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Abstract

The recent rapid development of Large Vision-
Language Models (LVLMs) has indicated their
potential for embodied tasks. However, the crit-
ical skill of spatial understanding in embodied
environments has not been thoroughly evalu-
ated, leaving the gap between current LVLMs
and qualified embodied intelligence unknown.
Therefore, we construct EmbSpatial-Bench, a
benchmark for evaluating embodied spatial un-
derstanding of LVLMs. The benchmark is au-
tomatically derived from embodied scenes and
covers 6 spatial relationships from an egocen-
tric perspective. Experiments expose the insuf-
ficient capacity of current LVLMs (even GPT-
4V). We further present EmbSpatial-SFT, an
instruction-tuning dataset designed to improve
LVLMs’ embodied spatial understanding.

1 Introduction

Embodied AI is the frontier direction of general-
purpose AI systems, requiring intelligent agents
to understand instructions, perceive physical envi-
ronments, plan and execute actions to accomplish
corresponding tasks (Anderson et al., 2018). Re-
cently, LLM-based large vision-language models
(LVLMs) have demonstrated powerful capabilities
in following instructions and performing planning
based on the visual contexts (Li et al., 2023b; Zhu
et al., 2023; OpenAI, 2023), paving a promising
path for the development of embodied AI systems.

However, recent studies have revealed signifi-
cant deficiencies of LVLMs in understanding visual
contents (Li et al., 2023c). In terms of embodied
scenarios, the ability to understand spatial relation-
ships between objects is particularly vital for agents
to effectively interact with the environment (Ander-
son et al., 2018; Padmakumar et al., 2022). Evalu-
ating and enhancing such capabilities of LVLMs is
essential for constructing LVLM-driven embodied
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[False] The zebra is right of the person.

[True] The zebra is left of the person.

Existing Benchmarks

Question: How are curtain and shelves 

positioned in relation to each other in 

the image?

Options:

A. The curtain is left of the shelves.

B. The curtain is under the shelves.

C. The curtain is right of the shelves.

D. The curtain is out of the shelves.

EmbSpatial-Bench

Universal Image 

Source: VG, COCO [True] A dog to the right of a bench.

[False] A dog to the left of a bench.

Embodied 3D Scene

Figure 1: Comparison between EmbSpatial-Bench and
existing benchmarks for spatial understanding. Existing
benchmarks may determine spatial relationships based
on a coordinate system centered on the subject in the
image (upper right), whereas EmbSpatial-Bench consis-
tently determines them from an egocentric perspective.

agents. Yet, existing benchmarks are not suitable
for accurately assessing such capabilities.

In this paper, we argue that two important fea-
tures should be considered for excellent evaluation
of spatial understanding abilities in embodied tasks.
First, the spatial relationships should be described
from the egocentric perspective, for the reason that
agents take themselves as the center of coordinates
to follow instructions and infer decisions in em-
bodied tasks. However, previous benchmarks for
spatial understanding (Liu et al., 2023a) tend to
depict spatial relationships from the perspective of
subject within images, as illustrated in Figure 1.
Second, the visual scenes for evaluation should
be consistent with that in embodied tasks. Nev-
ertheless, existing benchmarks (Liu et al., 2023a;
Kamath et al., 2023) are mainly constructed from
universal image-text datasets like MSCOCO (Lin
et al., 2014) and VG (Krishna et al., 2017) which
are weakly related to embodied scenarios.

To meet aforementioned requirements, we estab-
lish EmbSpatial-Bench, a benchmark for evaluating
spatial understanding abilities of LVLMs in embod-
ied environments. As shown in Figure 1, we focus
on six spatial relationships described from the ego-
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Figure 2: Overview of the construction pipeline for EmbSpatial-Bench based on existing annotated 3D environments.

centric perspective, including above, below, left,
right, close and far, which completely covers three
dimensions of the coordinates. The benchmark
is organized into the format of multiple-choice
questions. The images used for evaluation are di-
rectly collected from embodied 3D scenes, namely
MP3D (Chang et al., 2017), AI2-THOR (Kolve
et al., 2017) and ScanNet (Dai et al., 2017).

Based on EmbSpatial-Bench, various LVLMs
have been assessed. Experimental results indicate
the poor embodied spatial understanding of cur-
rent LVLMs, including GPT-4V (OpenAI, 2023)
and Qwen-VL-Max (Bai et al., 2023). To address
the issue, we further construct an instruction-tuning
dataset, EmbSpatial-SFT, to empower LVLMs with
embodied spatial understanding ability. LVLMs
fine-tuned on EmbSpatial-SFT consistently demon-
strate improved spatial perception abilities across
different scenarios. 1

2 EmbSpatial-Bench

Unlike existing benchmarks built on 2D im-
ages (Liu et al., 2023a), EmbSpatial-Bench is con-
structed from 3D scenes. Figure 2 illustrates the
construction pipeline. We first generate target im-
ages from 3D scenes and extract spatial relations
among objects. Then, we generate QA pairs and
conduct filtering. Section 2.1 provides detailed ex-
planations of each part, while Section 2.2 offers
statistics of the benchmark.

2.1 Dataset Construction

Spatial Image Sources. Current embodied 3D
simulators offer comprehensive annotations for
tasks such as visual navigation (Chang et al., 2017)
and room rearrangement (Weihs et al., 2021), mak-

1https://github.com/mengfeidu/
EmbSpatial-Bench

ing them ideal for constructing a challenging bench-
mark to evaluate embodied spatial understanding.
Therefore, we choose MP3D (Chang et al., 2017),
ScanNet (Dai et al., 2017) and AI2-THOR (Kolve
et al., 2017). Specifically, we utilize the test scenes
from MP3D and validation scenes from ScanNet
and A. Within each 3D scene, we randomly select
viewpoints and capture the corresponding RGB-D
images accordingly. In AI2-THOR, we select 7
types of household tasks from ALFRED (Shridhar
et al., 2020), spanning 93 different scenes. Dur-
ing task execution, we identify key RGB-D images
based on the dataset’s PDDL (Aeronautiques et al.,
1998) annotations.(See Appendix A).

Spatial Relation Extraction. Instead of relying
on object detectors (Tejas et al., 2023), we extract
spatial relations directly from well-annotated 3D
datasets. For each object in each image, we can
utilize the camera parameters along with the cor-
responding 3D coordinates to obtain its 2D co-
ordinates in the image (in the form of bounding
boxes). With the 2D annotations, we extract the
spatial relation triples with non-overlapping bound-
ing boxes. We consider six spatial relationships
from the viewer’s perspective: above, below, left,
right, close and far. For the first four types, we de-
termine the spatial relation based on position of the
entire bounding boxes. For instance, if the entire
bounding box of object A is located to the left of
object B, we consider the relationship between A
and B as A is left of B. For the other two types, we
use the average depth within the bounding box to
determine which object is farther or closer.

QA Generation. The format of our benchmark
is multiple-choice questions, a widely adopted ap-
proach in various LVLM benchmarks (Liu et al.,
2023c; Li et al., 2023d). For the relations above,
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Figure 3: Distribution of top 30 object categories.

Data Source #QA Pairs #Image #Object #Scene

Matterport3D 1,201 928 133 26
AI2-THOR 1,239 683 95 93

ScanNet 1,200 570 35 175

Overall 3,640 2,181 294 277

Table 1: Dataset Statistics of EmbSpatial-Bench

below, left and right, we design 5 templates to
generate questions asking spatial relations between
objects, with unrelated relations provided as false
options. For the relations far and close, we aggre-
gate the relation triples for each image and generate
questions for identifying the farthest or closest one
among the given objects in the image.

Filtering and Human Verification. To ensure
the reliability of our benchmark, we initially filter
out QA pairs with overly large or small bounding
boxes, while maintaining a balanced distribution
of spatial relations. Subsequently, we check each
sample and remove the inappropriate questions that
referring unclear objects or wrong spatial relation-
ships. See appendix A.4 for more filtering and
human verification details.

2.2 Dataset Statistics

As shown in Table 1, the constructed benchmark
comprises a total of 3,640 QA pairs, covering 294
object categories and 6 spatial relationships. The
distribution of top 30 object categories can be ob-
served in Figure 3. The set of objects is the collec-
tion among samples from three embodied datasets.
Indoor objects such as "chair", "bowl" and "win-
dow" are the most frequent across different scenes.
The distribution of most common spatial relation
triples are depicted in Figure 4, highlighting the
diversity of the combination of object spatial rela-
tions present in our benchmark. We also maintain
a balanced distribution of spatial relations (details
in Appendix A). The diversity and balance of the
data enhance the reliability of our benchmark.

Figure 4: The top 10 most common triples from each
spatial relation in EmbSpatial-Bench.

3 EmbSpatial-SFT

To further improve LVLMs’ capacity in embodied
spatial understanding, we construct an instruction-
tuning dataset, EmbSpatial-SFT, which provides
QA data for two tasks: spatial relationship identi-
fication and object localization. The former task
setting is consistent with EmbSpatial-Bench, while
the latter serves as an auxiliary task to enhance the
model’s ability to ground target objects. The auxil-
iary task can be considered as the foundational skill
for relationship identification. EmbSpatial-SFT is
solely built on the training split of MP3D. In this
way, we can still conduct zero-shot evaluations of
the instruction-tuned models using data from the
other two scenes in EmbSpatial-Bench.

Spatial Relation Identification. Following the
automatic pipeline in Section 2, We construct 25K
training samples for spatial relation identification.

Object Localization. Based on the coordinates
of objects in 2D images, we construct object lo-
calization data in the form of the object grounding
task (Kazemzadeh et al., 2014). The model is sup-
posed to answer the location of inquired objects.
The location is represented in the textual format of
bounding boxes, following Chen et al. (2023a).
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Model Generation Likelihood

BLIP2 (2023b) 37.99 35.71
InstructBLIP (2023) 38.85 33.41
Cheetor (2023a) 24.56 32.80
Lynx (2023) 29.09 41.62
mPlugOwl (2023) 24.12 27.42
ImagebindLLM (2023) 26.46 33.46
Shikra (2023b) 28.38 34.75
MiniGPT4 (2023) 23.54 31.70
MiniGPT-v2 (2023a) 23.93 43.85
LLaVA-1.6 (2023b) 35.19 38.84

GPT-4V (2023) 36.07 -
Qwen-VL-Max (Bai et al., 2023) 49.11 -

Human 90.33 -

Table 2: Zero-shot performance (Acc%) of LVLMs in
EmbSpatial-Bench. Bold indicates the best results.

4 Experiments

4.1 Experimental Setup

Based on EmbSpatial-Bench, we conduct zero-
shot evaluation of current LVLMs, using accuracy
as the metric. Two evaluation strategies are em-
ployed. The first one is the generation-based strat-
egy, which directly uses predicted options from the
textual outputs of models. Considering the insuffi-
cient instruction-following ability of some LVLMs,
we also employed a likelihood strategy, using the
option with the highest probability generated by
the model (Li et al., 2023d). Please refer to Ap-
pendix B for more evaluation details.

4.2 Zero-shot Performance

Table 2 presents the zero-shot performance of 10
open-source LVLMs and 2 closed-source models.
The results indicate that current LVLMs, including
powerful closed-source models like GPT-4V and
Qwen-VL-Max, have not demonstrated satisfactory
spatial understanding abilities in embodied scenes.
The best performance among all LVLMs merely
reaches an accuracy of 49.11% (Generation) or
43.85% (Likelihood) which is significantly lower
than human performance (90.33%). We present
failure cases of GPT-4V in Appendix C, revealing
its poor abilities of both object localization and
spatial relation identification. The versions of these
models can be found in Appendix B.3.

4.3 Instruction Tuning on EmbSpatial-SFT

Furthermore, we fine-tune MiniGPT-v2 on
EmbSpatial-SFT, to explore whether the data could
further enhance the model’s spatial understanding
capabilities. The trainable parameters include the
visual connection module and LoRA (Hu et al.,
2021) modules in the LLM backbone.

Model In-Domain Out-Domain All
MP3D AI2-THOR ScanNet

Generation

MiniGPT-v2 (2023a) 23.31 20.58 28.00 23.93

Finetuned MiniGPT-v2 31.64 34.06 33.17 32.97
w/o LoRA 26.81 25.26 23.25 25.11
w/o OL 34.22 31.40 31.92 32.50

Likelihood

MiniGPT-v2 (2023a) 46.71 41.97 42.92 43.85

Finetuned MiniGPT-v2 80.52 73.69 80.25 78.10
w/o LoRA 48.38 38.90 44.17 43.76
w/o OL 80.35 72.15 79.67 77.34

Table 3: Performance (Acc%) of MiniGPT-v2 tuned
on EmbSpatial-SFT. OL stands for object localization
while w/o LoRA indicates that only the connection mod-
ule is fine-tuned. Bold indicates the best results.

Main Results. According to Table 3, under
the likelihood evaluation strategy, learning from
EmbSpatial-SFT consistently improves the perfor-
mance across both in-domain and out-domain envi-
ronments, with an increase of 34.25% in the overall
accuracy. Though not as significant as that un-
der likelihood strategy, the evaluated results un-
der generation strategy still demonstrate an ade-
quate performance improvement (+9.04% overall)
after instruction-tuning. The improvement in AI2-
THOR is less than in ScanNet, which we attribute
to AI2-THOR primarily consisting of simulated
scenes, unlike the real-world scenarios in MP3D
and ScanNet.

Ablations. We further validate the effectiveness
of finetuning LLM backbone with LoRA and the
auxiliary object localization data. As shown in
Table 3, tuning the LLM backbone with LoRA sig-
nificantly contributes to the performance across all
scenarios compared to the variant with a frozen
LLM backbone. This phenomenon implies the ne-
cessity for the LLM backbone to learn correspond-
ing reasoning abilities for spatial understanding,
rather than solely adjusting the input visual repre-
sentations. The auxiliary data also contribute to
the performance across different embodied envi-
ronments, leading to an overall improvement of
0.47% and 0.76% under generation strategy and
likelihood strategy, respectively.

5 Related Works

Large Vision-Language Models The prevalent
LVLMs (Dai et al., 2023; Zeng et al., 2023) learn
visual representations from abundant image-text
interleaved datasets with a lightweight connection
module. Further works (Tsai et al., 2023; Zheng
et al., 2023) fine-tunes LVLMs-based architecture
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and obtain acceptable performance on embodied
tasks, which preliminarily reveal the potential of
LVLMs as embodied intelligence. However, these
works neither evaluate nor empower LVLMs with
spatial understanding ability, which is essential for
various embodied tasks.

Benchmarks for Spatial Understanding. While
there are numerous universal benchmarks available
for LVLMs (Xu et al., 2023; Fu et al., 2023; Li
et al., 2023d), dedicated benchmarks for evaluat-
ing spatial understanding remain scarce. VSR (Liu
et al., 2023a) typically examines spatial relation-
ships from the perspective of the subject within
the image. What’sUp (Kamath et al., 2023) ad-
dresses data bias and generates uncluttered images
to eliminate interference from unrelated objects.
SR2D (Tejas et al., 2023) focuses on evaluating text-
to-image generative model. However, all of them
are built on COCO (Veit et al., 2016) or VG (Kr-
ishna et al., 2017) which are not consistent with
the embodied scenarios. This lack of specialized
benchmarks leaves the spatial understanding capa-
bilities of LVLMs in embodied tasks unexplored.

6 Conclusion

In this work, we propose EmbSpatial-Bench, a
benchmark to evaluate embodied spatial under-
standing of LVLMs. The evaluation results reveal
the weak spatial understanding ability of current
popular LVLMs. We further propose EmbSpatial-
SFT, an instruction tuning dataset to enhance the
capacity of LVLMs. Extensive experiments valid
the effectiveness of each data component in our
EmbSpatial-SFT, with the goal of empowering the
spatial understanding ability of LVLMs.

Limitations

Spatial understanding in embodied environments is
a crucial aspect of LVLMs’ capabilities for embod-
ied tasks. In this study, we advance towards this
goal by constructing benchmark and instruction-
tuning datasets from well-annotated 3D embodied
datasets. These datasets are derived from three
widely used indoor embodied datasets, which may
restrict their suitability for outdoor environments.
Additionally, our study only investigates the En-
glish language, thus limiting the generalizability of
the benchmark and findings to other languages.

Ethical Considerations

The benchmark and instruction-tuning data are
built from publicly available embodied datasets,
which include either photorealistic scenes or gen-
erated rendered scenes without any copyright is-
sues. Besides, our data source does not contain any
personal data, uniquely identifiable individuals, or
offensive content.
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Appendix A Dataset Details

A.1 AI2-THOR Image Selection
Due to the significant similarity between many im-
ages in the observation sequences for each task in
AI2-THOR, filtering is necessary. Based on the
detailed PDDL annotations from ALFRED (Shrid-
har et al., 2020), we select key images that show
significant content changes after each sub-goal is
reached as our benchmark image resources.

A.2 Dataset Statistics
The wordcloud of object categories can be observed
in Figure 5. The distribution of questions for each
spatial relation is illustrated in Figure 6. The diver-
sity and balance of the data enhance to the reliabil-
ity of our benchmark.

A.3 Data Cases
Three samples of EmbSpatial-Bench con-
structed from MP3D (Chang et al., 2017),
AI2-THOR (Kolve et al., 2017) and ScanNet (Dai
et al., 2017) are shown in Fig. 7, Fig. 8 and Fig. 9.

A.4 Filtering and Verification
Initially, we will implement two primary filtering
processes to enhance the robustness and quality of
our benchmark. First, we filter out objects with
excessively large or small bounding boxes. To
exclude improperly displayed objects, we filter
out spatial relationship triplets where the length
or width of the bounding box is less than 50 or
greater than half the length of the corresponding
dimension of the image.

After automated construction and filtering pro-
cesses, the human verification is implemented to
further ensure the correctness of our benchmark.
Specifically, the correctness of each sample is ex-
amined by human from several aspects: 1) the ob-
jects involved in the question can be identified in
the image uniquely and clearly; 2) the target object
conforms to the described spatial relationship; 3)
the negative options are indeed incorrect objects or
relationships. Any sample that does not meet either
of these conditions is discarded.

Appendix B Experiments

B.1 Experimental Details
Implementation details. We use MiniGPT-
v2 (Chen et al., 2023a) as a baseline LVLM for in-
vestigation. The architecture of MiniGPT-v2 com-
prises three components, including a vision encoder
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Figure 5: Wordcloud of object categories.

Figure 6: Distribution of spatial relationships in
EmbSpatial-Bench.

, a linear connection layer and a large language
model. We initialize the model parameters with
the official checkpoint after its instruction-tuning.
We finetune the connection layer and the large lan-
guage model of MiniGPT-v2 with LoRA (Hu et al.,
2021). In our implementation, we set the LoRA
rank, Rr = 64 and scaling factor, Rα = 16.

Training and hyper-parameters. We adopt
AdamW optimizer with a cosine learning rate
scheduler during the finetune process. The model
is finetuned for 25,000 steps on 4xV100 GPUs with
a initial learning rate of 1e-5, a minimum learning
rate of 1e-6, a warmup learning rate of 1e-6 and a
global batch size of 16. The finetuning stage lasts
around 10 hours.

B.2 Evaluation Strategy

Following the evaluation approach (Li et al.,
2023d), we evaluate LVLMs with generation and
likelihood strategy. The likelihood strategy relies
on LVLMs’ intrinsic nature as generative models
and separates their instruction-following capacity
from the capacity being evaluated. Given the im-
age v, the question q, and N options C = {ci}Ni=1,
the prediction can be determined by the generation
likelihood of LVLM:

ĉ = argmax
ci∈C

Pθ(c
i|v, q) (1)

where Pθ(c
i|v, q) is parameterized by the causal-

LLM-based LVLMs. The generation strategy ex-
tracts the option mark from generated textual out-
put as predicted option.

B.3 Models
We select 10 open-source and 2 closed-source
LVLMs for a comprehensive evaluation, includ-
ing BLIP2 (Li et al., 2022), InstructBLIP (Dai
et al., 2023), Cheetor (Li et al., 2023a), Lynx (Zeng
et al., 2023), mPlugOwl (Ye et al., 2023), Im-
agebindLLM (Han et al., 2023), Shikra (Chen
et al., 2023b), MiniGPT4 (Zhu et al., 2023),
MiniGPT-v2 (Chen et al., 2023a), LLaVA-1.6 (Liu
et al., 2023b), GPT-4V (OpenAI, 2023), Qwen-VL-
Max (Bai et al., 2023). Among the open-source
models, BLIP2 and InstructBLIP have the Flant5
LLM backbones. The LLM backbone of Cheetor,
Lynx, MiniGPT4 and LLaVA1.6 is Vicuna (Chi-
ang et al., 2023). mPlugOwl chooses LLaMA (Gao
et al., 2023) as backbone and MiniGPTv2 choooses
LLaMA2 (Touvron et al., 2023) as backbone. All
experimental open-source models have a parame-
ter size of approximately 7B. We select version of
“gpt-4-1106-vision-preview” for GPT-4V.

B.4 Main Results of Each Spatial Relation
We have analyse the models’ performance before
and after instruct-tuning on different spatial rela-
tions, as shown in the table 4.

After instruct-tuning on EmbSpatial-SFT,
MiniGPT-v2 significantly improved or maintained
comparable accuracy on various spatial relation-
ship categories across different environments.
In the likelihood evaluation, compared to the
horizontal and vertical dimensions, performance
in the depth dimension is significantly lower.
We attribute this to the training data of LVLMs
lacking depth estimation and the need to identify
four objects in complex scenes, instead of just
two objects in the other two dimensions. In the
generation evaluation, both MiniGPT-v2 and the
fine-tuned model perform poorly. Improving
generation performance of open-source models
remains an open question for further exploration.

Appendix C GPT-4V Cases

Utilizing the strong instruction following ability of
GPT-4V, we delved deeper into the possible rea-
sons for the poor performance of current LVLMs.
Inspired by the two processes decoupling from spa-
tial understanding, we prompt GPT-4V to inspect
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Model
In-Domain Out-Domain

MP3D AI2THOR ScanNet
above below left right close far above below left right close far above below left right close far

Generation

MiniGPT-v2 31.22 26.90 24.76 20.48 21.29 15.54 25.60 23.41 18.93 16.19 25.24 13.93 31.00 33.00 30.00 22.50 29.50 22.00
Finetuned MiniGPT-v2 38.62 46.19 22.86 23.33 34.65 25.39 36.23 49.76 28.16 26.67 34.76 28.86 39.00 48.00 27.50 23.00 28.50 33.00

Likelihood

MiniGPT-v2 91.01 76.65 30.95 30.48 25.74 29.53 79.71 62.93 30.58 25.24 32.38 20.9 78.50 73.50 28.00 32.50 27.00 18.00
Finetuned MiniGPT-v2 92.59 91.88 84.29 82.38 71.78 60.10 93.72 88.78 83.50 80.95 50.00 44.77 90.50 89.00 89.50 90.50 56.50 65.50

Table 4: Performance (Acc%) of MiniGPT-v2 and fine-tuned MiniGPT-v2 across different spatial relations.

Question: How are curtain and shelves positioned in relation 

to each other in the image?

Options:

A. The curtain is left of the shelves.

B. The curtain is under the shelves.

C. The curtain is right of the shelves.

D. The curtain is out of the shelves.

Question: From your perspective, which object in the image 

is at the shortest distance?

Options:

A. table.

B. chair.

C. sculpture.

D. fireplace.

Figure 7: Data samples from Matterport3D.

Question: What is the spatial arrangement of pan and pepper 

shaker in the image concerning each other?

Options:

A. The pan is left of the pepper shaker.

B. The pan is blocking the pepper shaker.

C. The pan is inside the pepper shaker. 

D. The pan is right of the pepper shaker.

Question: Which object from the list is situated at the largest 

distance from your point of view within the image?

Options:

A. potato.

B. bowl.

C. pot.

D. bin.

Figure 8: Data samples from AI2-THOR.

whether object localization or spatial relationships
determination becomes a bottleneck. As shown in
Figure 10, the GPT-4V not only makes mistakes in
object positioning, but also misjudge their spatial
relationship when successfully localizing the ob-
jects involved. In the first case (left part), GPT-4V
mistakenly positions the clock in top left corner to
the top right corner, further leading to the incor-
rect selection of option with the word "right". In
the second case (right part), GPT-4V successfully
locates the positions of all object referred in the
question, but incorrectly choose the pillow as the
nearest object rather than the bed. The case study
demonstrate the potential room for improvement in

Question: How are television and shelf positioned in relation 

to each other in the image?

Options:

A. The television is right of the shelf.

B. The television is under the shelf.

C. The television is above the shelf.

D. The television is left of the shelf.

Question: Which object from the list is situated at the shortest 

distance from your point of view within the image?

Options:

A. window.

B. lamp.

C. curtain.

D. clothes.

Figure 9: Data samples from ScanNet.

both two processes.
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System: Assume you are a viewer seeing current observation. You are supposed to understand the spatial relationships among 

several objects. The spatial relationships should be described in the viewer's perspective. 

You need to select the option to answer the question below: 

Question: In the image, how do the positions of 

television and clock interact with each other?

Options: 

(A) The television is under the clock. 

(B) The television is outside the clock. 

(C) The television is blocking the clock. 

(D) The television is at the right side of the clock.

1. Please first describe the position of 

television and clock respectively in the image. 

2. Please choose the option to answer the 

question above with the objects' positions 

determined in the previous step.

1. In the image, the television is situated near the bottom left corner. The 

clock is visible on the wall closer to the top right corner, above and to 

the right of the television.

2. Based on the positions determined in the previous step, the correct 

option is: (D) The television is at the right side of the clock.

Question: Which object, in relation to your 

current position, holds the nearest placement 

in the image?

Options: 

(A) Pillow. (B) Headboard. 

(C) Door. (D) Bed.

1. Please first describe the position of pillow, 

headboard, door and bed respectively in the 

image. 

2. Please choose the option to answer the 

question above with the objects' positions 

determined in the previous step.

1. In the image, the pillow is positioned on the bed, closest to the bottom 
left of the frame. The headboard is directly behind the pillow, attached to 
the bed. The door is located across the room, near the center of the image 
in the background. The bed is situated in the foreground of the image, 
occupying most of the bottom half of the visual field.

2. To answer the question, the pillow (A) is the nearest object in relation to 
the current position, as it is the closest to the camera's perspective at the 
bottom left of the image.

Figure 10: Case study of GPT-4V on our benchmark. It not only makes mistakes in object positioning, but also
misjudge their spatial relationship when successfully localizing the objects involved. The text in red means the
wrong answers generated by GPT-4V.
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