precision
will have an advantage in the evaluation compared
to recall, thus the HGA model achieves a significant
improvement compared to the T5 model. However,
HGA has comparatively lower recall than those
of T5 in causal and temporal question generation
(Table 2). In conclusion, HGA exhibits higher pre-
cision and F1-score in the grounding metric but
lower performance in BLEU, METEOR, CIDEr,
and recall in the grounding metric of causal and
temporal questions. This leads us to choose T5 as
the foundation for subsequent experiments.

Model B RL M C Grounding
HGA 0.1248 0.4128 0.3101 0.8271 0.3248

T5 Small 0.1269 0.3857 0.3276 0.8480 0.2957
Text Only
T5 Large

0.1239 0.3851 0.3237 0.8353 0.2987
Text Only

Table 1: Baseline Model Evaluation Performance. B is
BLEU, RL is ROUGEL, M is METEOR, C is CIDEr,
and Grounding is the F1-score grounding metric.

Model C G-Pre C G-Re C G-F1 T G-Pre T G-Re T G-F1
HGA 0.3378 0.2357 0.2776 0.4126 0.2763 0.3310

T5 Small
0.2527 0.2541 0.2534 0.3096 0.2943 0.3018

Text Only
T5 Large

0.2736 0.2650 0.2692 0.2998 0.2786 0.2888
Text Only

Table 2: Baseline Model Grounding Performance in
Causal and Temporal Inference. C G represents the
grounding metric of causal questions. T G represents
the grounding metric of temporal questions. "Pre" repre-
sents precision. "Re" represents recall. "F1" represents
the F1 score.

4.3.2 Multi-modal Concatenation
Video Encoder Comparison: We assess the per-
formance of different vision video encoders, and
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Video:

Ground Truth Question:
1:how did the girl react when she saw that the ball was running 
at the beginning?
2: why was the girl on the floor in the middle of the video?
3: why does the dog chase the ball?
4: why did the girl run down the slope?
5: why does the child run after the ball?
6: what did the dog do after the girl approached the adult and 
stood beside him?
7: where is this video taken?
8: what did the girl do after she fell on the ground?
9: what did the girl do after she finished playing with the ball at 
the end of the video?
10: what did the girl do to the dog when the dog stood beside 
the man?
11: what did the girl do after the dog took the ball away?
12: why does the child run down the slope after the ball rolls 
away from him?

HGA: 42 matching overlap
“1": "what did the boy do after the girl ran away",        
“2": "why did the girl in after the girl in the",        
“3": "why did the dog run towards the ball",        
“4": "why did the boy run to the ball after the ball",        
“5": "why did the boy run down the ball",        
“6": "what did the boy do after the ball ball",        
“7": "where is this video taken",        
“8": "what did the dog do after the the ball",        
“9": "what did the girl do after the the ball",        
"10": "what did the boy do after the dog ran away",        
“11": "what did the girl do after the dog ran away",        
"12": "what did the dog do after the ball ball"

T5-small text only:      27 matching overlap
“1": "what did the boy do after he walked away from the ball",        
“2": "why did the girl in pink hold onto the girl in pink when she is 
squatting down",        
“3": "why did the baby put his hand on the toy in the middle of the 
video",        
“4": "why did the man in black bend down at the start of the 
video",        
“5": "why did the man in black bend down at the start of the 
video",        
“6": "what does the man in black do after the man in black starts 
talking",        
“7": "where is this video taken",        
“8": "what did the boy do after he walked to the other side of the 
room",        
“9": "what does the girl do after the girl in pink starts dancing",        
"10": "what does the man do after the dog starts running",        
“11": "what does the dog do after the dog starts running",        
"12": "what does the man in black do after the man in black starts 
playing the drums"

Figure 2: Baseline Performance. Yellow markup shows the matching overlap compared with the ground truth
questions. Red markup shows the repetitive words.

the results are summarized in Table 3. CLIP and
BLIP2 stand out, with CLIP excelling in ROUGEL,
and Grounding metrics, showcasing good visual
content recognition. In contrast, BLIP2 performs
well in BLEU, METEOR, and CIDEr, generating
detailed questions. Despite BLIP2’s detailed ques-
tions, CLIP’s higher matching overlap with ground
truth and its balanced performance led to the selec-
tion of CLIP as the video encoder for subsequent
experiments (Figure 3).

Model B RL M C Grounding
None

0.1269 0.3857 0.3276 0.8480 0.2957
Text Only
App&Mot 0.1348 0.3958 0.3353 0.8816 0.3092

CLIP 0.1564 0.4216 0.3594 1.0366 0.3505
BLIP 0.1562 0.4179 0.3584 1.0205 0.3425
BLIP2 0.1583 0.4210 0.3599 1.0488 0.3455

Table 3: Visual encoders performance with T5-small
following Section 3.1 fusion method. App&Mot means
2D appearance vectors and 3D motion vectors ab-
stracted from convolution networks. B is BLEU, RL is
ROUGEL, M is METEOR, C is CIDEr, and Grounding
is the F1-score grounding metric.

Language Model Size Comparison: We evalu-

ate T5’s performance across various sizes, present-
ing results in Table 4. T5 large outperforms T5
small, aligning with expectations due to its larger
parameter count. In addition, our observations
yield two primary findings that emerge through two-
stage tuning: (1) Two-stage tuning enhances T5
large’s performance, particularly improving token-
level matching overlap such as nouns and verbs
(Table 5). This improvement, consistent across T5
sizes, suggests enhanced visual content recognition,
attributed to weight initialization and warming-up
of the projection matrix. (2) Despite the close to-
tal performance,T5 large outperforms T5 small in
causal questions by 2%-3% (Table 6), hinting at
the potential for guiding language models in recog-
nizing causal relationships.

4.3.3 Causal and Temporal Inference
Abstraction

In this section, we present the outcomes of our
two methods employed to abstract the causal and
temporal relationships embedded within the events
and entities within a video, with the ultimate aim
of generating inferential questions.
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Video:

CLIP: （52 matching overlap）
“1": "how did the girl kept her hair out of her face?",        
“2": "what does the girl do after the man puts her back on the sofa?",        
“3": "where is this video taken?",        
“4": "how does the man hold the child s hand?",        
“5": "why did the man in red hold the girl s hand?",        
“6": "what does the man do after the girl sits on the sofa?",        
“7": "what did the girl do after looking at the man?",        
“8": "why did the girl bend down when she is standing?",        
“9": "why did the man point to the table at the end of the video?",        
"10": "what did the man do after he looked at the girl?",        
"11": "how did the man see the girl clearly?",        
“12": "why did the man laugh at the girl?",        
“13": "why did the man pull the girl s back?"

BLIP2: （48 matching overlap）
“1": "how did the girl kept her hair out of her face?",        
“2": "what does the girl do after the man touches her at the end?",        
“3": "where is this video taken?",        
“4": "how does the man in white hold the child s hand?",        
“5": "why did the man in white squat down in the middle of the video?",        
“6": "what does the man in white do after the girl sits down?",        
“7": "what does the girl do after looking at the man for a while at the 
end?",        
“8": "why did the girl put her leg on the table in the middle of the video?"         
“9": "why did the man in black stretch his hand out at the end of the 
video?",        
"10": "what did the man do after he looked at the girl?",        
"11": "how did the man in white ensured he can see the girl clearly?",        
“12": "why did the man laugh at the girl?",        
“13": "how did the man in black react when the girl s hands were pushed 
to him?"

Ground Truth Questions:
1: how did the girl keep her hair away from her face?
2: what did the girl do after she stood up at the beginning of 
the video?
3: where is this video taken?
4: what did the man gestured to the girl near the start of the 
video?
5: what did the girl do after the man pat the pillow?
6: why was the man looking left and right at the beginning of 
the video?
7: what did the girl do after she sat down?
8: why did the man touch the girl s leg when she sit beside 
him?
9: why did the man pat the pillow?
10: what did the man do after he adjusted the girl s leg?
11: how did the man see clearly?
12: why is the lady in green smiling?
13: why did the man lie backwards at the end of the video?

Figure 3: Visual encoder CLIP and BLIP2 performance. Yellow scopes represent matching overlap with ground
truth questions. Red scopes represent the more details recognized by the BLIP model compared with the CLIP
model.

model B RL M C Grounding
T5 Small

0.1564 0.4216 0.3594 1.0366 0.3505
One Stage
T5 Small

0.1559 0.4181 0.3594 1.002 0.3453
Two Stage
T5 Large

0.1459 0.4025 0.3459 0.9449 0.3249
One Stage
T5 Large 0.1572 0.4281 0.3634 1.0657 0.3573

Two Stage

Table 4: Difference Language Size Performance. T5
small has 60M parameters, with total 135M parameters
for a whole framework, T5 large has 770M parameters,
with total 917M parameters for a whole framework. B
is BLEU, RL is ROUGEL, M is METEOR, C is CIDEr,
and Grounding is the F1-score grounding metric.

Vision Projection Matrix Comparison ex-
plores projection matrix techniques, revealing un-
expected trends shown in Table 7. Contrary to
expectations, the method directly concatenating
CLIP encoder and language embeddings ("Video
MLP" in Table 7) outperforms that employing the
addition of MLP layers to each frame before con-
catenating with the language embedding ("Video
16to5 MLP" in Table 7), including grounding met-
rics on causal and temporal questions (Table 8).
Findings underscore that the blind proliferation of
MLP layers, even on individual frames, fails to

model NN WRB VBZ VBD VB JJ VBG WP PRP
T5 Small

4199 2692 1121 1154 713 504 248 1038 220
One Stage
T5 Small

4287 2640 1268 1184 643 533 228 1091 221
Two Stage
T5 Large

3927 2664 1429 947 719 467 227 1048 187
One Stage
T5 Large 4478 2655 1379 1078 777 517 277 1024 207

Two Stage

Table 5: Number of matching overlaps for various word
types based on Spacy about the difference language
model sizes. NN means noun, singular or mass, WRB
means wh-adverb, VBZ means verb, 3rd person singular
present, VBD means verb, past tense, VB means verb,
base form, JJ means adjective, VBG means verb, gerund
or present participle, WP means wh-pronoun, personal,
PRP means pronoun, personal.

Model C G-Pre C G-Re C G-F1 T G-Pre T G-Re T G-F1
T5 Small

0.3096 0.3078 0.3087 0.3625 0.3357 0.3486
two stage
T5 large 0.3333 0.3115 0.3221 0.3767 0.3374 0.3560
two stage

Table 6: Grounding evaluation performance of different
sizes of T5 models with the two-stage tuning method
in causal and temporal inference. C G represents the
grounding metric of causal questions. T G represents
the grounding metric of temporal questions. "Pre" repre-
sents precision. "Re" represents recall. "F1" represents
the F1 score.
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capture inferential relationships in visual content.

Model B RL M C Grounding
Video MLP 0.1564 0.4216 0.3594 1.0366 0.3505
Video 16to5

0.1549 0.4170 0.3574 0.9722 0.3415
MLP

Table 7: Vision Projection Matrix Performance. Both
experiments are conducted with a CLIP image encoder
and T5-small. Video MLP means the vision embedding
would be processed by a MLP layer and video 16to5
MLP means we add 16 fine-grained MLP for the frames
of the video input. B is BLEU, RL is ROUGEL, M
is METEOR, C is CIDEr, Grounding is the F1-score
grounding metric.

Model C G-Pre C G-Re C G-F1 T G-Pre T G-Re T G-F1
Video MLP 0.3204 0.3072 0.3137 0.3695 0.3331 0.3503
Video 16to5

0.3028 0.3014 0.3021 0.3589 0.3316 0.3447
MLP

Table 8: Vision Projection Matrix Grounding Perfor-
mance in Causal and Temporal Inference. C G repre-
sents the causal grounding metric. T G represents the
temporal grounding metric. "Pre" represents precision.
"Re" represents recall. "F1" represents the F1 score.

Frame Comparison Based on CLIP evaluates
two frame comparison methods using the CLIP-
based approach. The summarized evaluations are
presented in Table 9 along with an illustrative exam-
ple shown in Appendix Figure A1, yielding several
noteworthy findings:

1. While slightly behind direct vision embedding
concatenation (Video MLP) across all eval-
uation metrics in Table 9, the global frame
method with only 73M parameters is less than
the direct concatenation approach (135M). In
addition, the global frame comparison method
outperforms the baseline (Random Select) on
all metrics in Table 9 and has a substantial
20% boost compared to its baseline in causal
and temporal questions (Table 10). Moreover,
the global frame method excels in the direct
concatenation approach in the grounding met-
rics of temporal questions within videos.

2. The local frame comparison method yields
inferior results compared to its global coun-
terpart across all evaluation metrics in Table
9. Aligning these findings with the perfor-
mance of random selection, we argue that
maintaining a consistent relationship be-
tween input frames during both training
and inference phases is pivotal for enabling

the language model to deduce relationships
between events and entities within videos
effectively. The method of random selection
introduces the highest level of inconsistency
compared to global and local frame compari-
son methods between training and inference
due to its reliance on random frame selec-
tion throughout both phases. Additionally, an
examination of CLIP frame selection based
on questions and answers in the local frame
comparison method reveals certain limitations.
While instances of accurate frame selection
aligned with questions and answers are ob-
served, inherent challenges persist (Challenge
examples are provided in Figure 4): (1) De-
scriptive questions such as "Where is this
video happening?" often fail to pinpoint a spe-
cific frame, leading to varied frame selections
by the CLIP model for identical questions. (2)
Given that some videos within the NExT-QA
dataset (Xiao et al., 2021) last 1 to 2 minutes,
with only 16 available frames for video input,
the CLIP model tends to select frames with
similar content regardless of chronological
time order if the event described in the ques-
tion has not been captured by the 16 frames.
These issues exacerbate inconsistencies and
disorderliness in input frames between train-
ing and inference, resulting in comparatively
poorer performance of local frame compar-
ison method compared to the global frame
comparison method. In conclusion, the global
frame method introduces the least inconsis-
tency, consistently measuring cosine similar-
ity and selecting the least similar frame pair
for language model input.

3. To further support our argument, we conduct
an additional experiment where the initial and
final (1&16) frames are consistently selected
as the video input for the language model, as
outlined in the fifth row of Table 9. Remark-
ably, the performance of this fixed selection
method, while slightly distinct, consistently
trails behind that of the global frame selec-
tion across all evaluation metrics except causal
grounding metrics. This observation lends ad-
ditional support to our argument, reinforcing
the validity of our premise. Moreover, it opens
a promising avenue for future exploration —
seeking methods that improve consistent
relationships with frame-based techniques.
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model B RL M C Grounding
All 16 frames (Video MLP) 0.1564 0.4216 0.3594 1.0366 0.3505

Two frames (Random Select) 0.0796 0.3128 0.2173 0.2520 0.2082
Two frames

0.1538 0.4165 0.3578 1.007 0.3417
(Global Frame Comparison)

Two frames
0.1315 0.3946 0.3316 0.8576 0.3095

(Local Frame Comparison)
Two frames (Fixed Selection)

0.1526 0.4161 0.3549 0.9745 0.3407
Frame 1&16

Table 9: Frame Comparison Performance. "Video MLP" means the vision embedding would be processed by a
MLP layer; "Random Select" means we randomly select two frames embedding within a video as the vision input.
B is BLEU, RL is ROUGEL, M is METEOR, C is CIDEr, and Grounding is the F1-score grounding metric.

Video:

Question: where is this video happening?
Answer: Kitchen.
CLIP Selection: frame 3

Question: what does the boy do after immersing the sponge for 
a while at the start?
Answer: Open the tap.
CLIP Selection: frame 6. 

(Actually it happens 
between frame 1 and 
2. The CLIP model
fails to select since no 
frame capture the 
event of the question)

Negative Examples:

Positive Examples:
Question: what does the boy do after the man takes his hands 
out from the water in the middle?
Answer: Put the man’s other hand in.
Frame: 13.

Figure 4: CLIP Selection Performance. The negative example on the left explains the inherent Challenge 1 and
another negative example on the right explains the inherent Challenge 2. The positive example displays the correct
frame selection.

Model C G-Pre C G-Re C G-F1 T G-Pre T G-Re T G-F1
Video MLP 0.3204 0.3072 0.3137 0.3695 0.3331 0.3503

Random Select 0.3121 0.2340 0.2674 0.2191 0.1375 0.1689
Global Frame

0.3089 0.3074 0.3081 0.3817 0.3509 0.3656
Comparison

Table 10: Global Frame Comparison Grounding Performance
in Causal and Temporal Inference. C G represents the ground-
ing metric of causal questions. T G represents the grounding
metric of temporal questions. "Pre" represents precision. "Re"
represents recall. "F1" represents the F1 score.

5 Conclusion

This paper bridges the gap in aligning machine-
generated visual questions, focusing on inferential
questions in video VQG. Our framework utilizes
pre-trained models to enhance event-entity infer-
ential relationships and question generation. We
additionally introduce a grounding metric and pro-

pose techniques for causal and temporal abstraction.
Through extensive experiments, we achieve signifi-
cant improvement across all metrics, highlighting
our framework’s efficacy in promoting visual con-
tent recognition. We underscore the importance
of consistent relationships between input frames
during training and inference for event-entity rela-
tionship inference. This research opens a promis-
ing avenue for future work, focusing on methods
to enhance consistent frame-based relationships in
causal and temporal video inference.
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Limitation

We employ the T5 encoder-decoder language
model because of its excellent performance within
the 500M to 1B parameter scope and limited GPUs.
Future research could lie in exploring the inferen-
tial video VQG task with larger parameters and
decoder-only language model structures. In ad-
dition, future research could separately research
causal and temporal relationships between entities
within videos. We attempted some methods that
had negative effects on our framework and experi-
ments. These include applying contrastive learning
and visual-semantic arithmetic inferential relations.
Details and results of these methods are provided
in the Appendix, offering references for future re-
search.
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A Appendix

A.1 Causal and Temporal Inference Abstraction

Videos:

Video MLP: （39 matching overlap）
 “1": "why did the man in black hold onto the man in red s hand when 
he walks?",        
“2": "what did the man in black do after he pointed at the grass at the 
start?",        
“3": "why did the man in black look at the man in black after he stops 
walking?",        
"4": "why did the man in black bend down at the start?",        
“5": "why did the man in black hold the stick in his hand?",        
“6": "why did the man in black point to the man in black when he is 
talking?",        
“7": "why did the man in black bend down at the start?",        
“8": "how does the man in black look while talking?",        
“9": "why is the man in black holding the stick?",        
“10": "why did the man in black walk towards the man in green after 
he finished talking?",        
“11": "why did the man in black move backwards after he has finished 
talking?"

Global Frame Comparison: （42 matching overlap）
 “1": "why did the man in black hold onto the man in black s hand when 
he walks ?",        
“2": "how did the man in black show that he wants to cut the glass?",        
“3": "why did the man in black look at the man in black when he walks 
to the man in black ?",        
"4": "why did the man in black bend down at the start ?",        
“5": "why did the man in black put his hand on the glass in the middle 
of the video?",        
“6": "why did the man in black point to the man in black when he is 
speaking?",        
“7": "what did the man in black do after he walked to the man in black 
?",        
“8": "how does the man in black look while talking ?",        
“9": "why did the man in black hold onto the bottle when he walks?",        
“10": "why did the man in black walk back to the man in black after he 
finished talking?",        
“11": "why did the man in black change his position after` he sat down"

Ground Truth Questions:
1: why is the man in green holding onto the shoe as the 
man in white is cutting it?
2: what does the man in white do after holding the shoe 
stably?
3: why did the man in green point his hand at the man in 
white while he is talking?
4: why did the man in white pick up a knife after changing 
place with the man in green?
5: why does the man in green hold a shoes in his hand at 
the start?
6: what does the man in white do after cutting the shoes 
for a while?
7: why did the man in green hold up the shoe as he is 
speaking?
8: how do the men appear while cutting the shoes?
9: why are the men looking down at the shoe while the 
man in white is cutting it?
10: why did the man in white stand beside the man in 
green while he is speaking?
11: why did the man in white move behind after the man 
in green put down the shoe on the table?

Figure A1: Frame Comparison Performance. Yellow scopes represent matching overlap with ground truth questions.
Red scopes represent more details recognized by the frame comparison method compared with the Video MLP
method.
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A.2 Negative Methods for Causal and
Temporal Inference Abstraction

A.2.1 Contrastive Learning Based on Frame
Comparison

Contrastive Learning on Unifying Vision and Lan-
guage Embedding aims to leverage the nuanced
interplay between video frames using contrastive
learning. The infoNCE loss function (Oord et al.,
2018) is employed for contrastive learning (Wu
et al., 2021), maximizing the lower bound of mu-
tual information between pairs of variables. The
core framework encompasses a relevance function
such as cosine similarity, represented as f(·, ·),
where each positive sample (x+, c) is linked with a
set of k randomly chosen negative samples denoted
as (x−1 , c), (x

−
2 , c), ..., (x

−
k , c). Then, the InfoNCE

loss function Lk is formulated as follows:

Lk = − log(
ef(x

+,c)

ef(x+,c) +
∑k

i=1 e
f(x−

i ,c)
) (5)

Positive samples are derived from two frame pairs:
the global contradictory frame pair and the local
contradictory frame pair, similar to the methods in
the Contradictory Frame Comparison Section. The
remaining frames, paired with the second frame
from each contradictory set, serve as negative sam-
ples. These positive and negative samples, along
with the second frame’s embedding, are used in
the infoNCE loss formula. The contrastive learn-
ing loss is integrated with the pre-trained language
model loss, defining the total loss function. For-
mally, the total loss function was defined as:

LTotal = Llanguage model + Lk (6)

A.2.2 Visual-Semantic Arithmetic Inferential
Relation

Visual-Semantic Arithmetic Inferential Relation
Abstraction aims to capture relationships between
frames within a video by subtracting frame embed-
dings. Drawing inspiration from recent findings
(Tewel et al., 2022; Goh et al., 2021) on the CLIP
multi-modal representation, we develop a loss func-
tion which is adapted to guide the language model
in recognizing relationships, especially causal and
temporal ones. Specifically, we first compute the
relevance of frames for potential tokens at length
i. Top K token candidates are selected, while the
remaining tokens are assigned zero potential to
enhance computational efficiency. These candi-
date sentences, denoted as ski = (x1, ..., xi−1, x

k
i ),

correspond to the k-th candidate token and are
matched against the frame I . It is pertinent to
highlight that the context tokens x1, ..., xi−1 are
constant for the current token xki . Subsequently,
the frame potential of the k-th token is computed
as:

Dk
i ∝ exp

(
Fcos(EText(s

k
i ), Eframe(I))

τc

)
,

(7)
Here, Fcos represents the cosine distance between
CLIP’s embeddings of the text (EText) and the
frame (EImage). The hyperparameter τc > 0 is a
temperature parameter that adjusts the sharpness
of the target distribution. In our experiments, it
was set to 0.05. Notably, the frame embedding
EImage emerges from subtracting the CLIP image
embeddings of two frames. Subsequently, the CLIP
loss materializes as the cross-entropy loss between
the frame potential distribution and the target dis-
tribution of the next token xi+1 derived from the
language model:

LCLIP = CE(Di, xi+1). (8)

This loss encourages the language model to dis-
cern relationships between frames, fostering causal
and temporal inferences. The total loss function
combines the language model loss and the CLIP
loss:

LTotal = Llanguage model + LCLIP (9)

A.3 Experiment Results on Negative Methods
for Causal and Temporal Inference
Abstraction

model B RL M C Grounding
Global Frame

0.1538 0.4165 0.3578 1.007 0.3417
Comparison baseline

Global Frame 0.1555 0.4164 0.3601 1.010 0.3383
Comparison Contrast

Local Frame
0.1531 0.4165 0.3555 1.001 0.3426

Comparison Contrast

Table A1: Contrasting Learning Performance. The base-
line is the "Global Frame Comparison" shown in Table
5. B is BLEU, RL is ROUGEL, M is METEOR, C is
CIDEr, and Grounding is the F1-score grounding met-
ric.

A.3.1 Experiment Results on Contrastive
Learning Based on Frame Comparison

Contrastive Learning Based on Frame Comparison
evaluates two contrasting learning methods rooted
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in global frame comparisons, summarized in Ap-
pendix Table A1. Surprisingly, both global frame
contrast and local frame contrast methods outper-
form the baseline in specific metrics, showcasing
the potential of contrastive learning in enhancing
the language model’s ability to discern nuanced
details within videos, such as characters, colours,
verbs, and tense, as illustrated within Appendix
Figure A2’s red scope. Despite the marginal over-
all performance difference, contrasting learning
proves beneficial for the language model in under-
standing video content and generating inferential
questions, particularly concerning temporal rela-
tionships, shown in Appendix Table A2 and Ap-
pendix Table A3. However, the similarity in per-
formance raises considerations about the limited
negative sample pool and the constrained parame-
ters of the T5 small model, affecting the model’s
ability to differentiate between positive and neg-
ative samples during contrastive learning. This
observation highlights the need for a more exten-
sive negative sample pool and suggests potential
limitations in the model’s capacity to encompass
comprehensive knowledge for effective contrastive
learning in continuous video data.

A.3.2 Experient results on Visual-Semantic
Arithmetic Inferential Relation

Visual-Semantic Arithmetic Inferential Relation re-
veals that the visual-semantic arithmetic method’s
performance closely resembles the baseline ap-
proach of directly concatenating vision embed-
dings, detailed in Table A4. This suggests that
supplementing the visual-semantic arithmetic with
CLIP loss may not significantly enhance perfor-
mance. A comparison of questions generated by
two frame selection techniques indicates similar-
ities and disparities, with examples presented in
Appendix Figure A3. Examination of generated
questions in causal and temporal types, along with
matching overlap levels with the baseline, is de-
tailed in Appendix Table A5. However, the visual-
semantic arithmetic method outperforms in tem-
poral questions, exhibiting a 1-2% increase com-
pared to direct vision concatenation, particularly
excelling in recognizing time adverbs. Despite
its effectiveness, the method’s reliance on multi-
model concatenation may fall short in enabling the
language model to comprehensively discern the
complete spectrum of visual relationships within
contrasting frame pairs in a video, as suggested by
examples in Appendix Figure A4.
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model NN WRB VBD VBZ VB JJ VBG WP PRP
Global Frame

4166 2571 981 1489 776 503 345 1131 247
Comparison baseline

Global Frame 4222 2553 1157 1332 592 558 224 1155 233
Comparison Contrast

Local Frame
4196 2588 1122 1310 823 530 225 1136 244

Comparison Contrast

Table A2: Number of matching overlap for various word types based on Spacy about the frame contrasting methods.
NN means noun, singular or mass, WRB means wh-adverb, VBZ means verb, 3rd person singular present, VBD
means verb, past tense, VB means verb, base form, JJ means adjective, VBG means verb, gerund or present
participle, WP means wh-pronoun, personal, PRP means pronoun, personal.

model C G precision C G recall C G F1-score T G precision T G recall T G F1-score
Global Frame

0.3089 0.3074 0.3081 0.3817 0.3509 0.3656
Comparison

Global Frame 0.3138 0.2960 0.3046 0.3562 0.3383 0.3470
Comparison Contrast

Local Frame
0.3010 0.2939 0.2974 0.3972 0.3599 0.3776

Comparison Contrast

Table A3: Contrasting Learning Methods Evaluation Performance in Causal and Temporal Inference. C G represents
the causal grounding metric. T G represents the Temporal causal grounding metric.

model B RL M C Grounding
Video MLP 0.1564 0.4216 0.3594 1.0366 0.3505
CLIPloss 0.1568 0.4184 0.3602 1.0359 0.3460

top word 100

Table A4: Visual-semantic arithmetic inferential performance. Video MLP represents the direct vision concatenation
method. CLIPloss represents the visual-semantic arithmetic method. B is BLEU, RL is ROUGEL, M is METEOR,
C is CIDEr, and Grounding is the grounding metric.

model C G precision C G recall C G F1-score T G precision T G recall T G F1-score
Video MLP 0.3204 0.3072 0.3137 0.3695 0.3331 0.3503
CLIPloss

0.3107 0.3061 0.3084 0.3828 0.3433 0.3620
top word 100

Table A5: Visual-semantic Arithmetic Evaluation Performance in Causal and Temporal Inference. C G represents
the causal grounding metric. T G represents the Temporal causal grounding metric.
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Videos:

Global Frame Baseline: （ 40 matching overlap）
“1": "what does the man in blue do after the man in blue points at him 
at the start?",        
“2": "what does the man in blue do after he finishes talking?",        
“3": "what did the man in blue do after he walked away from the man 
in blue?",        
“4": "why did the man in blue walk away after he walked away?",        
“5": "why did the man in blue move his hand towards the lady in blue 
at the end of the video?",        
“6": "what did the man in black do after he finished talking?",        
“7": "what did the man in black do after the man in grey walked away 
at the end of the video?",        
“8": "why did the man in blue walk towards the man in blue?",        
“9": "why did the man in black move his hands as he speaks?",        
“10": "what did the man in blue do after he pointed at the man in 
blue?"

Local Frame Contrast Learning: （47  matching overlap）
 “1": "what does the man in black do after the man in black starts 
speaking?",        
“2": "what did the man in black do after he took the photo?",        
“3": "what does the man in black do as the man in black was talking?",        
“4": "why did the man in black walk away after he talked to the man in 
black?",        
“5": "why did the man in black move his hand towards the lady in 
black?",        
“6": "what did the man in black do after he finished singing?",        
“7": "what did the man in black do after the man in grey walked 
away?",    
“8": "why did the man in black walk towards the man in black?",        
“9": "why did the man in black move his hands as he speaks?",        
“10": "what did the man in black do after he walked to the man in 
black?"

Global Frame Contrast Learning: （ 58 matching overlap）
 “1": "what does the lady in black do after the man in black points at 
her at the start?",        
“2": "how did the man in black react when the man in black was 
talking?",        
“3": "what did the man in black do as the man in white was talking?",        
“4": "why did the man in black walk away after he finished talking?",        
“5": "why did the man in black move his hands away from the lady in 
white?",        
“6": "what did the man in black do after he finished speaking?",        
“7": "what did the man in black do after the man in grey walked 
away?",        
“8": "why did the man in black walk towards the man in black?",        
“9": "why did the man in black raise his hands in the air at the end of 
the video?",        
“10": "what did the lady in black do after she turned to face the man 
in black?" 

Ground Truth Questions:
1: what did the lady in black do after the man next to her gave 
her a microphone?
2: how did the lady in black reacted when the man in black beside 
her passed her the microphone?
3: what is the man with white tag on shirt do while man in stripes 
speaking?
4: why did the man in black with tied up hair turned backwards 
after he received the microphone?
5: what is the lady in black doing with her hands as she spoke into 
the microphone at the end of the video?
6: what did the man in grey do after he finished his speech?
7: what did the man in black in front of the man in grey do before 
the man in grey passed him the microphone?
8: why did the man in black with tied up hair walked towards the 
man in grey in the middle of the video?
9: why is the lady in black moving her hands at the end of video?
10: why did the lady in black face the man in black beside her 
before she started talking into the microphone?

Figure A2: Contrast Learning Performance. Yellow scopes represent matching overlap with ground truth questions.
Red scopes represent more details recognized by the frame contrasting methods compared to the global frame
comparison method.
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Videos:

VideoMLP Baseline: （44 matching overlap）
“1": "where is this place?",        
“2": "how does the girl react after the horse jumps up?",        
“3": "what does the girl do after the man approaches her at the end?",        
“4": "how does the girl react after the horse jumps up?",        
“5": "how does the dog show affection towards the girl?",        
“6": "how does the girl react after the horse jumps up?",        
“7": "why did the girl start jumping when the horse approached her?",        
“8": "why did the girl put her hand on the horse after the horse jumps 
up?",        
“9": "why did the girl run towards the horse after the horse jumped 
up?",        
“10": "how does the man ensure the girl does not fall?",        
“11": "what animal is shown in the video?",        
“12": "what does the girl do after the man starts to approach her at 
the start?"

Visual-semantic Arithmetic Method: （51 matching overlap）
"1": "where is this video taken?",        
“2": "how does the girl react when the man is playing with her?",        
“3": "what did the girl do after the man walked away?",        
“4": "how does the girl react when the man is playing with her?",        
“5": "what does the girl do after the horse approaches her at the 
end?",        
“6": "how does the girl react when the man is playing with her?",        
“7": "why did the girl start jumping when the horse is near her?",        
“8": "why did the girl put her hand on her face when the horse 
approached her?",        
“9": "why did the girl bend down at the end of the video?",        
“10": "how does the man support the girl as she stands on the 
horse?",        
“11": "what is the animal shown in the video?",        
“12": "what does the girl do after the man puts her down?"

Ground Truth Questions:
1: where is the man and the girl?
2: how does the man react when the horse plays with the girl?
3: what does the girl do after patting the horse?
4: how does the girl in pink react when the horse licks her?
5: what does the horse do after the girl pats it in the middle of 
the video?
6: how does the girl react when the horse turns towards her 
the first time?
7: does the girl seem more scared or excited to play with the 
horse?
8: what does the horse do after it turns back to the girl the 
second time?
9: why does the girl move her head away from the horse at the 
end of the video?
10; what does the man do when the horse plays with the girl?
11: what is the animal show in the video?
12: what does the girl do after tucking her hair behind her ear?

Figure A3: Visual-semantic arithmetic method performance. Yellow scopes represent matching overlaps with
ground truth questions. Red scopes represent more details recognized by the visual-semantic arithmetic method.
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Positive Sample:
Global Frame Selection:

Subtraction

Ground Truth Question:
why did the lady put her hand closer to the baby s mouth?

Video MLP Baseline Predicted Question:
why is the woman holding the spoon?

Visual-semantic Arithmetic Method Predicted Question:
why is the lady holding on to a pair of ice cream on her hands?

Negative Sample:
Global Frame Selection:

Subtraction

Ice cream is the main difference! 

Carrot is the main difference! 

Ground Truth Question:
why does the girl lean forwards while the adult picks up the 
carrot near the beginning?

Video MLP Baseline Predicted Question:
why did the girl in pink look at the girl in pink when she tries to 
cut the hammer?

Visual-semantic Arithmetic Method Predicted Question:
why did the girl in pink look at the girl in pink when she is 
preparing to spin the balloon?

Figure A4: The effectiveness of the Visual-semantic arithmetic method: check if the language model could recognize
the difference between two frames.
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