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Abstract

Large language models (LLMs) excel in var-
ious tasks but are primarily trained on text
data, limiting their application scope. Ex-
panding LLM capabilities to include vision-
language understanding is vital, yet training
them on multimodal data from scratch is chal-
lenging and costly. Existing instruction tun-
ing methods, e.g., LLAVA, often connects a
pretrained CLIP vision encoder and LLMs via
fully fine-tuning LLMs to bridge the modality
gap. However, full fine-tuning is plagued by
catastrophic forgetting, i.e., forgetting previous
knowledge, and high training costs particularly
in the era of increasing tasks and modalities.
To solve this issue, we introduce MoExtend, an
effective framework designed to streamline the
modality adaptation and extension of Mixture-
of-Experts (MoE) models. MoExtend seam-
lessly integrates new experts into pre-trained
MoE models, endowing them with novel knowl-
edge without the need to tune pretrained mod-
els such as MoE and vision encoders. This
approach enables rapid adaptation and exten-
sion to new modal data or tasks, effectively
addressing the challenge of accommodating
new modalities within LLMs. Furthermore,
MoExtend avoids tuning pretrained models,
thus mitigating the risk of catastrophic forget-
ting. Experimental results demonstrate the effi-
cacy and efficiency of MoExtend in enhancing
the multimodal capabilities of LLMs, contribut-
ing to advancements in multimodal AI research.
https://github.com/zhongshsh/MoExtend.

1 Introduction

General-purpose large language models (LLMs)
have demonstrated their effectiveness across a
broad spectrum of application scenarios, such as
conversational chatbot (Ouyang et al., 2022), doc-
ument analysis (Radford et al., 2019), and cod-
ing (Chen et al., 2021). While the most powerful
LLMs, such as ChatGPT (Radford et al., 2019),
Llama (Touvron et al., 2023), and Mixtral (Jiang

et al., 2024), are predominantly trained on textual
data, there is a growing interest in extending their
capabilities to support a wider array of applica-
tions beyond natural language processing, espe-
cially with a significant focus on vision-language
understanding (Liu et al., 2023a; Zhu et al., 2023;
Liu et al., 2023b; Team et al., 2023). While train-
ing large models from scratch on multimodal data
suffers from insufficient data (Zhu et al., 2023)
and significant training costs (Team et al., 2023),
most efforts have been focused on enhancing the
multimodal capabilities of pretrained LLMs (Zhu
et al., 2023; Liu et al., 2023b,a). To accomplish
this, LLMs handle new modal data by processing
representations extracted by encoders specific to
each modality. For instance, the vision transformer
pre-trained with CLIP (Radford et al., 2021) is uti-
lized to encode visual images. Then, the model is
trained using text-image Q&A pairs to carry out
tasks based on these multimodal instructions.

The parameter-efficient approach to bridging
the gap between modality-specific encoders and
large language models (LLMs) involves the use
of a few linear projection layers (Zhu et al., 2023)
and Low-Rank Adaptation (LoRA) (Zhang et al.,
2023a; Hu et al., 2021). However, this does not
entirely mitigate the modality gap, limiting LLMs’
ability to fully understand new modalities. Conse-
quently, State-of-the-art multimodal methods, e.g.
LLaVA (Liu et al., 2023b), have sought to fur-
ther enhance the multimodal capabilities of LLMs
by fully fine-tuning these models on multimodal
datasets (Lin et al., 2024). Despite these efforts,
fully fine-tuning encounters two significant obsta-
cles: 1) Catastrophic Forgetting: LLMs, when
fine-tuned to effectively integrate various modali-
ties, tend to lose the knowledge they had acquired
previously (Luo et al., 2023). 2) Large fine-tuning
cost: With the increasing sizes of LLMs, fully fine-
tuning on larger models is becoming increasingly
impractical. As a result, smaller models, like those
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with 7 billion parameters, are often preferred. How-
ever, this preference restricts the exploration and
utilization of the capabilities of larger LLMs. How
to efficiently extend new modality to large LLM
while reduce the side effect of catastrophic forget-
ting is an urging problem for multimodal LLMs.

Mixture-of-Experts (MoE) architectures enable
LLMs to use the gate layer to dynamically select
the most relevant experts from a diverse set of spe-
cialized experts, e.g. different MLP layers in Trans-
former, for a given query token. MoE helps to en-
large the model size by increase the number of ex-
perts while keeping low inference cost by selecting
a sub set of experts for each token. For instance, the
Mixtral-8x7B model (Jiang et al., 2024) incorpo-
rates 8 MLP experts per block, totaling 46.7 billion
parameters, yet it selects only 2 experts, utilizing
12.9 billion parameters per token. Nonetheless, the
current MoE models predominantly concentrates
on the textual modality.

We introduce an extension strategy for MoE
models, named MoExtend, designed to accommo-
date new modalities. This strategy involves incor-
porating new modality-specific experts and calibra-
tion modules into trained MoE models to enhance
their capability to process additional modalities.
MoExtend maintains the original MoE model pa-
rameters unchanged, while only trains the newly
added experts and the corresponding gate layer. By
doing so, MoExtend facilitates the efficient adap-
tation of new modalities into large models while
also addressing issues of catastrophic forgetting
(Liang et al., 2024, 2022). We observe that the
rapid adaptation to new modalities relies on the
weight initialization of new experts and gates, and
the insertion position of these new experts. Thus,
we introduce a simple yet effective scheme for se-
lecting positions and weights of new experts based
on evaluating distribution shifts. Utilizing the data
from the new modality, we fine-tune the existing
gate layers of the MoE model. Then, we infer the
new modality data to the models before and after
fine-tuning and get the average gate probability dis-
tribution for all samples. By comparing the degree
of gate probability distributions before and after
fine-tuning, we identify the top-k layers for adding
experts by examining the magnitude of these shifts.
Then, based on the probability distribution after
fine-tuning, we determine the expert with the high-
est probability and replicate the gate and expert
weights onto the newly incorporated expert.

Experimental results show that MoExtend

achieves a training speed acceleration ∼6 times
faster than full fine-tuning, while also delivering
superior performance. The positions selection
scheme in MoExtend allows for fewer newly added
experts, specifically, half the number of new ex-
perts required for the Mixtral model, which reduces
training time to ∼30 hours without compromising
performance. In addition, MoExtend helps mitigate
the risk of catastrophic forgetting when extending
MoE LLMs to handle multimodal inputs. Our con-
tributions can be summarized as follows:

• We introduce MoExtend, a strategy designed
to augment Mixture-of-Experts LLMs with
new modalities by addition of new experts.

• MoExtend offers significant advantages, in-
cluding substantially reduced fine-tuning
costs, no additional costs during inference,
and a minimized impact from catastrophic for-
getting issue.

2 Methodology

In this section, we introduce MoExtend as an ex-
ample of extending the visual modality for MoE
models, which were originally designed for text
modality only. As shown in Fig. 1, MoExtend con-
sists of three stages: alignment, extension with ex-
tender, and fine-tuning for the extension part. The
purpose of the alignment stage is to initially align
the MoE LLM with the newly added visual modal-
ity using a pre-trained vision encoder. The exten-
sion stage determines which MoE layers should
be extended to accommodate the new modality in-
formation. The fine-tuning stage is then employed
to tune the newly added parameters, achieving the
final expansion of multimodal information.

2.1 Alignment Stage

As illustrated in Fig. 1 (a), we train the newly
added MLP using image-caption pairs from the
LLaVA 1.5-558k dataset. This training aligns the
modal information of images through the vision en-
coder (i.e., CLIP encoder) with textual modalities.
Specifically, the caption c from the textual modality
is projected via word embedding to T = [ti]

N
i=1 ∈

RN×D, where D is the hidden size of LLM. Addi-
tionally, the image I is mapped through the vision
encoder to V = [vi]

P
i=1 ∈ RP×D, where P is the

sequence length of visual tokens. Subsequently,
the information from both modalities, T and V , is
concatenated into the vector x0 ∈ R(N+P )×D. For
an L-layer MoE LLM, the forward process can be
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Figure 1: MoExtend consists of three stages: (a) Alignment Stage: we add a trainable MLP for pretrain vision
encoder and tune the added MLP using image-caption data to achieve modal alignment; (b) Extension Stage:
Determining which MoE layers need extension using an Extender; (c) Fine-tuning Stage: Fine-tuning the added
extension part using a given Instruction dataset while keeping other parameters frozen. The "Other layer" represents
other neural network components besides the MoE layer, including normalisation, self-attention layer, etc.

formulated as follows:

x′
ℓ = MSA(LN (xℓ−1)) + xℓ−1, ℓ = 1 . . . L,

xℓ = MoE
(
LN

(
x′
ℓ

))
+ x′

ℓ, ℓ = 1 . . . L,
(1)

where MSA represents the multi-head self-
attention module and LN represents layer normal-
ization. The final input to the model is LN(xL).
During this stage, the structure of the MoE layer
with m experts remains unchanged, as depicted in
Fig. 2 (Left). The router predicts the probability
of each token being assigned to each expert, and
each token is computed by the top-k experts with
the highest probabilities. The output of the MoE
layer is a weighted sum as follows:

MoE(x) =
∑k

j=1
s(x)j · FFN(x)j , (2)

where k ≤ m. Note that the weighted summation
in Eq. (2) is related to the outputs of experts with
top-k probability. The parameter k has a significant
impact on MoE LLMs. However, to consider the
trade-off between training efficiency and model
performance, it’s common to set k = 2. In this

paper, we also follow this setting. The [FFNi]
m
i=1

represents m experts, and

s(x)j = ef(x)j/
∑m

h=1
ef(x)h , (3)

where f(x) = Wx and W ∈ RD×m are the pa-
rameters of the router.

2.2 Extension Stage
To address the incorporation of additional modality
information via extending the MoE layer, the most
straightforward approach is to add a new expert to
each MoE layer. However, this approach not only
increases the parameter count significantly, lead-
ing to greater computational costs during training
but also poses a potential risk of overfitting due to
blindly adding a large number of parameters.

Therefore, in the extension stage, inspired by the
concept of neural network pruning (Li et al., 2016;
Gao et al., 2020), we construct an Extender to adap-
tively determine whether each MoE layer needs ex-
tension. Specifically, we randomly sample 10,000
instruction data related to the vision modality from
the LLaVA 1.5-mix-665k dataset (Liu et al., 2023b)
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Figure 2: (Left) Original MoE layer; (Right) The extension part includes an additional expert FFNm+1 and a
corresponding column of trainable matrix parameters in the Router. Each expert is equipped with a learnable
lightweight calibration module to correct gate weights altered due to the increased number of experts.

as the validation set Se, with the remaining data
forming the sub-training set St.

Next, for the model κ obtained from the align-
ment stage training, we make all routers of the MoE
layers trainable while freezing all other parameters.
Utilizing St, we tune κ for 1,000 steps to obtain κ′.
Furthermore, we input Se into both κ and κ′, and
count the occurrences of each expert being selected
in every MoE layer, resulting in

Rκ = {rκij}m×L, Rκ′ = {rκ′
ij }m×L. (4)

After normalization as follows, we can estimate
the probability distributions of each expert being
selected in every MoE layer:

R̄κ = Rκ/(r
κ
11 + rκ21 + ...+ rκm1),

R̄κ′ = Rκ′/(rκ
′

11 + rκ
′

21 + ...+ rκ
′

m1).
(5)

It is worth noting that for 1 ≤ i ≤ L,
∑m

i=1 r
κ
i1 =∑m

i=1 r
κ
ij and

∑m
i=1 r

κ′
i1 =

∑m
i=1 r

κ′
ij . Then, we can

estimate the distribution differences of expert selec-
tions in each MoE layer between the two models κ
and κ′ by calculating dj as follows:

dj = Stdmi=1(r̄
κ
ij − r̄κ

′
ij ), 1 ≤ j ≤ L, (6)

where Std denotes standard deviation. If dj is
small, it implies that the MoE layer j exhibits min-
imal response variation to the current data of the
image-text modality, hence, there’s no necessity
to add new experts to this layer. Conversely, for
MoE layers with larger dj , adding new experts can
effectively address the learning of new modality
information. We rank the MoE layers based on
dj and introduce a new expert FFNm+1 to the top
⌊pL⌋ layers for original MoE LLM κ, with p set
to 0.5 in this paper. In fact, the adaptive extension
stage proposed in this section not only reduces com-
putational costs during training and mitigates the

risk of overfitting but also accelerates the training
of MoE LLM. For detailed analysis, please refer to
Section 4.

2.3 Fine-tuning Stage

In addition to introducing an additional expert in
certain MoE layers for the original κ, as mentioned
in Section 2.2, and illustrated in Fig. 2, we also
need to augment the parameters of the correspond-
ing routers for these experts, i.e.,

Wnew = [W;vnew] ∈ RD×(m+1), (7)

where vnew ∈ RD×1, Furthermore, we add some
Calibration modules to all experts in the MoE lay-
ers to mitigate changes in gate weights due to the
addition of modalities. These newly introduced
trainable parameters constitute the extension part.
In this section, we fine-tune the extension part us-
ing the LLaVA 1.5-mix-665k dataset to enhance
the final performance of LLM.

Specifically, we first consider the initialization
of the newly added m+ 1-th expert and its corre-
sponding router parameters vnew. In this work, for
the j-th MoE layer, we consider directly copying
the expert and router parameters corresponding to

max(rκ1j , r
κ
2j , · · · , rκmj), (8)

as initialization for the new parameters. This is
because intuitively, the newly added expert is pri-
marily intended to address the new modalities, and
it is appropriate to initialize it with the existing ex-
pert that has the highest response to the new modal-
ities. In Section 4, we will demonstrate that the
initialization of the new parameters significantly
affects the probability of an expert being selected
by the MoE mechanism, thereby affecting the final
performance of the MoE LLM.
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Furthermore, since some MoE layers have added
experts, s(x)j will change according to Eq. (3). For
example, for a fixed input x, the new probability
s(x)′j satisfies

s(x)′j = ef(x)j/(
∑m

h=1
ef(x)h + ef(x)m+1)

≤ ef(x)j/
∑m

h=1
ef(x)h = s(x)j ,

(9)

This causes the feature distribution of the original
MoE κ regarding previously learned knowledge to
change during forward propagation, resulting in
some degree of forgetting of existing knowledge
by the model, thereby affecting performance. To
address this issue, we add a Calibration module
sc(·) for each expert such that

MoE(x) =
∑k

j=1
s(x)j · [1 + sc(x)] · FFN(x)j ,

(10)
and sc(·) is a two-layer GELU neural network
W1(GELU(W2(·))). Here, the weights of W1

are initialized to 0, and W2 uses normal initializa-
tion. This initialization ensures that the calibration
term sc(x) = 0, maintaining consistency with the
model’s output features when sc(·) is not added,
thus preventing significant interference with model
output features due to the addition of sc(·), which
could lead to abnormal loss and affect model train-
ing. For a fair comparison, all training hyperparam-
eters, training methodologies, and loss functions
with LLaVA 1.5-558k and LLaVA 1.5-mix-665k in
all stages remain consistent with LLAVA.

3 Experiments

3.1 Experimental Setup

Model Settings. To ensure fairness in experimen-
tal comparisons, we follow the settings outlined
in LLaVA 1.5. We utilize CLIP (Radford et al.,
2021) as the vision encoder, two linear layers with
GELU (Hendrycks and Gimpel, 2016) as the vision
projection, and other training hyperparameters are
shown in Appendix Table 6.

Dataset. We utilize the same dataset as LLaVa 1.5
to train the model, consisting of LLaVA 1.5-558k
for pretraining stage and LLaVA 1.5-mix-665k for
instruction tuning stage (Liu et al., 2023b). The
computational cost of MoExtend is ∼15 hours of
pretraining and ∼30 hours of visual instruction
tuning, while MoExtend-Full, the model trained
like LLaVA, need ∼200 hours of instruction tuning.

3.2 Image Understanding Evaluation

Image Question Answering. As shown in Ta-
ble 1, we assess MoExtend performance across
four widely-used image question answering bench-
marks. Compared to the state-of-the-art method
LLaVA-1.5 (Liu et al., 2023b), MoExtend ex-
hibits robust image understanding capabilities and
achieves performance very close to that of LLaVA-
1.5. Specifically, MoExtend, which is trained with
only 3B LLM parameters, surpasses LLaVA-1.5
13B, trained with 13B LLM parameters, by 3.1%,
and outperforms the recent vision-language model
HyperLLaVA (Anonymous, 2024) by over 4.8%
on SQA. Remarkably, MoExtend achieves compre-
hensive superiority over IDEFICS-80B (Laurençon
et al., 2024) with only 13B activated parameters,
underscoring the strong comprehension abilities of
MoE-LLaVA in vision features.

Performance on Multimodal Benchmarks. To
comprehensively evaluate multimodal comprehen-
sion capabilities of MoExtend, we evaluate its per-
formance across five widely-used benchmark toolk-
its, as shown in Table 1. Experimental results in-
dicate that, under the same dataset and training
settings, MoExtend, fine-tuned with only 3B LLM
parameters, achieves performance on par with the
state-of-the-art model on most benchmark toolkits.
Particularly, MoExtend has significantly superior
performance on MME, surpassing the existing lead-
ing model LLaVA 1.5-13B by 178.8 points, indicat-
ing that MoExtend facilitates a efficient expansion
of modalities.

Comparison with Forgetting. To mitigate catas-
trophic forgetting in LVLMs, MoExtend fine-tunes
LLM through calibration and the addition of new
experts, thereby preserving the performance of
LLM’s original modalities. To evaluate the su-
periority of our fine-tuning strategy in preserving
the understanding capabilities of LLM’s original
modalities, we evaluate the performance of LVLMs
using different fine-tuning methods on pure text
metrics as shown in Table 2. Specifically, we com-
pare the performance of LLaVA-1.5, MoExtend-
Full, MoE-LLaVA, and MoExtend with original
LLMs in Table A. Across all metrics, MoExtend
exhibits performance similar to the original LLM.
Additionally, we observe only slight decreases for
LLaVA-1.5, while MoE-LLaVA and MoExtend-
Full show significant declines relative to the orig-
inal LLM model in pure text evaluation metrics,
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Table 1: Comparison with different LVLMs on 8 benchmarks. P, Res., PT, IT respectively represent parameters, the
input image resolution, the number of samples in pretraining and instruction tuning stage. Evaluation benchmarks in-
clude two types: (1) image question answering: ScienceQA-IMG (SQA) (Lu et al., 2022), TextVQA (VQAT) (Singh
et al., 2019), VQAV2 (Goyal et al., 2017); (2) benchmark toolkits: POPE (Li et al., 2023b), MM-Vet (Yu et al.,
2023), MMBench (MMB) (Liu et al., 2023c), MMBench-Chinese (MMBCN) (Liu et al., 2023c), MME (Fu et al.,
2023). The best results and second best results are indicated by boldface and underline, respectively.

Model
LLM

Res. PT IT
Image Question Answering Benchmark Toolkit

Training #P SQA VQAT VQAV2 POPE MM-Vet MMB MMBCN MME

BLIP-2 (Li et al., 2023a) 13B 224 129M - 61.0 42.5 41.0 85.3 22.4 - - 1293.8
InstructBLIP-7B (Dai et al., 2023) 7B 224 129M 1.2M 60.5 50.1 - - 26.2 36.0 23.7 -
InstructBLIP-13B (Dai et al., 2023) 13B 224 129M 1.2M 63.1 50.7 - 78.9 25.6 - - 1212.8
Shikra (Chen et al., 2023) 13B 224 600K 5.5M - - 77.4 - - 58.8 - -
IDEFICS-9B (Laurençon et al., 2024) 7B 224 353M 1M - 25.9 50.9 - - 48.2 25.2 -
IDEFICS-80B (Laurençon et al., 2024) 65B 224 353M 1M - 30.9 60.0 - - 54.5 38.1 -
Qwen-VL-7B (Bai et al., 2023) 7B 448 1.4B 50M 67.1 63.8 78.8 - - 38.2 7.4 -
Qwen-VL-7B-Chat (Bai et al., 2023) 7B 448 1.4B 50M 68.2 61.5 78.2 - - 60.6 56.7 1487.5
MoE-LLaVA-2.7B×4 (Lin et al., 2024) 5B 336 558K 1.6M 68.5 51.4 77.6 85.0 34.3 65.2 - 1335.1
MoE-LLaVA-2.7B×4 (Lin et al., 2024) 5B 384 558K 1.6M 70.3 57.0 79.9 85.7 35.9 68.0 - 1431.3
SPHINX-MoE (Gao et al., 2024) 8×7B 448 15.3M 74.5 68.0 81.1 89.6 40.9 71.3 - 1485.3

LLaVA-1.5 (Liu et al., 2023a) 7B 336 558K 665K 66.8 58.2 78.5 85.9 30.5 64.3 58.3 1510.7
HyperLLaVA (Anonymous, 2024) 7B 336 558K 665K 70.4 58.5 79.1 86.3 31.0 65.9 60.6 1481.2
LLaVA-1.5 (Liu et al., 2023a) 13B 336 558K 665K 71.6 61.3 80.0 85.9 35.4 67.7 63.6 1531.3
MoExtend 3B 336 558K 665K 73.8 58.7 76.6 85.5 37.1 67.8 61.5 1710.1

Table 2: Comparison on text benchmarks. We mea-
sure textual performance on a popular variety of tasks
categorized as follow: (1) Commonsense Reasoning:
ARC-Easy (Arc-e) (Clark et al., 2018), Hellaswag (Hel-
laS) (Zellers et al., 2019), PIQA (Bisk et al., 2020),
Winogrande (WinoG) (Sakaguchi et al., 2021); (2) Code:
MBPP (Austin et al., 2021); (3) Popular aggregated
results: MMLU (Hendrycks et al., 2020); (4) Math:
GSM8K (Cobbe et al., 2021). MoExtend-Full is the
model trained like LLaVA, which trains vision projec-
tion and LLM on instruction tuning stage. Avg. drop
↓ refers to the mean difference in performance metrics
between the current model and its corresponding LLM.
A smaller Avg. drop ↓ indicates less forgetting by the
model and thus better performance. All evaluations are
based on the open source toolkit OpenCompass.

Model Arc-e HellaS PIQA WinoG MBPP MMLU GSM8K Avg. drop ↓
Vicuna-7B (Chiang et al., 2023) 77.60 72.32 76.77 62.04 12.20 50.99 19.48 -
LLaVA-1.5-7B (Liu et al., 2023b) 80.07 72.02 76.22 62.51 15.00 51.61 19.64 -0.81

Vicuna-13B (Chiang et al., 2023) 85.36 75.67 78.45 65.75 25.20 56.67 29.66 -
LLaVA-1.5-13B (Liu et al., 2023b) 87.65 75.63 78.67 64.09 26.60 56.85 29.19 -0.27

Phi2-2.7B (Javaheripi et al., 2023) 85.89 72.36 78.84 71.51 46.00 58.49 60.20 -
MoE-LLaVA-2.7B×4 (Lin et al., 2024) 87.30 70.83 79.38 69.61 10.00 47.92 53.22 7.86

Mixtral 8x7B (Jiang et al., 2024) 92.24 81.84 81.61 70.48 36.40 71.17 71.95 -
MoExtend-Full 88.36 77.40 80.63 64.56 34.80 69.02 67.83 3.30
MoExtend 93.12 80.75 81.50 69.69 34.60 71.12 72.03 0.41

suggesting that full-parameter fine-tuning may lead
to catastrophic forgetting for MoE-type LLMs,
whereas non-MoE-type LLMs are less affected.

4 Ablation Study and Analysis

Effect of Model Architectures. We investigate
the impact of different architectures on the perfor-
mance of MoExtend. While the intuitive approach
of adding new experts to all layers might seem op-
timal, our experiments, detailed in Table 3, reveal
comparable performance between models with ex-

Table 3: Comparison of MoExtend with different archi-
tectures at 1k iterations. #Layer represents the number
of layers added expert. First-half indicates that new
experts are only added to the first half layers of model,
Second-half represents that only the second half layers
of model have new experts, Interval means that we add
new experts to every alternate layer of the model, First-
quarter indicates only first quarter layers are added new
expert, and First-interval means that we add new experts
to first half layers alternately.

Architecture #Layer POPE MM-Vet MMB VQAT Avg.

All layer 32 84.0 34.7 63.7 56.1 59.6

First-half 16 84.5 35.3 63.1 55.6 59.6
Second-half 16 81.3 36.1 59.5 52.4 57.3
Interval 16 83.5 36.1 63.7 55.6 59.7
First-quarter 8 85.4 35.4 61.3 54.6 59.2
First-interval 8 83.6 34.8 62.7 54.3 58.9

Ours 16 84.3 36.4 63.1 55.7 59.9

perts added to every layer (All layer), the first half
(First-half), or every alternate layer (Interval). Ad-
ditionally, results from models with experts added
only to the first quarter (First-quarter) or every
alternate layer starting from the first layer (First-
interval) indicate performance degradation when
too few layers receive additional experts. This find-
ing informs our extension stage design, where ex-
perts are appropriately added to half of the layers.

As depicted in Fig. 3 (Left), our extension stage
identifies layers requiring new experts. MoExtend
based on our proposed strategy, as demonstrated
in Table 3, performs on par with the current op-
timal insertion strategy (First-half, Interval). Fur-
thermore, Fig. 3 (Right) shows that our extension
strategy converges at a rate comparable to the op-
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Figure 3: Left: std. di of per layer caculated by Eq. (6). Layers in orange color (layer id: 3, 4, 6, 7, 9, 10, 11, 13, 14,
15, 17, 18, 20, 21, 26, 28) are added new experts while layers in blue color are not with additional experts. Right:
loss of MoExtend with by placing new expert layers in different positions. Employing our position selection scheme,
we achieve faster convergence speeds compared to other manually designed schemes.

Table 4: Comparison of MoExtend with different initial
methods at 1k iterations. Copy(i) means initializing new
experts by copying the weight of original i-th expert.

Method POPE MM-Vet SQA VQAT

Expert

Copy(2) 83.6 34.5 73.3 51.3
Copy(4) 83.7 35.1 71.7 54.6
Copy(6) 83.5 34.7 73.2 54.4
Copy(8) 83.7 34.7 74.1 54.8

Router
Zero 83.6 34.8 74.4 54.8
Mean 83.2 34.4 73.1 54.3

Ours 84.3 36.4 73.4 55.7

timal insertion strategy during training, validating
its effectiveness on accurately determining the ap-
propriate layers for adding new experts without
extensive experimentation.

Effect of Initialization. As depicted in Table 4,
we analyze the impact of expert and router initial-
ization on the performance of MoExtend. If the
parameters of the new experts and router dimen-
sions are directly copied from fixed positions i of
experts and corresponding dimensions of routers at
each layer (Copy(i)), the performance of copying
experts from different positions is relatively close
and lower than that of MoExtend.

Additionally, we explore the performance when
the router parameters are not directly copied from
the corresponding router parameters of the i-th ex-
pert, but initialize directly with zeros or with the
mean of the initial parameters of the eight experts
(Mean). Experimental results indicate that initializ-
ing the router with zeros generally results in poorer
performance compared to direct copying (Ours).
Mean initialization implies that the new experts are
a few selected in the initial state, and later in the in-
struction tuning stage the new experts are selected
through gradient updates. In fact, this performance
difference is mainly due to the fact that such an ini-

Table 5: Comparison of MoExtend with different cal-
ibration modules at 1000 iterations. The type of mod-
ules corresponds to Fig. 5. The reason why Type2 (b)
has no evaluation result is gradient explosion. "Zero"
and "One" respectively denote filling all learnable
parameters of the Calibration module with 0 or 1.
"Zero+Normal" refers to initializing the two linear lay-
ers of the Calibration module in Type2 with 0 and stan-
dard normal values, respectively.

Modules Initialization POPE MME SQA VQAT Avg.

Type1 (a) Zero 84.8 1495.2 72.4 53.2 426.4
Type1 (b) One 83.5 1567.1 72.5 56.2 444.8
Type2 (a) Zero + Normal 84.3 1571.0 73.4 55.7 446.1
Type2 (b) Normal + Normal N/A N/A N/A N/A N/A

tialisation will lead to the newly added experts not
being easily selected during the training process, so
that the newly added experts are not fully trained
or not used for new modality. Specifically, take
the "Mean" initialisation as an example. Since the
MoE layer generally selects the top-2 probability
of experts for feature integration, the initialisation
of "Mean" makes it difficult for the new experts to
be selected with a large probability. Since the new
router parameters and experts are rarely updated,
it is difficult to improve this situation during the
training process.

However, experimental results show that this ini-
tialization method leads to inferior performance.
Furthermore, to investigate the impact of initial-
ization methods on performance, we calculate the
ratio of expert selection for different initializations
as shown in Fig. 4, and find that models initialized
with Zero and Mean are both unbalanced in ex-
pert selection, while MoExtend is more balanced.
This finding indicates that the balance of expert
selection is closely related to model performance.

The Design of Calibration Modules. As shown
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Figure 4: Distribution of expert selection per layer with different router initial methods. We randomly select 10,000
multimodal samples from LLaVA 1.5-mix-665k as inputs and count the number of times each expert at each layer is
selected. To streamline the visualization of results, we calculate and visualize the proportion of five experts.
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Figure 5: Structure of different types of calibration modules. The green modules represent calibration modules,
and m is the number of experts. The output of the calibration module acts on the softmax output of the router to
correct the probability distribution effect caused by changes in the number of experts, ensuring proper gate weight
adjustments for each expert.

in Fig. 5, we design two concise calibration mod-
ules (Type1, Type2) to investigate the impact of
these modules on MoExtend performance under
two integration modes (Liang et al., 2020; Huang
et al., 2020; Zhong et al., 2023d,c): addition (a)
and multiplication (b). Type1 consists of a simple
learnable parameter 1×m, while Type2 consists of
two simple linear layers connected by the GELU
activation function. To minimize the disruption
of router performance by calibration modules in
the initial state, we mitigate the initial impact of
calibration modules on routers through special ini-
tialization as shown in Table 5. In the additive
mode of Type1, we use Zero initialization for cali-
bration modules, while in the multiplicative mode,
we use One initialization.

In the additive mode of Type2, we initialize the
first linear layer normally and zero-initialize the
second linear layer. In the multiplicative mode, it
is hard to reduce the impact of calibration modules
through appropriate initialization, so we opt for
simple normal initialization for both linear layers.
Type2 (b) does not exhibit any evaluation result
in Table 5 because of gradient explosion, and the

experimental results indicate that Type2 (a) calibra-
tion module structure performs better than others.

5 Conclusion

In this work, we introduce MoExtend, an effec-
tive framework tailored to streamline the modal-
ity adaptation and extension of Mixture-of-Experts
(MoE) models. MoExtend introduces new experts
into MoE models by putting them at the parallel
positions of the experts in MoE. Then MoExtend
designs a method to select previous experts in MoE
for initilizing the new experts. Finally, it only tunes
the new experts on the corresponding modal data
and tasks. This endows MoE with novel knowl-
edge without necessitating the tuning of pretrained
models such as MoE and vision encoders, thus
avoiding the catastrophic forgetting issue. Further-
more, MoExtend facilitates rapid adaptation and
extension to new modal data or tasks, thereby effec-
tively addressing the challenge of accommodating
new modalities within LLMs. Empirical results
show the efficacy and efficiency of MoExtend in
augmenting the multimodal capabilities of LLMs.
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6 Limitation

In this work, due to limited GPU resource, we take
the visual task as one example to validate the effec-
tiveness our proposed MoExtend. So one limitation
of MoExtend is that its performance is not investi-
gated on the other modal data, such as speech, and
other tasks, e.g., continue learning and streaming
tasks. However, as aforementioned, MoExtend is
a general approach to extend the MoE model to
other modal data or tasks, because our design prin-
ciple is to endows MoE with novel knowledge via
tuning the new integrated experts, and does not in-
volve any specific tasks or modality. Accordingly,
we believe that by replacing the vision encoder in
MoExtend with other modal encoder and inserting
new experts like MoExtend, one can easily extend
MoExtend to other modal data and tasks, which is
also left as our future work to thoroughly test.

7 Related Work

7.1 Mixture of Experts
Mixture of Experts (MoE) (Masoudnia and
Ebrahimpour, 2014; Riquelme et al., 2021; Zhou
et al., 2022; Lin et al., 2024; Jiang et al., 2024) is
a technique that leverages multiple sub-networks,
also referred to as experts, to integrate features gen-
erated by different experts through adaptive strate-
gies, thereby enhancing the overall performance of
neural networks. The MoE layer, when process-
ing each token, employs a router module to assign
tokens to different experts, thereby reducing in-
terference between different types of samples and
keep low inference cost. In specific computational
frameworks, MoE can achieve performance com-
parable to LLMs with a large amount of compu-
tational cost (Masoudnia and Ebrahimpour, 2014).
Consequently, with the rapid advancement and ap-
plication of LLMs, MoE is emerging as a promis-
ing and noteworthy paradigm for further enhancing
LLM performance (Masoudnia and Ebrahimpour,
2014; Team et al., 2023).

7.2 Multimodal Model
Multimodal Learning involves leveraging various
types of data, such as text, images, speech, and
video, to train machine learning models for a more
comprehensive understanding and inference capa-
bility (Bayoudh et al., 2022; Xu et al., 2023; Zhong
et al., 2023b,a). By integrating and jointly model-
ing different modalities of data, multimodal learn-
ing enhances machines’ ability to comprehend and

express rich real-world information, thereby im-
proving performance in tasks like image descrip-
tion, sentiment analysis, speech recognition, and
video understanding.

Recently, with the advancement of LLM tech-
nologies, multimodal learning methods have been
rapidly integrated into LLM to expand its under-
standing and analysis of different modalities, espe-
cially visual modality (Liu et al., 2023b; Bai et al.,
2023). Recent efforts have focused on enhancing
performance through methods such as adjusting
datasets (Liu et al., 2023b), optimizing training
strategies (Zhang et al., 2023b; Zhong et al., 2022),
improving image resolution (Bai et al., 2023), en-
hancing image encoders (Fan et al., 2024; Gao
et al., 2024), aligning inputs (Radford et al., 2021),
and projecting layers (Wu et al., 2023; Liu et al.,
2023b). These approaches, by fine-tuning datasets
and model scales through expanded visual instruc-
tions, have endowed LLM with robust visual com-
prehension capabilities. However, most current
methods for expanding modalities generally in-
volve fine-tuning a significant portion of or all pa-
rameters on multimodal data, leading to substantial
computational costs and risking performance degra-
dation due to forgetting. Facing this dilemma, in
this paper, we consider leveraging the strong base
performance of MoE LLM to explore cost-effective
methods for expanding LLM modalities by intro-
ducing new experts.

8 Hyperparameters
Table 6: Training hyperparameters of MoExtend.

Hyperparameter Pretrain Fine-tune

batch size 256 128
learning rate 1E-03 2E-05
schedule cosine decay cosine decay
warmup ratio 0.03 0.03
weight decay 0 0
optimizer AdamW AdamW
epoch 1 1
aux loss coefficient 0.001 0.001
precision BF16 BF16
GPU 8 × A800-80G 8 × A800-80G
text max length 1024 2048
deepspeed stage 2 3
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