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Abstract

Retrieval augmented generation (RAG) ex-
hibits outstanding performance in promoting
the knowledge capabilities of large language
models (LLMs) with retrieved documents re-
lated to user queries. However, RAG only
focuses on improving the response quality of
LLMs via enhancing queries indiscriminately
with retrieved information, paying little atten-
tion to what type of knowledge LLMs really
need to answer original queries more accurately.
In this paper, we suggest that long-tail knowl-
edge is crucial for RAG as LLMs have already
remembered common world knowledge during
large-scale pre-training. Based on our observa-
tion, we propose a simple but effective long-tail
knowledge detection method for LLMs. Specif-
ically, the novel Generative Expected Calibra-
tion Error (GECE) metric is derived to mea-
sure the “long-tailness” of knowledge based on
both statistics and semantics. Hence, we re-
trieve relevant documents and infuse them into
the model for patching knowledge loopholes
only when the input query relates to long-tail
knowledge. Experiments show that, compared
to existing RAG pipelines, our method achieves
over 4x speedup in average inference time and
consistent performance improvement in down-
stream tasks.

1 Introduction

Large language models (LLMs), equipped with
retrieval augmented generation (RAG), perform
well in various tasks (Izacard et al., 2023; Cheng
et al., 2023; Shao et al., 2023). RAG retrieves
supplement knowledge by retrievers and enhances
prompts for LLMs by retrieved documents, in or-
der to generate more accurate contents (Borgeaud
et al., 2022; Cheng et al., 2023; Shao et al., 2023).
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Figure 1: Comparison between different RAG strategies
over the NQ dataset (Kwiatkowski et al., 2019).

However, previous RAG works concentrate on im-
proving the task performance, without fine-grained
process of knowledge (Wang et al., 2023a; Trivedi
et al., 2023). In this case, redundant computation
is performed on well-learned common knowledge,
which does not require further enhancement. There-
fore, more consideration should be given to long-
tail knowledge that LLMs really need, which rarely
occurs during pre-training (Kandpal et al., 2023). 1

In the literature, RAG can be roughly divided
into two categories: (1) Once Retrieval. Wang et al.
(2023a); Cheng et al. (2023); Shi et al. (2023) re-
trieve external knowledge just once by different
retrievers and enhance the model with recalled re-
lated content for more effective generation. They
treat all queries equally and do not model the fa-
miliarity of different queries to LLMs. (2) Iterative
Retrieval. Shao et al. (2023); Feng et al. (2023);
Asai et al. (2023) construct multi-step retrieval-
then-augmentation process to generate accurate re-
sults by synergistic feedback of LLMs. Yet, as
shown in Figure 1, augmenting LLMs with com-
mon knowledge that the models do not need results

1Note that Long-tail knowledge is in low individual sample
frequencies but high aggregated quantities, which implies a
certain amount of significance (Jansen, 2007).
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in low efficiency and redundant computation. To
our knowledge, there is a lack of research on the
use of long-tail knowledge for RAG.

Building upon our observation, we explore the
role of long-tail knowledge in RAG. We suggest
that long-tail knowledge is crucial for RAG and
propose an improved RAG pipeline. Specifically,
to measure the “long-tailness” of knowledge in
terms of LLMs, we largely extend Expected Cali-
bration Error (ECE) for classification tasks (Aimar
et al., 2023; Zhong et al., 2021; Xu et al., 2021),
and propose Generative Expected Calibration Er-
ror (GECE). It leverages METEOR (Banerjee and
Lavie, 2005) and the output probability of LLMs
to characterize “long-tailness”, which considers
both continuous gradient-based semantics and dis-
crete frequency-based statistics. Based on GECE,
our pipeline retrieves relevant documents and per-
forms RAG only when user queries relate to long-
tail knowledge. Our approach outperforms current
RAG pipelines, providing a 4x speedup in infer-
ence and improved performance in retrieval tasks.

2 Related Work

2.1 Retrieval Augmentation

The augmentation stage of RAG can be divided
into three stages: pre-training, fine-tuning, and in-
ference. Atlas (Izacard et al., 2023) is a retrieval-
augmented pre-trained LLM and works well in few-
shot settings. Borgeaud et al. (2022); Wang et al.
(2023a) retrieve neighbor-related, chunk-grained
knowledge from memory and inject the knowledge
during the pre-training stage. Cheng et al. (2023);
Lin et al. (2023); Shi et al. (2023) fine-tune both
the retriever and the generator synergistically and
boost each other mutually. Shao et al. (2023); Feng
et al. (2023); Trivedi et al. (2023) insert knowl-
edge at the inference stage by iterative guiding
with frozen retrievers and LLMs. These methods
introduce knowledge without detecting knowledge
“long-tailness” and redundancy.

2.2 Long-Tail Processing

Zhao et al. (2023); Yao et al. (2024); Zheng et al.
(2023) design repeat-sampling, under-sampling,
and other strategies to access the unbalanced prob-
lem. They concentrate on classification tasks and
consider less about the recent popular tendency of
text generation tasks. Liang et al. (2023); Zhou et al.
(2023); Wang et al. (2024) leverage compositional
operation to synthesize head and tail instances to-

gether by attention, graph-connection, and other
fusion mechanisms. Wang et al. (2023c); Li et al.
(2023); Xu et al. (2023) import extra features to tail
classes for patching the demand of more informa-
tion. To our knowledge, existing works touch less
on distinguishing whether the instance is long-tail
or not because of the existence of labeled training
datasets.

3 Preliminaries

Traditional works rely on text frequencies to define
whether the instance is long-tail or not; thus, low-
frequency texts tend to be classified into long-tail
classes. For LLMs, computing text frequencies of
previously unknown user queries is by no means an
easy task. As in (Aimar et al., 2023; Zhong et al.,
2021; Xu et al., 2021), Expected Calibration Er-
ror (ECE) provides a new perspective to measure
“long-tailness”. ECE measures how well a model’s
estimated probabilities match true (observed) prob-
abilities (Guo et al., 2017). In the calculation of
ECE, the confidence of each instance is allocated
to a specific interval and obtained by the model
predicted probability. The accuracy is determined
by the comparison of the predicted label and the
ground truth. The absolute margin between confi-
dence and accuracy of each instance represents the
calibration degree. The expected calibration degree
of the whole dataset indicates the reliance of the
model. Formally, ECE can be formulated as:

ECE =

B∑

i=1

nbi

N
|acc(bi)− conf(bi)| (1)

where i denotes i-th bin, N is the total instance
count of the dataset, acc(bi) and conf(bi) repre-
sent the accuracy and confidence of the bin bi, and
nbi is the instance number of the bin bi. B is the
count of bins in the interval of [0, 1]. In our work,
we extend ECE for NLP, particularly for the LLM
text generation scenario.

4 Methodology

4.1 Metric-based Long-tailness Detection
As long-tail knowledge is crucial for RAG, we
propose the GECE metric to detect the instance
“long-tailness”. Here, we transform the traditional
ECE formula with METEOR (Banerjee and Lavie,
2005) and average prediction probability:

• Accuracy in ECE is to measure the agree-
ment between prediction and ground truth. In
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the generative scenario, we utilize METEOR
(Banerjee and Lavie, 2005) to measure coher-
ence and relevance between predicted candi-
dates and ground truth.

• Confidence in ECE is the predicted probability
produced by the model itself. Similarly, we
employ the average token probability output
by LLMs.

Moreover, to enhance our metric with long-tail
detection abilities, we further integrate the follow-
ing two factors, which assist us to further separate
common and long-tail instances apart:

• Average word frequency, as word frequency
is a basic indication of long-tail texts.

• Dot product between the mean gradient of
the total dataset and the gradient of a specific
instance is leveraged to evaluate the discrep-
ancy (Chen et al., 2022). This is because the
gradient of a long-tail instance has a large
disparity with the mean gradient of the total
dataset, and vice versa.

From the above analysis, we construct GECE as:

GECE =
|M(pred, ref)− 1

n

∑n
i=1 p(ti)|

α · [E(▽ins) · ▽ins]
(2)

where pred and ref represent the generated text
and the referenced ground truth, respectively.
M(pred, ref) is the METEOR score (Banerjee
and Lavie, 2005). The average token probability
is formulated as 1

n

∑n
i=1 p(ti) where p(ti) denotes

the i-th token’s probability produced by LLM, and
n is the token sequence length. For the denomina-
tor part, α is the average word frequency. We can
see that a long-tail instance has a smaller α value
and hence its reciprocal will be larger. In addition,
▽ins is the gradient w.r.t. the current instance, and
E(▽ins) is the mean gradient of the total dataset.
To obtain the gradient, we run a forward and a back-
ward pass only through fine-tuning the LLM using
the dataset. We can see that a long-tail instance
has a smaller gradient ▽ins, compared to the mean
score of the dataset, and thus obtains a smaller dot
product E(▽ins) · ▽ins.

Larger GECE value implies larger degree of
long-tailness. For example, if we apply GECE
to the query of NQ “Who was named African foot-
baller of the year 2014”, the value is 34.6. In con-
trast, for a long-tail, more professional NQ query
“Who has played Raoul in The Phantom of the
Opera”, the GECE value is 112.7.

4.2 Improved RAG Pipeline
As an extension to vanilla RAG pipelines, we only
retrieve documents related to long-tail queries from
the data source, disregarding common instances.
The retrieval process is implemented by a dense
passage retriever to retrieve related WikiPedia2 doc-
uments. For long-tail instances, we input the query
concatenated with the recalled related documents
to LLMs for answer attainment. For common in-
stances, we only input the query itself to LLMs.

5 Experiments

In this section, we briefly describe the experimen-
tal results and leave detailed experimental settings
in Appendix A, and supplementary experimental
results in Appendix B.

5.1 Datasets
NQ (Kwiatkowski et al., 2019) is a large-scale ques-
tion answering dataset and constructed by human-
labeled answers from Wikipedia web pages. We
utilize the short answer type of NQ in this paper.
TriviaQA (Joshi et al., 2017) is a relatively com-
plex dataset containing syntactic and lexical dif-
ferences between questions and answers. MMLU
(Hendrycks et al., 2021) is a typical model evalua-
tion benchmark that includes various-domain sam-
ples and it ranges in multiple degrees of difficulty
from primary to advanced professional level.

5.2 Baselines
Llama2-7B (Wang et al., 2023d) is a pre-trained
LLM with large-scale parameters and performs
well on most benchmarks. IRCoT (Trivedi et al.,
2023) introduces an interleaves retrieval approach,
exploiting Chain-of-Thought (CoT) to assist the
retrieval and leveraging the retrieval results to sup-
port CoT. SKR (Wang et al., 2023b) utilizes LLMs
to distinguish whether the query can be resolved
or not, and only retrieve the knowledge out of the
model’s self-knowledge. SELF-RAG (Asai et al.,
2023) introduces special reflection tokens to help
the model to determine the retrieval requirement
and retrieved content quality. FILCO (Wang et al.,
2023d) refines the retrieved context by a filter that
is trained by string inclusion, lexical overlap rela-
tionship and conditional cross-mutual information.
ITER-RETGEN (Shao et al., 2023) proposes a mu-
tual promotion manner via the retrieval-augmented
generation and generation-augmented retrieval.

2https://www.wikipedia.org/
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Model Type Rouge-1 Bleu-4 Speed-up10 15 20 Avg. 10 15 20 Avg.

Llama2-7B w/o GECE 41.2 42.2 42.9 42.1(±0.2) 7.19 7.31 7.40 7.30(±0.22) 1.0 ×
w GECE 41.9 43.1 43.7 42.9(±0.2) 7.27 7.40 7.48 7.38(±0.15) 2.1 ×

IRCoT w/o GECE 45.5 45.8 46.3 45.9(±0.3) 7.52 7.73 7.70 7.65(±0.31) 1.0 ×
w GECE 45.7 46.4 46.5 46.2(±0.3) 7.56 7.75 7.74 7.68(±0.26) 6.7 ×

SKR w/o GECE 46.3 47.0 47.2 46.8(±0.2) 7.57 7.65 7.79 7.67(±0.11) 1.0 ×
w GECE 46.9 47.1 47.6 47.2(±0.1) 7.66 7.78 7.85 7.76(±0.09) 5.5 ×

SELF-RAG w/o GECE 42.1 43.3 43.7 43.0(±0.3) 7.12 7.35 7.44 7.30(±0.28) 1.0 ×
w GECE 44.8 45.0 45.3 45.0(±0.2) 7.48 7.63 7.62 7.58(±0.22) 3.3 ×

FILCO w/o GECE 43.6 44.2 44.7 44.2(±0.3) 7.46 7.48 7.52 7.49(±0.17) 1.0 ×
w GECE 43.7 44.5 44.8 44.3(±0.2) 7.49 7.51 7.53 7.51(±0.15) 2.4 ×

ITER-RETGEN w/o GECE 45.5 46.4 47.1 46.3(±0.2) 7.63 7.75 7.78 7.72(±0.31) 1.0 ×
w GECE 46.5 47.0 47.3 46.9 (±0.1) 7.76 7.81 7.82 7.80(±0.26) 7.0 ×

Table 1: Experimental results on NQ. T-tests show the improvements are statistically significant with p < 0.05.

Model Type Rouge-1 Bleu-4 Speed-up10 15 20 Avg. 10 15 20 Avg.

Llama2-7B w/o GECE 22.5 24.6 24.9 24.0(±0.3) 6.68 6.92 7.17 6.92(±0.18) 1.0 ×
w GECE 23.3 25.2 25.8 24.8(±0.3) 6.74 6.99 7.25 6.99(±0.32) 2.2 ×

IRCoT w/o GECE 25.4 26.0 26.5 26.0(±0.2) 7.11 7.24 7.28 7.21(±0.24) 1.0 ×
w GECE 25.9 26.7 26.7 26.4(±0.1) 7.18 7.26 7.31 7.25(±0.17) 6.2 ×

SKR w/o GECE 26.6 27.2 27.5 27.1(±0.2) 7.51 7.57 7.62 7.57(±0.09) 1.0 ×
w GECE 27.1 27.3 27.6 27.3(±0.2) 7.54 7.60 7.63 7.59(±0.15) 6.0 ×

SELF-RAG w/o GECE 26.3 26.2 26.7 26.4(±0.2) 7.46 7.47 7.51 7.48(±0.19) 1.0 ×
w GECE 26.4 26.5 27.0 26.6(±0.1) 7.55 7.55 7.56 7.55(±0.26) 3.5 ×

FILCO w/o GECE 25.8 25.9 26.5 26.1(±0.3) 7.43 7.49 7.50 7.47(±0.16) 1.0 ×
w GECE 26.3 26.6 26.8 26.6(±0.1) 7.48 7.52 7.54 7.51(±0.23) 2.3 ×

ITER-RETGEN w/o GECE 26.8 26.7 27.2 26.9(±0.1) 7.36 7.41 7.57 7.45(±0.12) 1.0 ×
w GECE 27.1 27.3 27.4 27.3(±0.2) 7.49 7.55 7.59 7.54(±0.13) 7.3 ×

Table 2: Experimental results on TriviaQA. T-tests show the improvements are statistically significant with p < 0.05.

5.3 General Results

We validate our method on the three datasets and
the performance is listed in Table 1, Table 2, and
Table 4. Due to space limitation, we move the
result of MMLU to Appendix B.1. From the re-
sults, we can observe that: (1) All baseline models
have better process speed when the data is filtered
with GECE. Especially, the iterative methods are
accelerated significantly (i.e., ITER-RETGEN and
IRCoT). This improvement owes to the filter oper-
ation of GECE and the fine discrimination of the
need or not for extra augmentation. (2) With GECE,
the task performance is also promoted by introduc-
ing less noise of the common instances. (3) As the
number of augmentation documents increases, i.e.,
from 10 to 20, the performance is boosted because
of the substantial knowledge supplementation.

NQ TriviaQA MMLU
Rouge-1 Rouge-1 Accuracy

Ours 43.7 25.8 86.4
Item Replacement 42.3 24.2 84.8

w/o Statistics only 43.5 25.7 86.0
w/o Semantics only 41.6 24.9 85.5

Table 3: Results of ablation study.

5.4 Ablation Study

In Table 3, (1) Item Replacement means that we uti-
lize chrF (Popovic, 2015) and TER (Snover et al.,
2006) to replace METEOR, two other metrics for
text generation with the same value scale as ME-
TEOR. The replaced mean results of these two al-
ternative metrics decline, indicating that METEOR
is more accurate. (2) For removing Statistics and
Semantics, we delete the two items outside the
absolute margin of GECE. The dropped scores
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demonstrate the importance of the two indicators.

6 Conclusion

In summary, our research highlights the signifi-
cance of long-tail knowledge to enhance the effi-
cacy of RAG for LLMs. We introduced the Genera-
tive Expected Calibration Error (GECE) to identify
long-tail knowledge, which accelerates the infer-
ence process by more than fourfold in average and
improves performance on downstream tasks with-
out compromising the quality of responses. This
demonstrates the benefits of selectively augment-
ing LLMs with targeted information, paving the
way for more efficient and accurate RAG systems.
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Limitations
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improving the efficiency and accuracy of RAG-
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edge detection method we propose is based on the
GECE metric, which may not capture all dimen-
sions of “long-tailness”. Given that long-tail knowl-
edge can be multi-faceted and context-specific,
there may be instances where our method fails to
detect, leading to suboptimal retrieval results. In
addition, the applicability of GECE to more models
and settings has not been thoroughly investigated.
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tiveness and adaptability across diverse LLMs and
knowledge retrieval scenarios.
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Model Type Accuracy Speed-up10 15 20 Avg.

Llama2-7B
w/o GECE 84.9 85.4 85.5 85.3(±0.3) 1.0 ×
w GECE 85.3 86.1 86.4 85.9(±0.3) 2.4 ×

IRCoT
w/o GECE 87.3 87.8 88.2 87.8(±0.5) 1.0 ×
w GECE 87.4 88.1 88.6 88.0(±0.4) 6.5 ×

SKR
w/o GECE 87.8 89.2 89.6 88.9(±0.1) 1.0 ×
w GECE 89.2 89.6 89.7 89.5(±0.2) 6.3 ×

SELF-RAG
w/o GECE 86.3 87.1 87.5 87.0(±0.4) 1.0 ×
w GECE 87.4 87.9 88.0 87.8(±0.3) 3.1 ×

FILCO
w/o GECE 86.5 86.6 87.1 86.7(±0.2) 1.0 ×
w GECE 86.0 86.9 87.2 86.7(±0.3) 2.2 ×

ITER-RETGEN
w/o GECE 88.7 89.5 89.4 89.2(±0.1) 1.0 ×
w GECE 89.2 89.6 89.8 89.5(±0.2) 7.1 ×

Table 4: Experimental results on MMLU. T-tests show the improvements are statistically significant with p < 0.05.

A Experimental Settings

For a fair comparison, we set baselines to the same
backbone and retriever, i.e., Llama2-7B (Wang
et al., 2023d) and DPR (Karpukhin et al., 2020),
respectively. The utilization of GECE on SKR re-
places the known/unknown judgment with GECE
with other baseline operations set as usual. Our
experiment results are averaged over multiple runs.
The number of retrieved documents by DPR is set
to {10, 15, 20}. The gradient of Equation 2 is ob-
tained from the average gradient of Feed-Forward
Networks (FFN) in 29-32 layers. We categorize the
instances with the top 20% of large GECE values
as long-tail instances and the rest as common in-
stances. The max related document token length is
limited to 512. The temperature hyper-parameter
of Llama2 is assigned as 0.6, top-p is set to 0.9. Our
ablation study is based on the baseline of Llama2-
7B and the setting of 20 retrieved documents.

B Supplementary Experimental Results

B.1 Additional Results on the MMLU Dataset

The results over the MMLU dataset are shown in
Table 4. The conclusion is also consistent with the
results over other datasets, showing the efficacy of
the proposed method.
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Figure 2: Comparison between absence and presence of
statistics and semantics information in GECE.

B.2 Detailed Analysis of Statistics &
Semantics Information

To probe the influence of statistics and semantics
information, we sample 15 common instances and
5 long-tail instances from NQ and plot the GECE
value of the sampled instance in Figure 2. Remov-
ing the statistics and semantics information leads
to mixed and scattered instance distribution. With
the help of the statistics and semantics information,
we can separate common and long-tail instances
apart distinctly.
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