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Abstract

Zero-shot cross-lingual spoken language un-
derstanding (SLU) can promote the globaliza-
tion application of dialog systems, which has
attracted increasing attention. While current
code-switching based cross-lingual SLU frame-
works have shown promising results, they (i)
predominantly utilize contrastive objectives to
model hard alignment, which may disrupt the
inherent structure within sentences of each lan-
guage; and (ii) focus optimization objectives
solely on the original sentences, neglecting the
relation between original sentences and code-
switched sentences, which may hinder contex-
tualized embeddings from further alignment.

In this paper, we propose a novel framework
dubbed REPE (short for Representation-Level
and Prediction-Level Alignment), which lever-
ages both code-switched and original sentences
to achieve multi-level alignment. Specifically,
REPE introduces optimal transport to facilitate
soft alignment between the representations of
code-switched and original sentences, thereby
preserving structural integrity as much as possi-
ble. Moreover, REPE adopts multi-view learn-
ing to enforce consistency regularization be-
tween the prediction of the two sentences, align-
ing them into a more refined language-invariant
space. Based on this, we further incorporate a
self-distillation layer to boost the robustness of
REPE. Extensive experiments on two bench-
marks across ten languages demonstrate the
superiority of the proposed REPE framework.

1 Introduction

Spoken language understanding (SLU) serves as a
fundamental component in dialog systems, which
involves two tasks: intent detection to classify the
intent of user utterances and slot filling to extract
useful semantic concepts (Qin et al., 2021; Zhu
et al., 2024; Dong et al., 2023a). Recently, massive
efforts based on the joint training paradigm (Xing
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and Tsang, 2022, 2023; Cheng et al., 2023b; Dong
et al., 2023b; Zhuang et al., 2024) have shown su-
perior performance in English. Nonetheless, the
dependency on extensive labeled training data con-
strains their applicability to low-resource languages
with little or no training data (Dong et al., 2023c),
thus hindering the globalization application of di-
alog systems. Towards this goal, zero-shot cross-
lingual SLU gains increasing attention.

Due to the unavailability of low-resource
languages (Upadhyay et al., 2018), code-
switching (Qin et al., 2020) has been developed
to reduce the dependency on machine translation.
Technically, it employs bilingual dictionaries to
randomly select some words in the sentence to be
replaced by their counterparts in other languages.
In line with this, numerous zero-shot cross-lingual
SLU methods have been proposed (Qin et al.,
2022; Liang et al., 2022; Cheng et al., 2023a),
yielding promising results. Among them, Qin
et al. (2022) incorporated contrastive learning to
achieve fine-grained cross-lingual transfer. Based
on this, Liang et al. (2022) further proposed a
multi-level contrastive learning framework for
explicit alignment of utterance-slot-word structure.
Recently, Cheng et al. (2023a) integrated with
auxiliary task and curriculum learning, obtaining
state-of-the-art (SOTA) performance.

Despite the promising progress, we discover ex-
isting methods suffer from two main issues: (i)
Existing methods (Liang et al., 2022; Qin et al.,
2022) employed token-to-token hard contrastive
learning objectives to model explicit alignment,
potentially disrupting the inherent structural infor-
mation of sentences, such as inherent phrases or
collocations specific to certain languages. (ii) They
primarily focus on optimizing objectives based on
original sentences, while the correlation between
original sentences and code-switched counterparts
is ignored, which may lead to the loss of some
interactive information and hinder contextualized
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embeddings from further alignment.
In this paper, we propose a novel framework

dubbed REPE to tackle the above two issues. For
the first issue, we resort to optimal transport
(OT) (Peyré et al., 2019) to adaptively model the
alignment between the representations of original
sentence and code-switched counterpart. In con-
trast to token-to-token hard contrastive learning,
our REPE adaptively considers contextual repre-
sentations through the alignment matrix, preserv-
ing the syntactic structure as much as possible.
For the second issue, we construct two views
from the multilingual pre-trained model (mPLM):
the prediction of original and code-switched sen-
tences. By employing multi-view learning (Li
et al., 2018), we seek to establish concordance
between these two views by minimizing the Kull-
back–Leibler (Kullback and Leibler, 1951) (KL)
divergence, which encourages similar words across
different languages to align into a shared latent
space. To improve the robustness of the model
and prevent over-confidence, we further introduce
a self-distillation layer which minimizes KL diver-
gence between the current prediction and the previ-
ous one. Experimental results on two benchmarks
across ten languages demonstrate that our proposed
REPE significantly outperforms previous methods
and achieves new SOTA performance, and further
analysis verifies the advantages of our REPE.

2 Method

This section introduces the REPE for zero-
shot cross-lingual spoken language understand-
ing (SLU), which comprises representation-level
alignment (§2.2), prediction-level alignment (§2.3)
and self-distillation (§2.4). Figure 1 shows the
overview of the proposed REPE framework.

2.1 Task Description

As previously discussed in §1, SLU in dialog sys-
tems contains two subtasks: intent detection and
slot filling. Since the two subtasks are highly cor-
related (Goo et al., 2018), it is common to adopt
a joint SLU model that can capture shared knowl-
edge. Formally, given an input sentence x in a tar-
get language, zero-shot cross-lingual SLU means
the joint model is trained in a source language
dataset, e.g., English, and directly applied to the
target language datasets, e.g., Chinese:

(oI ,oS) = f(x), (1)
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Figure 1: Overview of our proposed REPE.

where f(·) is the joint model; oI and oS denotes an
intent label and a slot sequence. Note that multiple
target languages are considered, while only English
serves as the source language in our setting.

2.2 Representation-Level Alignment

In existing zero-shot cross-lingual SLU studies,
a bunch of works (Liang et al., 2022; Qin et al.,
2022) have employed contrastive learning to ex-
plicitly align code-switched sentences with origi-
nal sentences. However, this token-to-token hard
alignment disrupts the inherent structure of lan-
guages (Zhu et al., 2023). Therefore, we intro-
duce optimal transport (OT) (Peyré et al., 2019)
to facilitate soft alignment at the representation
level, which aims to find a mapping that transi-
tions probability from one distribution to another
with a minimized cost. The OT problem considers
two point sets A = {αi}ni=1 and B = {βi}mi=1,
and a transport cost matrix C with components
C[i,j] = c(αi, βj) specifying the cost of aligning a
pair of points. The goal of OT is to compute a map-
ping or an alignment matrix Q that pushes the prob-
ability mass of A toward that of B, while minimiz-
ing the sum of costs weighted by the alignments:
LC =

∑
[i,j]C[i,j]Q[i,j], where the alignment ma-

trix Q can be determined using certain OT solution
algorithm (e.g., relaxed OT (Kusner et al., 2015),
Sinkhorn-Knopp (Sinkhorn and Knopp, 1967) and
IPOT (Xie et al., 2020)).

In this work, we denote the original and
corresponding code-switched sentence as x =
{w1, w2, . . . , wL} and x′ = {w1, w

′
2, . . . , wL},

where w′
i means the replaced source language to-

ken by target languages. For a sample x and its
code-switched sentence x′, the multilingual pre-
trained language model (mPLM) will produce two
different representations h,h′ (prepended [CLS]
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and appended [SEP]). Then, we treat h and h′ as
two point sets and assume each token is uniformly
distributed. The cost matrix C is obtained by com-
puting the cosine distance between contextualized
representations in h and h′. As for the solutions,
we use IPOT in this work to obtain the alignment
matrix Q, which improves the training speed with-
out degrading the performance as shown in §4.1.
The final alignment matrix Q̂ is computed by:

Q̂[i,j] = norm(Q[i,j]), (2)

where norm(·) denotes row normalization, which
constrains the values to lie between 0 and 1. The
value Q̂[i,j] = 1 indicates the extent of alignment
between hi and h′

j . In this manner, the result-
ing alignment matrix is used as weak supervision
to encourage soft alignment between original and
code-switched sentences. The training loss for
representation-level alignment is defined as:

LRLA = −
∑

[i,j]

Q̂[i,j] log(σ(1−C[i,j])), (3)

where σ denotes the sigmoid function, and 1−C[i,j]

denotes the consine similarity between hi and h′
j .

2.3 Prediction-Level Alignment
For intent detection task, we then feed the whole
sentence representations of hCLS and h′

CLS into a
classification layer (decoderI ):

PI
x = softmax(WIhCLS + bI), (4)

PI
x′ = softmax(WIh′

CLS + bI), (5)

where PI
x and PI

x′ are intent probability distribu-
tions from the original and code-switched sentence,
respectively; WI and bI are intent-specific learn-
able parameters.

For slot filling task, we similarly feed each hid-
den state h[1:−1] and h′

[1:−1] into a classification
layer (decoderS):

PS
x = softmax(WSh[1:−1] + bS), (6)

PS
x′ = softmax(WSh′

[1:−1] + bS). (7)

The learning objective is to train the classifier
to match predicted labels of the original sentence
with the ground truth, thus the intent detection loss
LI and slot filling loss LS are defined as:

LI = CE(PI
x,P

I), (8)

LS =
1

L

L∑

i=1

CE(PS
[x,i],P

S
i ), (9)

where CE(·) denotes cross-entropy, PI and PS
i de-

notes the intent ground truth label and slot ground
truth label of i-th token.

On the other hand, we hope the output pro-
duced by the decoderI and decoderS are language-
invariant. Toward this goal, we leverage multi-view
learning (Li et al., 2018) to exploit prediction-level
alignment from multiple views, which usually con-
tain complementary insights.

Concretely, we consider two distinct views:
the probability distribution of original and code-
switched sentences. Then, we strive to establish a
consensus between these two views, ensuring that
the predicted distributions across both two views
for each subtask should be as closely aligned as
possible:

LPLA = KL(PI
x′ ||PI

x)︸ ︷︷ ︸
Intent PLA

+KL(PS
x′ ||PS

x)︸ ︷︷ ︸
Slot PLA

, (10)

where KL(·) denotes Kullback-Leibler diver-
gence (Kullback and Leibler, 1951) to measure
the difference between two distributions.

2.4 Self-distillation

To enhance the stability of alignment at both the
representation and prediction levels, we introduce a
self-distillation (SD) layer to improve the model’s
robustness. Self-distillation minimizes KL diver-
gence between the current prediction and the previ-
ous one (Yun et al., 2020). Specifically, we denote
Pt

x as the probability distribution of the input x
predicted by the model at the t-th epoch, respec-
tively. The whole SD loss LSD is combined with
its intent- and slot-specific losses expressed as:

LSD = KL(P[I,t−1]
x ||P[I,t]

x )︸ ︷︷ ︸
Intent SD

+
1

L

L∑

i=1

KL(P
[S,t−1]

[x,i] ||P[S,t]

[x,i])

︸ ︷︷ ︸
Slot SD

,

(11)

where P
[I,t]
x denotes the probability distribution of

intent, P[S,t]
[x,i] of slot at i-th token. Note that P[I,0]

x

denotes the one-hot vector of the intent label and
P

[S,0]
[x,i] denotes the one-hot vector of the slot label.
Finally, we train the proposed REPE with a com-

bination of the proposed objectives jointly:

L = LI + LS + LRLA + LPLA + LSD. (12)

3 Experiments

We show the details of the datasets and implemen-
tation settings in Appendix §A.1 and §A.2.

155



Model
MixATIS++ MTOP

Intent(Acc)↑ Slot(F1)↑ Overall(Acc)↑ Intent(Acc)↑ Slot(F1)↑ Overall(Acc)↑
CoSDA (Qin et al., 2020) 90.87 68.08 43.15 88.61* 76.85* 58.02*
LAJ-MCL (Liang et al., 2022) 92.41 78.23 52.50 - - -
GL-CLEF (Qin et al., 2022) 91.95 80.00 54.09 88.92* 79.84* 61.12*
SoGoGL (Zhu et al., 2023) 92.69 81.64 57.02 - - -
FC-MTLF (Cheng et al., 2023a) 93.01 81.65 57.29 - - -
REPE (Ours) 94.17† 82.89† 58.65† 89.46† 80.53† 63.08†

Table 1: Main results on MixATIS++ and MTOP. Results with * are from our re-implementation. Results marked
with † significantly (p = 0.05) improve over all others using the bootstrap confidence interval (Dror et al., 2018).

Model
MixATIS++ MTOP

Intent(Acc)↑ Slot(F1)↑ Overall(Acc)↑ Intent(Acc)↑ Slot(F1)↑ Overall(Acc)↑
REPE (Ours) 94.17 82.89 58.65 89.46 80.53 63.08
w/o RLA 88.55↓5.62 80.43↓2.46 52.32↓6.33 83.59↓5.87 77.85↓2.68 56.56↓6.52

w/o PLA 90.28↓3.89 80.86↓2.03 53.36↓5.29 85.08↓4.38 78.28↓2.25 57.21↓5.87

w/o Intent PLA 92.11↓2.06 82.05↓0.84 55.67↓2.98 87.16↓2.30 79.62↓0.91 59.95↓3.13

w/o Slot PLA 92.32↓1.85 81.77↓1.12 56.11↓2.54 87.30↓2.16 79.15↓1.38 60.23↓2.85

w/o SD 92.30↓1.87 81.87↓1.02 56.42↓2.23 87.21↓2.25 79.49↓1.04 60.61↓2.47

w/o Intent SD 93.09↓1.08 82.28↓0.61 57.31↓1.34 88.20↓1.26 79.88↓0.65 61.69↓1.39

w/o Slot SD 93.25↓0.92 82.05↓0.84 57.55↓1.10 88.29↓1.17 79.60↓0.93 61.87↓1.21

Table 2: Ablation study. RLA: representation-level alignment. PLA: prediction-level alignment. SD: self-distillation.

3.1 Main Results
The performance comparison of the proposed
REPE framework and baselines are shown in Ta-
ble 1, from which we have the following observa-
tions: (i) Our proposed REPE outperforms base-
lines on both datasets, setting new SOTA in zero-
shot cross-lingual SLU tasks, confirming its effec-
tiveness. (ii) Statistical tests confirm that REPE’s
superiority over baselines is significant across eval-
uation metrics. (iii) REPE shows notable gains in
accuracy, likely due to soft alignment at the rep-
resentation level and further refinement at the pre-
diction stage, enhanced by a self-distillation layer
that improves cross-lingual transfer. (iv) REPE’s
greater improvement on MixATIS++ is likely be-
cause it handles more languages (9 vs. 6) with
greater diversity, challenging cross-task transfer.
Its success comes from robust multilingual repre-
sentations and a self-distillation module.

3.2 Ablation Study
We conduct a set of ablation experiments to verify
the advantages of our work from different perspec-
tives. From the results in Table 2, we observe that:
(i) The removal of representation level alignment
(“w/o RLA”) sharply reduces the performance in all
evaluation metrics and across both datasets. This
indicates that contrasted with hard contrastive learn-

ing objectives, employing OT-based soft alignment
enhances the quality of representations, which fa-
cilitates superior cross-language transfer and pre-
serves the intrinsic structural information within
respective languages more effectively. (ii) The re-
moval of prediction level alignment (“w/o PLA”)
leads to considerable performance degradation.
This implies that performing multi-view learning
can facilitate the alignment of predictive informa-
tion between the original and code-switched sen-
tences, thereby enhancing the complementarity of
information. Furthermore, removing either intent
PLA or slot PLA (“w/o Intent, Slot PLA”) results
in a decline in overall performance to varying de-
grees, demonstrating the effectiveness of different
submodules. (iii) In addition, “w/o SD, Intent SD
and Slot SD” indicate varying degrees of perfor-
mance reduction, which proves the effectiveness
of self-distillation in our REPE. Given the subjec-
tivity in intent and slot annotation across different
languages, our REPE employs self-distillation to
mitigate the effects of noisy labels and curb over-
confidence, which provides a partial solution.

4 Method Analysis

We further provide insights into the effectiveness
of our model by comparing different OT solutions
and the potential of leveraging complementary per-
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Model MixATIS++ MTOP Speed
(Acc)↑ (Acc)↑ (s)↓

Sinkhorn-Knopp 58.71 63.12 45
Relaxed OT 58.48 62.87 30
REPE (Ours) 58.65 63.08 34

Table 3: Overall accuracy and speed using different OT
solutions. Speed: the average training time per epoch.

Model MixATIS++ MTOP
(Acc)↑ (Acc)↑

ORG + CS (Ours) 58.65 63.08
ORG + TRANS 56.12 60.14
ORG + CS + TRANS 60.37 65.09

Table 4: Overall accuracy using different learning views.
ORG: original sentence. CS: code-switched sentence.
TRANS: translation of original sentence.

spectives for robust cross-lingual representation.

4.1 Impact of OT Solution

In the proposed REPE, we use normalized IPOT
to learn the soft alignment between representations
of original and code-switched sentences. In this
subsection, we compare REPE with other types
of OT. From the results in Table 3, we can see
Relaxed OT (Kusner et al., 2015) compromises ac-
curacy for increased training speed, whereas the
Sinkhorn-Knopp (Sinkhorn and Knopp, 1967) in-
curs significant training time due to its pursuit of
exact solutions. In contrast, the OT solution in our
REPE achieves a compromise between the two, en-
hancing training efficiency while delivering perfor-
mance comparable to that of the Sinkhorn-Knopp.

4.2 Impact of Learning Views

In this subsection, we add the third view called
TRANS to explore the potential of PLA, which is
the translation of the original sentence by a ma-
chine translation system1 trained on Europarl2 cor-
pus. From the results in Table 4, we observe that
the translated sentences further enhance the REPE’s
performance by providing an additional perspec-
tive. The translated sentence compensates for the
limitations of code-switching, which can occasion-
ally disrupt semantic coherence. Conversely, code-
switching introduces more language-independent
information compared to the translated sentences.
Consequently, the model can learn more robust

1https://github.com/facebookresearch/fairseq
2https://statmt.org/europarl/

(a) (b)

…

…

… … … …

…

…

Figure 2: Visualizations of the cosine similarity matrix
of the contextualized representations obtained from GL-
CLEF and our REPE. (zoom-in for better view)

cross-lingual representations by leveraging these
complementary perspectives. However, incorporat-
ing a complex translation system may be excessive,
as large parallel data may not be available for all
languages. In a nutshell, our proposed REPE re-
mains straightforward and efficient, which is more
suitable for low-resource languages.

4.3 Visualization

To qualitatively demonstrate the superior soft align-
ment and preservation of syntactic information by
the proposed REPE framework, we present an ex-
ample from the MixATIS++ dataset in Figure 2. It
is evident that GL-CLEF achieves commendable
representations through contrastive learning for in-
dividual tokens, it fails to capture fixed expressions
such as “make a stop”. In contrast, our REPE

effectively maintains contextual structural infor-
mation, successfully recognizing fixed expressions
like “would like” and “make a stop”.

5 Conclusion

This work presents REPE, a novel framework for
zero-shot cross-lingual SLU. REPE utilizes OT to
achieve soft alignment between representations of
original and code-switched sentences to preserve
structural information within languages. Besides,
REPE introduces multi-view learning to predictions
of original and code-switched sentences for further
alignment and self-distillation to boost the perfor-
mance. Extensive experiments on two benchmarks
show that our REPE outperforms previous models
and achieves new SOTA performance.

Limitations

The proposed REPE framework’s limitations in-
clude the following: (i) The REPE’s performance
may be affected by the quality of bilingual dictio-
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naries used for code-switching. (ii) The effective-
ness of the framework is also tied to the quality of
the underlying multilingual pre-trained language
model, which may not represent all languages
equally well. (iii) The soft alignment achieved
through optimal transport is an approximation and
may not always be perfect. The self-distillation
layer, while enhancing robustness, could poten-
tially lead to overfitting if not carefully calibrated.

Ethics Statement

The focus of this article is on a novel framework
which leverages both code-switched and original
sentences to achieve multi-level alignment, and our
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tive social impact or violations of ethical review.
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A Dataset and Implementation Details

A.1 Datasets
Following previous works, we conduct experiments
on two benchmark datasets: MixATIS++ (Xu et al.,
2020) and MTOP (Li et al., 2020). MixATIS++
consists of 9 languages including English (en),
Spanish (es), Portuguese (pt), German (de), French
(fr), Chinese (zh), Japanese (ja), Hindi (hi), and
Turkish (tr). MTOP consists of 6 languages includ-
ing English (en), German (de), French (fr), Spanish
(es), Hindi (hi), and Thailand (th). The statistics of
MixATIS++ and MTOP are shown in Table 5 and
Table 6, respectively.

Language Utterances Intent Slot
#Train #Valid #Test types types

hi 1,440 160 893 17 75
tr 578 60 715 17 71
others 4,488 490 893 18 84

Table 5: Statistics of MultiATIS++.

A.2 Implementation Details
Training Settings For a fair comparison, we
leverage mBERT (base) (Kenton and Toutanova,
2019) as mPLM (Due to space limitations, results
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Utterances (Train&Valid&Test) Intent Slot
en de fr es hi th types types

22,288 18,788 16,584 15,459 16,131 15,195 117 78

Table 6: Statistics of MTOP.

on XLM-R will included in the final version) to
encode both original and code-switched sentences.
Adam (Kingma and Ba, 2014) is utilized as the opti-
mizer with a learning rate of 3e-6. When construct-
ing code-switched sentences, bilingual dictionaries
of MUSE (Lample et al., 2018)3 are adopted for
code-switching the same as (Qin et al., 2022; Liang
et al., 2022) for a fair comparison. Following the
zero-shot setting, we use en training set and code-
switching set for model training and en validation
set for checkpoint saving. We report the average
score on the test set of 5 runs with different seeds.
We conduct all the experiments on one NVIDIA
Tesla P100 GPU.

Evaluation Metrics Following previous
works (Qin et al., 2022; Zhu et al., 2023), we
evaluate the performance of intent prediction using
accuracy (Acc), slot filling using F1 score (F1),
and sentence-level semantic frame parsing using
overall accuracy (Acc). Higher is better for all
metrics.

3https://github.com/facebookresearch/MUSE
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