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Abstract

Pre-trained large-scale language models
(LLMs) excel at producing coherent articles,
yet their outputs may be untruthful, toxic, or
fail to align with user expectations. Current
approaches focus on using reinforcement
learning with human feedback (RLHF) to
improve model alignment, which works by
transforming coarse human preferences of
LLM outputs into a feedback signal that guides
the model learning process. However, because
this approach operates on sequence-level
feedback, it lacks the precision to identify
the exact parts of the output affecting user
preferences. To address this gap, we propose a
method to enhance LLM alignment through
fine-grained token-level supervision. Specif-
ically, we ask annotators to minimally edit
less preferred responses within the standard
reward modeling dataset to make them more
favorable, ensuring changes are made only
where necessary while retaining most of the
original content. The refined dataset is used
to train a token-level reward model, which
is then used for training our fine-grained
Proximal Policy Optimization (PPO) model.
Our experiment results demonstrate that
this approach can achieve up to an absolute
improvement of 5.1% in LLM performance, in
terms of win rate against the reference model,
compared with the traditional PPO model.

1 Introduction

One key objective in advancing large language
models (LLMs) is to ensure safe, beneficial hu-
man interaction. However, current pre-trained mod-
els, mostly trained on web and book texts, often
generate biased or toxic text, misaligning with hu-
man intentions. To address this issue, numerous
studies (Ouyang et al., 2022; Rafailov et al., 2023;
Bai et al., 2022b,a; Yuan et al., 2023; Touvron
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et al., 2023; Ramamurthy et al., 2022) have in-
tegrated human feedback into the training process.
A significant advancement is reinforcement learn-
ing from human feedback (RLHF) (Ouyang et al.,
2022), which usually consists of two phases: First,
a reward model (RM) is trained from preference
data, which comprises various responses alongside
their human-assigned preference scores for a given
prompt. Then, this reward model is applied to
optimize a final model using Proximal Policy Opti-
mization (PPO) (Schulman et al., 2017).

Recent works (Wu et al., 2023; Rafailov et al.,
2023; Fernandes et al., 2023; Guo et al., 2023;
Wang et al., 2024) discovered limitations of the
current RM, specifically their misalignment with
human values. This misalignment stems from
two main issues: (i) the presence of incorrect
and ambiguous preference pairs in the human-
labeled datasets; (ii) the limited insight inherent
in sequence-level feedback. Specifically, from a
data collection standpoint, the task of comparing
the overall quality of model outputs is challeng-
ing for human annotators when outputs exhibit
both desired and undesired behaviors in different
parts. Moreover from the RM perspective, the re-
liance on preference-based data labeling leads to
sparse training signals. This sparsity discourages
the model’s ability to distinguish finer details be-
tween responses and further limits the capacity for
reward optimization.

To tackle this challenge, we propose the follow-
ing two-fold contributions as illustrated in Figure 1:

• We introduce a new data collection approach that
asks annotators to edit responses from existing
RM datasets to be more preferable. By compar-
ing the original and edited responses, we obtain
detailed token-level insights that are essential for
training our fine-tuned reward model.

• We propose a new token-level reward model-
ing approach that provides reward signals at
the token level. Different from coarse-grained
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Figure 1: The comparison between sequence-level reward modeling (Left) and our method of fine-grained reward modeling via
minimal editing (Right). Our approach diverges from sequence-level reward modeling in two key aspects: (1) Data Collection,
where we ask a human or LLM to edit the model response; and (2) Reward Modeling, which enables our model to assign rewards
to individual tokens, as opposed to assessing the entire sequence collectively.

sequence-level rewards, our approach offers
more granular feedback, pinpointing the specific
parts of a response that are effective or need im-
provement, which hence helps RL optimization.

Experiment results using AlpacaFarm (Dubois
et al., 2023) environment indicate that our proposed
approach improves LLMs’ performance up to 5.1%
against the baseline in terms of win rate, given the
same amount of data for training.

2 Method

In this section, we introduce our approach to fine-
grained data collection through editing and token-
level reward modeling.

2.1 Fine-grained data collection via minimal
editing

The conventional RLHF pipeline, as outlined in
prior works (Ouyang et al., 2022; Dubois et al.,
2023), involves three key stages: supervised fine-
tuning (SFT), reward modeling (RM), and proxi-
mal policy optimization (PPO). In the RM phase,
the standard practice entails collecting a dataset of
human evaluations comparing two or more model
outputs in response to a series of prompts. The
dataset is represented as D = {x(i), y(i)w , y

(i)
l }Ni=1,

where x denotes a prompt and (yw, yl) indicates the
preferred and less preferred responses, respectively.

Utilizing such a dataset, earlier RLHF research fo-
cused on developing a reward model Rϕ that deter-
mines the more favored model output. This holistic
reward model associates each input prompt x and
its corresponding output y with one scalar value
reflecting the output’s overall quality.

However, as shown in the left panel of Figure 1,
annotating a pair of model outputs that are substan-
tially different can be a difficult task for humans,
especially when each response exhibits a mix of de-
sirable and undesirable behaviors. To address this
issue, we introduce a novel data collection tech-
nique aimed at obtaining fine-grained supervision,
which offers richer, comparative information be-
yond simple binary choices. Instead of annotating
entire responses, our method involves targeted edit-
ing by humans or language models, as depicted in
the right panel of Figure 1. The goal is to retain
the majority of the original response while making
improvements to specific areas in need of enhance-
ment. Specifically, we introduce a response editing
process in which we ask humans or prompt LLMs
to perform targeted modifications. For fine-grained
data collection, our method works for both human
annotators and language models, following (Ding
et al., 2022; Gilardi et al., 2023; Wang et al., 2022;
Chiang and Lee, 2023).

In practice, we prompt a proprietary LLM, such
as Claude-2 (Bai et al., 2022b), to apply edits to
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the original output. In the experiment, the original
preference pairs (yw, yl) were not included and
we only utilized yl from the original dataset for
minimal editing. This approach maintains the same
amount of data as the baseline methods, ensuring
a fair comparison. Details of the prompt used for
editing can be found in Appendix A.1, and the
examples of fine-grained annotation with minimal
editing are shown in Appendix A.2. Our method is
based on the assumption that the edits inherently
improve a response, making changes only when
they enhance alignment with human values. The
approach enables the refinement of responses by
providing clear insights into the specific areas that
require improvement.

2.2 Token-level reward modeling
In this section, we will first introduce the RL en-
vironment and then define our token-level reward
modeling scheme.

Language generation can be defined as a Markov
Decision Process (MDP) ⟨S,A,R,P, γ⟩. S refers
to the state space and we define the start state s1
as the input prompts {x}. An action at t-step at is
a generated token. The transition function of the
environment is denoted as P : S × A → S, st =
{x, a1, ..., at−1}. A response y of length T is then
y = {a1, .., aT }. In our token-level reward scheme,
a reward is assigned to each generated token at
by R : S × A → R, where at each time step t
there is a learned reward function rt = rϕ(st, at).
Therefore, for each response, we have a trajectory
τ = {s1, a1, r1, ...st, at, rt, ...sT , aT , rT }.

We define the reward of the whole trajectory as
the average of rewards assigned to each token:

R(τ) =
1

T

T∑

t=1

rt. (1)

Following the Bradley-Terry (BT) model (Bradley
and Terry, 1952) for preference modeling, we for-
mulate the distribution of human preference for
responses as below:

p(τ i ≻ τ j) =
exp(R(τ i))

exp(R(τ i)) + exp(R(τ j))

= σ(R(τ i)−R(τ j)),

(2)

where τ i and τ j represent two different responses
generated from the same prompt. Under the setting
of our fine-grained supervision dataset, we assume
τ i only makes edits on τ j while maintaining most

parts unchanged. We define U0 = {t|ait = ajt} and
U1 = {t|ait ̸= ajt} to represent the unchanged and
changed parts.

Regarding the reward model as a binary clas-
sifier, we use negative log-likelihood as the loss
function. By plugging in Equation 1, we have:

L = −E(τ i,τ j)∼D
[
log σ(R(τ i)−R(τ j))

]

= −E(τ i,τ j)∼D[log σ((
1

T i
− 1

T j
)
∑

t∈U0

rt

+
1

T i

∑

t∈U1

rit −
1

T j

∑

t∈U1

rjt )],

(3)

Ideally, we aim for the unchanged part to main-
tain a consistent reward. Under this assumption,
and if the two responses are of equal length, the
first term of the loss function can be removed:

L ≈ −E(τ i,τ j)∼D[log σ(
1

T i

∑

t∈U1

rit −
1

T j

∑

t∈U1

rjt )]

(4)

For the edited part, the loss function is thus de-
signed to maximize the reward for the preferred
response and minimize it for the less favored one.

With a trained token-level reward model, we
can integrate it into the Proximal Policy Opti-
mization (PPO) (Schulman et al., 2017) algorithm.
In the traditional PPO-RLHF method, each to-
ken in the sequence is assigned a reward of the
form [−KL1,−KL2, ..., R −KLn], where KLi

denotes the Kullback-Leibler divergence (Kull-
back and Leibler, 1951) for the generated token
sequence up to that point, and R represents the
sequence-level reward from the reward model. Gen-
eralized Advantage Estimation (GAE) (Schulman
et al., 2015) is then employed to calculate the ad-
vantage at the token level.

In contrast, our approach assigns a reward Ri

directly from the token-level reward model to each
token in the sequence, resulting in a reward vec-
tor of [R1, R2, ..., Rn]. This approach enhances
the granularity of feedback at each step of the se-
quence generation process, without changing the
underlying GAE and policy update procedure. Con-
sequently, the computational cost remains compa-
rable to the standard RLHF approach.

3 Experiments

In this section, we demonstrate our experimental
setup and empirical results in detail.
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Model Win rate (%)
Fine-grained Token-level PPO 51.6± 1.851.6± 1.851.6± 1.8
Fine-grained PPO 51.2± 1.851.2± 1.851.2± 1.8
Davinci003 (Brown et al., 2020) 50.0
PPO-RLHF (Ouyang et al., 2022) 46.5± 1.8

Table 1: Evaluation results by Claude. Davinci003 is
the reference model. All results of other models are
from (Dubois et al., 2023).

3.1 Experimental setup

In constructing our dataset, we follow the frame-
work established by AlpacaFarm (Dubois et al.,
2023), which offers a simulation environment that
includes data splits for SFT, RM, PPO, and evalu-
ation processes. Building on this, we develop our
refined RM dataset using the fine-grained approach,
where we employ Claude-2 (Bai et al., 2022b) to
perform targeted editing. Edits are generated on the
less preferred responses from the original pairwise
data, ensuring lightweight yet effective modifica-
tions.

We evaluate our method by finetuning the pre-
trained LLaMA-7B (Touvron et al., 2023) model.
To assess the quality of our model’s generation
compared to baseline models, we employ a win-
rate measurement, where the model pθ is evalu-
ated against a reference model pref. This method
involves pairwise comparisons to estimate how of-
ten pθ’s outputs are preferred over pref’s for given
instructions. Both our model and the baselines
are evaluated against the same reference model,
Davinci003, aligning with AlpacaFarm (Dubois
et al., 2023). To assess the win rate, we employ
Claude as the judge, following the simulated ap-
proach in (Zheng et al., 2023).

To evaluate the effectiveness of our data anno-
tation approach and token-level reward model, we
train two models: (i) Fine-grained PPO that only
uses our fine-grained RM dataset with editing while
still trained with a sequence-level reward, and (ii)
Fine-grained Token-level PPO that incorporates
both the fine-grained RM dataset and token-level
reward modeling, and hence applies token-level
reward to PPO.

3.2 Experiment results

Results in human value alignment Table 1
showcases our methods (highlighted) alongside
the baseline PPO-RLHF model, both trained on
LLaMA-7B (Touvron et al., 2023). Results indicate

Model Accuracy (%)
RM w/ Fine-grained dataset 85.2± 1.885.2± 1.885.2± 1.8
RM w/o Fine-grained dataset 58.2± 1.8

Table 2: Reward model accuracy. Leveraging the fine-
grained dataset enhances the reward model’s ability to
assign correct rewards to responses.

Model Step Tr. hours
RLHF (Ouyang et al., 2022) RM 0.2
Fine-grained RLHF RM 0.30.30.3

RLHF (Ouyang et al., 2022) PPO 4
Fine-grained RLHF PPO 222

Table 3: Training efficiency. Highlighted numbers rep-
resent the training hours (Tr. hours) of the fine-grained
PPO model trained with token-level rewards.

that our novel data collection technique, when in-
tegrated with standard PPO training, leads to an
absolute performance increase of 4.7% compared
to traditional methods (refer to lines 2 vs. 4). This
highlights the effectiveness of our fine-grained data
collection strategy. Moreover, when trained with
the same fine-grained dataset, the token-level re-
ward model (line 1) demonstrates further align-
ment improvements compared to the PPO alone
(line 2), indicating the importance of token-level
rewards. Together, these findings affirm that our
approach significantly outperforms the traditional
PPO-RLHF model.

Reward model analysis To explain the observed
performance increase, we further investigate the
effectiveness of the reward model. We test its ac-
curacy in assigning higher rewards to superior re-
sponses within the evaluation set. As shown in Ta-
ble 2, our fine-grained dataset enables the learned
reward model to reach an accuracy of approxi-
mately 85.2%, outperforming the model trained
with the original dataset. This result demonstrates
that our data collection method enhances the capa-
bility of our reward model to identify and appropri-
ately reward better responses.

Training efficiency Table 3 illustrates the train-
ing costs for different models. Note that all the
models are trained on 8 NVIDIA A100 GPUs
(80G) with the same batch size for both phases.
While the training time for the reward modeling
phase is comparable between our method and the
baseline, our fine-grained reward model signifi-
cantly boosts the efficiency of RL optimization.
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It reduces the time required for PPO to converge to
its optimal performance by half, due to our more
precise and fine-grained reward function. Based
on the experiment results, our reward function can
provide more accurate and denser training signals,
which can help RL algorithms converge faster. This
improvement in training efficiency could be impor-
tant for LLM alignment, especially when the size
of the LLM becomes increasingly large.

4 Limitations

Although the empirical results show that our ap-
proach achieves better performance in model align-
ment, we struggle to provide rigorous mathematical
proof to conclusively demonstrate the effectiveness
of this reward allocation strategy, specifically in
Equation 4.

5 Conclusion

In this paper, we introduce a fine-grained RLHF
framework that includes a data collection technique
alongside a token-level reward model. This ap-
proach enables better value alignment by learning a
more accurate reward model, facilitating faster con-
vergence for PPO. Our experimental results show
performance improvement based on automatic eval-
uations compared to the baseline method.
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A Appendix

A.1 Prompt for Minimal Editing
Figure 2 shows the prompt for Claude-2 to generate the fine-grained dataset by minimal editing.

Figure 2: Prompt for Claude

A.2 More examples of minimal editing
In this section, we provide more examples of fine-grained annotation via minimal editing. As shown in
Figure 3, 4 and 5, the annotators kept most of the response unchanged and only revised the red parts to the
yellow parts.

Figure 3: Example of fine-grained annotation via minimal editing: edit words may cause safety issues.
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Figure 4: Example of fine-grained annotation via minimal editing: provide more explanation on academic words.

Figure 5: Example of fine-grained annotation via minimal editing: change the literary device that follows the instruction better.
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