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Abstract

While recent advancements in speech language
models have achieved significant progress, they
face remarkable challenges in modeling the
long acoustic sequences of neural audio codecs.
In this paper, we introduce Generative Pre-
trained Speech Transformer (GPST), a hierar-
chical transformer designed for efficient speech
language modeling. GPST quantizes audio
waveforms into two distinct types of discrete
speech representations and integrates them
within a hierarchical transformer architecture,
allowing for a unified one-stage generation pro-
cess and enhancing Hi-Res audio generation
capabilities. By training on large corpora of
speeches in an end-to-end unsupervised man-
ner, GPST can generate syntactically consistent
speech with diverse speaker identities. Given a
brief 3-second prompt, GPST can produce nat-
ural and coherent personalized speech, demon-
strating in-context learning abilities. Moreover,
our approach can be easily extended to spo-
ken cross-lingual speech generation by incor-
porating multi-lingual semantic tokens and uni-
versal acoustic tokens. Experimental results
indicate that GPST significantly outperforms
the existing speech language models in terms
of word error rate, speech quality, and speaker
similarity. See https://youngsheen.github.
io/GPST/demo for demo samples.

1 Introduction

Speech quantization has emerged as a crucial tech-
nique for speech language models to generate con-
trollable, high-quality speech waveforms (Borsos
et al., 2023b; Lakhotia et al., 2021; Wang et al.,
2023a; Kreuk et al., 2023; Kharitonov et al., 2023;
Borsos et al., 2023a). Specifically, a speech wave-
form can be quantized into two distinct types of
discrete representations: semantic tokens (Lakhotia
et al., 2021) and acoustic tokens (Défossez et al.,

*Work done during an internship at Tencent AI Lab.
†Corresponding author.

2022; Zeghidour et al., 2022). Semantic tokens are
typically obtained by applying the K-means clus-
tering algorithm to the continuous activation space
of self-supervised speech models (Hsu et al., 2021;
Baevski et al., 2020). Notably, GSLM (Lakho-
tia et al., 2021) finds that auto-regressive models
trained on semantic tokens can capture high-level
linguistic content, supporting language modeling
and resynthesis (Polyak et al., 2021). However, se-
mantic tokens fail to retain acoustic details such as
speaker identity, resulting in suboptimal reconstruc-
tion. In contrast, acoustic tokens generated by neu-
ral codec models (Zeghidour et al., 2022; Défossez
et al., 2022) effectively compress speech at low bi-
trates while capturing the nuances of speech wave-
forms. Consequently, a speech language model
can maintain long-term consistency with seman-
tic tokens and produce high-quality synthesis with
acoustic tokens.

However, neural codec models require an ex-
cessive number of codes for high-quality speech
synthesis. For example, EnCodec (Défossez et al.,
2022) generates codec embeddings at 75 Hz for
audio waveforms at 24 kHz. Subsequently, these
codec embeddings are modeled using residual vec-
tor quantization (RVQ), wherein high-quality syn-
thesis typically requires eight or more hierarchical
quantizers with 1024 entries. Therefore, a mere 10-
second waveform results in at least 75× 8× 10 =
6000 codes, which constitutes an excessively long
sequence for language models due to the quadratic
complexity with respect to the sequence length for
calculating self-attention (Vaswani et al., 2017).
Consequently, addressing the trade-off between the
perceptual quality and computational complexity
remains a core challenge for speech language mod-
els.

Recently, some methods have been proposed to
address the issue of lengthy acoustic sequences.
Acoustic tokens inherently possess a hierarchi-
cal structure because of residual vector quantiza-
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tion: tokens from the preceding quantizers restore
acoustic properties such as speaker identity, while
the subsequent quantizers capture finer acoustic
details. Each quantizer is trained to model the
residuals from the previous quantizers. Recent ap-
proaches (Borsos et al., 2023b; Wang et al., 2023a;
Kharitonov et al., 2023) treat the acoustic token
generation process as a multi-stage framework to
avoid learning excessively long sequences simulta-
neously.

In this work, we present Generative Pre-trained
Speech Transformer (GPST), a model that facili-
tates controllable, high-quality speech generation
in single stage. Our approach combines speech
quantization with the architecture of a hierarchi-
cal transformer (Lee et al., 2022b; Yu et al., 2023).
GPST initially models the semantic sequence with
a next token prediction task, followed by modeling
the acoustic sequence with the task of predicting
the next D stack codes. The semantic sequence
serves as a prompt for the acoustic token as a con-
dition. We design a specialized hierarchical archi-
tecture to model the underlying hierarchical struc-
ture of the acoustic sequence, which comprises of
a large global transformer and a small local trans-
former. The global transformer learns the high-
level relationships between the semantic tokens
and the stacked acoustic tokens, while the local
transformer models the hierarchical details in the
stacked acoustic codes. By incorporating semantic
and acoustic tokens within one hierarchical trans-
former, GPST can significantly reduce computa-
tional costs and effortlessly learn the long-term
interactions of semantic tokens and local depen-
dencies among residual codes. Furthermore, we
propose a training technique called “local-drop” to
further improve the training efficiency of Hi-Res
speech generation, which is typically impractical in
current speech language models because of a large
number of residual quantizers. Consequently, our
model can generate high-quality and semantically
coherent speeches in one stage efficiently.

Our main contributions are summarized as fol-
lows.

• We propose a novel generative pre-trained
speech language model GPST that enables
controllable, high-quality speech generation
in a single stage. By integrating semantic to-
kens and acoustic tokens within a hierarchical
transformer, GPST significantly reduces com-
putational costs while efficiently learning the

long-term interactions of semantic tokens and
local dependencies among residual codes si-
multaneously.

• We demonstrate GPST’s capacity not only to
generate coherent speech unconditionally but
also to generate speech while preserving the
speaker’s identity with only a 3-second short
prompt. Experimental results reveal its supe-
riority over existing speech language models
with only 33% parameters.

• To the best of our knowledge, GPST is the first
work that supports spoken multilingual speech
generation and Hi-Res speech synthesis.

2 Related Work

2.1 Discrete Speech Representation
Speech quantization has become a fundamental
technique in speech language modeling (Borsos
et al., 2023b; Kreuk et al., 2023; Wang et al., 2023a;
Kharitonov et al., 2023). Typically, a speech wave-
form can be quantized into two distinct types of dis-
crete representations: semantic tokens and acous-
tic tokens. Benefiting from the development of
self-supervised learning in the field of speech un-
derstanding, Textless NLP (Lakhotia et al., 2021;
Polyak et al., 2021) proposes to model speech
based on HuBERT codes (Hsu et al., 2021) or se-
mantic tokens, which are obtained by applying a
K-means clustering algorithm on the activation hid-
den space of HuBERT. Auto-regressive modeling
of these tokens (Lakhotia et al., 2021) can facilitate
generating syntactically and semantically plausible
speech continuations. SeamlessM4T (Communi-
cation et al., 2023) learns a spoken multi-lingual
SSL model XLSR (Babu et al., 2022) to build a
multi-lingual semantic vocabulary for speech trans-
lation. However, semantic tokens fail to synthesize
the acoustic details in speech such as the speaker’s
identity. Neural audio codecs (Zeghidour et al.,
2022; Défossez et al., 2022) are proposed to quan-
tize speech into stacked codes with residual vector
quantization (RVQ) at low bitrates while preserv-
ing high-quality reconstruction. These acoustic
tokens can capture the details of audio waveforms
as diverse as multi-speaker speech (Borsos et al.,
2023b), music (Agostinelli et al., 2023) and au-
dio effects (Kreuk et al., 2023). In comparison,
the proposed GPST integrates semantic tokens and
acoustic tokens within one model in a single stage,
effectively unifying their strengths.
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2.2 Speech Language Models

Recently, speech language models have achieved
remarkable progress in generating controllable,
high-quality speech waveforms. Among them, Au-
dioLM (Borsos et al., 2023b) introduces acoustic to-
kens into semantic token modeling and proposes a
multi-stage generative framework to model seman-
tic tokens, coarse acoustic tokens, and fine acous-
tic tokens sequentially. SPEAR-TTS (Kharitonov
et al., 2023) extends AudioLM to the TTS task
by training an additional text-to-semantic model.
SoundStorm (Borsos et al., 2023a) speeds up
the generation process of AudioLM by introduc-
ing confidence-based parallel decoding on acous-
tic tokens. VALL-E (Wang et al., 2023a) pro-
poses a multi-stage language model for TTS with
phonemes as input and acoustic tokens as out-
put. VALL-E X (Zhang et al., 2023b) extends
VALL-E to cross-lingual TTS tasks based on a
text-based translation system. SpeechGPT (Zhang
et al., 2023a) conducts further pre-training and
instruction tuning on a speech dataset of seman-
tic tokens, empowering text-based LLMs such as
LLaMA (Touvron et al., 2023) to handle cross-
modal instruction recognition and speech dialogues.
PolyVoice (Dong et al., 2024) proposes a speech
language model trained with text instructions for
speech-to-speech translation. Viola (Wang et al.,
2023b) proposes a multi-task framework built upon
VALL-E to support multiple speech tasks. How-
ever, they are compelled to model acoustic to-
kens in a multi-stage framework due to the high
complexity of learning long acoustic sequences.
The proposed GPST circumvents this limitation by
proposing a hierarchical transformer architecture
that unifies semantic tokens and stacked hierarchi-
cal acoustic tokens within one stage. Concurrently,
a parallel work (Yang et al., 2023) also explores
similar methods in their study.

3 Generative Pre-trained Speech
Language Model (GPST)

In this section, we start with the formulation of
speech language modeling, along with the model-
ing challenges in speech generation. Next, we elab-
orate on our proposed model GPST in detail, fol-
lowed by an efficient training technique for GPST
to train Hi-Res speech model. Additionally, we
discuss various inference modes with in-context
learning.

3.1 Generative Speech Pre-training
Given an audio waveform sequence x ∈ RT ,
we quantize it into the sequence of semantic to-
kens S = (s1, . . . , sT1) ∈ {1, . . . , Ns}T1 and
acoustic tokens A = (a11, . . . , a

D
1 , . . . , a

D
T2
) ∈

{1, . . . , Na}T2×D, with T1, T2 ≪ T . The acoustic
sequence is a two-dimensional matrix and has a
hierarchical structure such that aqt is derived from
the residual of the previous token aq−1

t . The learn-
ing objective of the speech language model can be
auto-regressively factorized as

p(S,A) = p(S)p(A|S)

=

T1∏

t=1

p(st|s<t)

D,T2∏

q,t=1

p(aqt |a≤D
<t , a

<q
t , S)

(1)

A naive approach can unfold the acoustic se-
quence A into a one-dimensional sequence of
length T2 × D in raster-scan order and feed it to
a transformer model. However, T2 × D is typi-
cally a large number, and the transformer would
suffer from the quadratic cost of its self-attention
mechanism.

AudioLM (Borsos et al., 2023b) adopts a three-
stage approach for modeling speech, as depicted in
Figure 1(a). The first stage involves auto-regressive
pre-training on semantic tokens to capture the long-
term temporal structure. Next, the acoustic se-
quence, which is of size T2 ×D, is divided into a
coarse part of size T2 ×D′ and a fine part of size
T3× (D−D′), where D′ is typically much smaller
than D − D′. The fine part is a small subset of
the coarse sequence to reduce the sequence length
since T2 × (D −D′) is still too large. AudioLM
designs two individual transformers to model the
coarse and fine acoustic sequences separately. The
learning objective is approximately factorized as

p(S,A) = p(S)p(A|S)

≈
T1∏

t=1

p(st|s<t; θS)

D′,T2∏

q1,t=1

p(aq1t |a≤D′
<t , a<q1

t , S; θC)

D,T3∏

q2=D′+1,t=1

p(aq2t |a>D′
<t , a<q2

t , a≤D′
≤T3

; θF )

(2)

where q1 ≤ D′ < q2 ≤ D and T3 < T2. The fine
acoustic transformer only models a small subset of
the coarse acoustic tokens to reduce the sequence
length. The learnable parameters θS , θC , θF cor-
respond to three independent transformers respec-
tively.
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Figure 1: The comparison of frameworks for generative speech pre-training. (a) AudioLM is a three-stage model.
(b) VALL-E is a two-stage model. (c) GPST is a one-stage model.

As shown in Figure 1(b), VALL-E (Wang et al.,
2023a) uses phoneme sequences derived from text
with a G2P tool as the condition, rather than se-
mantic tokens. We slightly abuse the notation here
since phonemes serve a similar purpose with se-
mantic tokens. VALL-E also divides the acoustic
token generation process into two stages, where the
acoustic tokens from the first quantizer layer are
generated in an auto-regressive manner while the
subsequent acoustic tokens are generated non-auto-
regressively. Note that VALL-E can not generate
semantically coherent sequences unconditionally
since it does not model p(S). The learning objec-
tive is approximately factorized as

p(A|S) =
D,T2∏

q,t=1

p(aqt |a≤D
<t , a

<q
t , S) ≈

T2∏

t=1

p(a1t |a1<t, S; θAR)

D,T2∏

q=2,t=1

p(aqt |a<q
≤T2

, S; θNAR)

(3)

where θAR, θNAR refer to different models respec-
tively.

The speech language models above are necessi-
tated to split the acoustic generation into a multi-
stage process due to the considerable length of
acoustic sequences.

3.2 Efficient Hierarchical Transformer

Considering the hierarchical structure underlying
acoustic sequence, we propose GPST, a hierarchi-
cal transformer architecture to effectively and effi-
ciently learn the codes extracted by EnCodec. As
shown in Figure 2, GPST is composed of (1) a se-
mantic token extractor that integrates a speech SSL
encoder and a K-means clustering model (Com-
munication et al., 2023), as well as a neural codec

model EnCodec (Défossez et al., 2022), (2) a large
global transformer that contextualizes representa-
tions by applying causal attention over previous
semantic tokens and stacked acoustic tokens, and
(3) a smaller local transformer that takes a con-
textualized hidden state from the global model,
and auto-regressively predicts subsequent acous-
tic codes. We adopt the setting of a large global
module with a small local module to simulate po-
tential applications that use LLMs as the global
module, which we leave for future work. The learn-
ing objective is exactly factorized as

p(S,A) = p(S)p(A|S) =
T1∏

t=1

p(st|s<t; θglobal)

D,T2∏

q,t=1

p(aqt |a≤D
<t , a

<q
t , S; θglobal, θlocal)

(4)

The end-to-end learning process is within one
model in one stage, which mitigates the error prop-
agation issues that can arise in a multi-stage formu-
lation.

Global Transformer. The global transformer is
an Ng layer decoder-only transformer with a causal
mask. It has two types of tokens concatenated into
a single sequence as input. The first type comprises
semantic tokens, which can capture long-term con-
sistency. The second type is the sum of the acoustic
tokens obtained by RVQ

E(st) = Es(st) + PEg(t), for 1 ≤ t ≤ T1

E(at) =

D∑

q=1

Ea(a
q
t ) + PEg(t+ T1), for 1 ≤ t ≤ T2

ht = GlobalTransformer(s1, . . . , sT1 , a1, . . . , aT2),

1 ≤ t ≤ T1 + T2

(5)
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Figure 2: An overview of the framework. The framework is composed of three components: (1) The semantic token
extractor with a speech SSL model and K-means for speech discretization. (2) The acoustic token extractor with
the neural codec model for speech discretization. (3) The proposed GPST model, which is composed of a global
transformer and a local transformer.

where Es and Ea are embedding functions for se-
mantic and acoustic tokens respectively. PEg is a
positional embedding for the global transformer.
We add special tokens at the first position and the
segment boundary of the sequence to inform the
model to switch the generation space.

Local Transformer. The local transformer con-
sists of Nl layers. Given the contextualized hid-
den states ht from the global transformer, the local
transformer auto-regressively predicts D acoustic
codes a1t , . . . , a

D
t at position t

E(aqt ) = Ea(a
q
t ) + PEl(q), 1 ≤ q ≤ D

at = LocalTransformer(ht, a1t , . . . , a
D
t )

(6)

where PEl is a positional embedding for the lo-
cal transformer, which is shared across position
t. GPST is trained to minimize the negative log-
likelihood:

L =

T1∑

t=1

− log p(st|s<t; θglobal)

−
T2∑

t=1

D∑

q=1

log p(aqt |a<q
t , S; θglobal, θlocal)

(7)

Local-drop. The number of residual quantizers
increases when generating Hi-Res speech, which
would cause high computational complexity. We
propose a technique named local-drop to improve
the training efficiency of GPST further. Since the
local transformer only models individual stacks of
acoustic tokens, it has an input shape of (Batch ×
T2, D). The dimension of acoustic sequence length

T2 is unfolded to the first batch dimension, which
means the stack of codes is not attended by self-
attention. We randomly drop some tokens a≤D

t to
decrease the size of the first dimension.

3.3 Inference

Speech language models can generate semanti-
cally coherent speech for unseen speakers with in-
context learning, which is an emerging capability
of auto-regressive pre-trained language models like
GPT (Brown et al., 2020) for zero-shot learning.
Suppose we have the semantic tokens Sp and the
acoustic tokens Ap from the prompt, the seman-
tic tokens St and the acoustic tokens At from the
target. Based on the usage of the prompt, we can
categorize the generation mode into four cases.

Unconditional Generation. In this setting,
we unconditionally generate the semantic tokens,
which are subsequently used as the prefix for acous-
tic generation. The randomly sampled semantic
sequence can generate diverse, syntactically and se-
mantically consistent linguistic content. The acous-
tic tokens vary in speaker identity with the semantic
content serving as a guideline. We provide some
transcription cases in Appendix A.1.

Semantic to Acoustic. In this setting, we use the
ground-truth semantic tokens St as a condition for
acoustic generation, which is similar to the task of
TTS. The generated speech preserves the content
of the spoken sentence while varying in speaker
identity. We also follow SPEAR-TTS (Kharitonov
et al., 2023) and train a toy decoder-only trans-
former named GPST-TTS on the LibriSpeech 960h
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dataset to generate semantic tokens with text as a
condition, supporting the TTS task.

Speaker Identity Transfer. In this setting, we
are interested in the task of voice conversion that
transfers the speaker identity of the prompt speech
into the target speech. The sequence input to
the model is concatenated in the following order
[Sp, St, Ap]. GPST is encouraged to generate sub-
sequent acoustic tokens that share the speaker iden-
tity with Ap while remaining consistent with the
content of St. We find that directly concatenat-
ing linguistically inconsistent Sp and St together
would cause unstable generation around the inter-
face boundary. To address this issue, we propose
artificially inserting a very short silence excerpt
(0.1 second) between Sp and St to explicitly break
the linguistic continuation. In this way, the model
would not struggle to mitigate the discontinuity of
Sp and St and can generate stable speeches.

Acoustic Continuations. Different from the
speaker identity transfer mode, where the prompt
and target are from different utterances, the prompt
of the acoustic continuations mode is the first 3 sec-
onds of the target. The model is asked to generate
the acoustic continuation after 3 seconds.

3.4 Spoken Multilingual Learning
We adopt the multi-lingual XLSR encoder from
SeamlessM4T (Communication et al., 2023) as the
semantic token extractor. The semantic vocabu-
lary of SeamlessM4T naturally supports the multi-
lingual speech representation. For acoustic tokens,
we adopt the pre-trained neural audio codec model
EnCodec (Défossez et al., 2022) as the acoustic
token extractor. Although EnCodec is trained on
the English data, we find that it can synthesize
other languages as well. We take it as the universal
acoustic extractor.

3.5 Efficiency Analysis
Transformer (Vaswani et al., 2017) is criticized for
the quadratic complexity with respect to sequence
lengths during self-attention calculations. Consid-
ering an acoustic matrix A of size T2×D, the naive
approach of unfolding it into a one-dimensional
sequence like AudioLM would result in a computa-
tional complexity of O(NT 2

2D
2), where N is the

number of transformer layers. In contrast, GPST
has Ng global layers and Nl local layers, with the
global transformer dealing with a sequence length
of T2 and the local transformer with a sequence
length of D. Suppose N = Ng +Nl for simplicity.

The overall computational complexity for GPST
is O(NgT

2
2 + NlT2D

2), which is smaller than
O(NT 2

2D
2). Furthermore, self-attention is not the

primary computational cost factor in large trans-
formers. The embedding size and the dimension
of the feedforward network dominate the model’s
overall computational cost (Kaplan et al., 2020). A
forward pass with a large transformer with m non-
embedding parameters on a sequence of length T2

uses roughly 2mT2 FLOPS. Therefore, for GPST
with a global dimension mg and a local dimen-
sion ml, the required FLOPS is 2T2(mg +mlD).
Since ml is typically much smaller than mg, the
FLOPS for GPST is approximately 2T2mg, which
is D times faster than the standard transformer with
2T2Dmg FLOPS.

4 Experiments

4.1 Experiment Setup

4.1.1 Datasets
We follow Borsos et al. (2023b) and use Libri-
Light (Kahn et al., 2020) as the training data which
contains 60K hours of unlabelled speech in English.
We randomly crop 10 seconds out of each audio
clip for training. We choose LibriSpeech test-clean
dataset (Panayotov et al., 2015) for evaluation since
there is no speaker overlap with LibriLight. Follow-
ing Borsos et al. (2023b); Wang et al. (2023a), we
select samples with lengths between 4 and 10 sec-
onds as the test dataset. For the multi-lingual task,
we test in a bi-lingual setting with the tone language
Chinese and non-tone language English for simplic-
ity. We choose LibriSpeech 960h as the English
training data and Aishell-2 1000h (Du et al., 2018)
as the Chinese training data, both of which share
similar sizes. We also test a larger bitrate setting
for GPST-Hi-Res with 16 quantizers, which is not
applicable to other baselines. All experiments are
conducted three times and the average scores are
reported. We describe the implementation details
in Appendix A.2.

4.1.2 Baselines
We choose speech language models GSLM (Lakho-
tia et al., 2021), AudioLM (Borsos et al., 2023b)
and VALL-E (Wang et al., 2023a) as baselines, to-
gether with YourTTS (Casanova et al., 2022) as the
TTS baseline. We notice that SoundStorm (Borsos
et al., 2023a) improves the multi-stage acoustic gen-
eration. However, SoundStorm takes duplicate se-
mantic tokens as the condition, which is an inappro-
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Table 1: Evaluation results of speech generation on LibriSpeech test-clean dataset. ⋆ denotes the WER result of
AudioLM obtained by a Conformer Transducer model, while others are obtained by HuBERT-Large finetuned on
LibriSpeech 960h. AudioLM and SpearTTS use the neural codec model SoundStream (Zeghidour et al., 2022)
while VALL-E and GPST use Encodec (Défossez et al., 2022).

Model WER ↓ SPK ↑ # codec # params

GroundTruth 2.2 0.754 - -

Semantic to Acoustic
GSLM (Lakhotia et al., 2021) 12.4 - - -
AudioLM⋆ (Borsos et al., 2023b) 6.0 - 12 300M+300M
GPST-TTS (ours) 4.3 - 8 182M+190M
GPST (ours) 4.0 - 8 190M
GPST-Hi-Res (ours) 6.4 - 16 207M

Speaker Identity Transfer
YourTTS (Casanova et al., 2022) 7.7 0.337 - -
AudioLM (Borsos et al., 2023b) - 0.460 12 300M+300M
SPEAR-TTS (Kharitonov et al., 2023) - 0.560 3 97M
VALL-E (Wang et al., 2023a) 5.9 0.580 8 165M+172M
GPST (ours) 4.2 0.605 8 190M
GPST-Hi-Res (ours) 5.3 0.587 16 207M

Acoustic Continuations
VALL-E (Wang et al., 2023a) 3.8 0.508 8 165M+172M
GPST (ours) 2.8 0.536 8 190M
GPST-Hi-Res (ours) 3.5 0.529 16 207M

priate setting for other baselines since all the other
models remove the consecutive repetitions, and du-
plicate semantic tokens would reduce the difficulty
of acoustic generation. Also, duplicate semantic
tokens would cause failures in the generation of
semantic tokens (Lakhotia et al., 2021) that limits
the application in speech generation (Kharitonov
et al., 2023) and resynthesis for speech translation
system (Lee et al., 2022a). Therefore, we do not
take SoundStorm for comparison here.

4.1.3 Evaluation Metrics
The synthesized speech should align with the se-
mantic input and match the voice of the prompt.
Therefore, we are interested in the following met-
rics for speech language models: (1) word er-
ror rate (WER), (2) speaker similarity (SPK),
and (3) speech quality (DNSMOS). We employ
the HuBERT-Large (Hsu et al., 2021) model as
the ASR model for English to calculate WER
and Wav2Vec2-XLSR-53 (Baevski et al., 2020)
for Chinese to calculate CER. We take the pub-
licly available speaker verification model WavLM-
TDNN (Chen et al., 2022) to evaluate the speaker
similarity between the prompt and the synthe-

Table 2: The DNSMOS scores of speech quality in
speaker identity transfer.

Model DNSMOS ↑
SPEAR-TTS 3.68
VALL-E 3.87
GPST 3.89
GPST-Hi-Res 4.02

sized speech. We use the MOS estimator DNS-
MOS (Reddy et al., 2021) to estimate the perceived
audio quality of the generated samples. We com-
pare DNSMOS with the examples provided on
VALL-E’s demo page for fairness. The subjec-
tive evaluation MOS is not applicable due to other
models are not open-sourced. Appendix A.3 lists
all the evaluation tools.

4.2 Results and Analysis

LibriSpeech Evaluation. Table 1 and Table 2
summarize the results of different inference modes.
Compared to the baseline models, GPST achieves
the best results in terms of WER, SPK, and DNS-
MOS. In the semantic to acoustic mode, GPST
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(a) (b)

Figure 3: The comparison of mel-spectrograms generated by GPST with (a) 6kbps and (b) 12kbps (Hi-Res). The
harmonic energy in the high-frequency of 12kbps is richer.

Table 3: Evaluation on multi-lingual datasets. We use
WER for En and CER for Zh.

WER/CER SPK

Zh-GroundTruth 26.4 0.453

En 4.1 0.501
Zh 30.2 0.430

Zero-Shot Cross-Lingual Transfer
Zh 33.3 0.417

Table 4: Ablation study of the model architecture. The
model is tested in Acoustic Continuations inference
mode.

Ng +Nl WER↓ SPK↑ Sentences/s↑ #params

11 + 4 3.2 0.531 2.31 190M
10 + 8 3.1 0.532 1.89 190M
9 + 12 2.8 0.536 1.57 190M

reaches the lowest WER score with only 33% pa-
rameters of AudioLM. The quality of semantic to-
kens is constrained due to the use of a toy model
for text-to-semantic generation, resulting in a mi-
nor performance drop of GPST-TTS. We expect
that more training data would further improve the
TTS performance. We also notice a performance
drop in GPST-Hi-Res, which indicates that Hi-Res
speech generation, with more quantizers, is still a
tough task. In the speaker identity transfer mode,
GPST achieves the best scores in all the metrics,
validating that GPST can better transfer the speaker
identity while maintaining the spoken content. It
is worth noting that GPST-Hi-Res gets better DNS-
MOS than GPST, largely because more quantizers
can preserve more acoustic details.

Multilingual Evaluation. Table 3 shows the re-

sults of GPST on multi-lingual datasets. Although
trained on a small dataset, GPST demonstrates
its generalization ability in multi-lingual settings.
Since the Aishell-2 Chinese dataset is noisy, the
CER score is bad even for GroundTruth. How-
ever, GPST can still achieve a score close to the
GroundTruth, which proves the robustness of the
model. We also design a Zero-Shot Cross-Lingual
Transfer for Multi-lingual settings. We adopt the
model trained on English LibriLight only, while
inference is conducted on Chinese Aishell-2 with
Acoustic Continuation mode without any further
training. GPST shows the performance close to
the model especially trained on Chinese Aishell-
2, which demonstrates GSPT’s support for spoken
multi-lingual tasks.

Effect of Model Architecture Settings. We
conduct an ablation study on the number of lay-
ers for the global and local transformer. To match
the parameters of every stage in AudioLM, which
consists of a global transformer with 12 layers, we
adjust the total parameters of the global transformer
and local transformer in GSPT to be approximately
equal. Since the parameters of one global trans-
former layer equals four local transformer layers,
we adopt the setting of (12−x)×Ng+4×x×Nl.
Table 4 shows that increasing the layer number of
the local transformer helps GPST learn acoustic
tokens better, further improving the performance
of acoustic generation. However, the generation
speed is slowed down a little bit as we increase
local transformer layers.

On the Hi-Res Quality. We plot the mel-
spectrograms of the same speech generated by
GPST with 6kbps (8 quantizers) and 12kbps (16
quantizers) respectively in Figure 3. Generally,
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richer harmonic energy in the high-frequency re-
gions indicates higher speech quality. As observed,
the speech generated by GPST with more quantiz-
ers exhibits more details in the mel-spectrogram.

5 Conclusion

We introduce GPST, a generative pre-trained
speech language model that integrates semantic
tokens and acoustic tokens within a hierarchical
transformer architecture, allowing for a unified one-
stage generation process. GPST demonstrates its
capability to generate coherent speech and speaker
identity transfer with in-context learning. Further-
more, we show that GPST can generate Hi-Res
speech and spoken multi-lingual speech as well.

6 Limitations

Our proposed GPST exhibits remarkable capabil-
ities in the speech generation task, which is chal-
lenging for a single model. However, the GPST
model cannot directly synthesize speeches with
text input. Some models (Kharitonov et al., 2023)
have proposed the techniques to enhance the text
to semantic token generation model.

7 Ethics Statement

GPST may present new risks, such as the potential
for malicious actors to impersonate public figures
or commit fraud. To mitigate such risks, it is pos-
sible to watermark the generated speech that is
invisible to humans but algorithmically detectable.
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A Appendix

A.1 Unconditional Generation Cases
We provide some transcription cases of uncondi-
tional generation in Table 5.

A.2 Implementation Details
We leverage the XLSR v2 (Babu et al., 2022) model
released by SeamlessM4T (Communication et al.,
2023) to extract semantic tokens, resulting in a rate
of 50 tokens per second. We remove the consec-
utive duplicate semantic tokens since such dupli-
cates would cause generation failures (Lakhotia
et al., 2021). We adopt the neural audio codec
model EnCodec (Défossez et al., 2022) to extract
acoustic tokens, which produce codes at 75 Hz. We
choose 8 hierarchical quantizers as the default set-
ting as VALL-E, leading to 75 × 8 = 600 tokens
per second. We also test a larger bitrate setting
for GPST-Hi-Res with 16 quantizers, which is not
applicable to other baselines.

Each layer of the global transformer in GPST
has 16 attention heads, an embedding size of 1024
with a feed-forward layer dimension of 4096. Each
layer of the local transformer is smaller than the
global transformer, with 8 attention heads, an em-
bedding size of 512, and a feed-forward layer di-
mension of 2048. We set the probability of a local
drop to 0.5 only for Hi-Res generation. The mod-
els are trained on LibriLight using 16 NVIDIA
TESLA V100 32GB GPUs with a batch size of
64 for 1M steps, which takes about 1 week. The
multi-lingual models are trained for 400K steps.
We use the Adam optimizer with a learning rate
of 0.0005 and an inverse square root learning rate
decay schedule with 10K warm-up steps. To pre-
vent over-fitting, we use label smoothing of 0.1 for
training. All experiments are conducted using the
FAIRSEQ toolkit (Ott et al., 2019).

A.3 Open-Sourced Tools
ASR HuBERT-Large: https://github.com/
facebookresearch/fairseq/tree/main/
examples/hubert

ASR Wav2Vec2-Large-XLSR-53-Chinese-zh-
cn-gpt: https://huggingface.co/ydshieh/
wav2vec2-large-xlsr-53-chinese-zh-cn-gpt
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Table 5: Transcriptions of some unconditional generation samples.

SO WE ARRIVED DRIVING ON FURTHER BUT THEN THE WORSE PRESENTS
RECEIVED HIM TO BED END OF CHAPTER SEVENTEEN THE RECORDING
BY GRACE SANDERS

SPEECH OF THE PRESIDENT IS WITHOUT DIFFICULTY AND WITHDRAWAL
AND FROM THAT DEATH OF THE OFFICER HIS KING SAYS BEFORE HE
WENT UNTO THE PAPERS AND THE

IS FAIR IN THE BACK ROOM AND BETTER WIND TO THE FARTHER SEA
THAN THIS BUT STILL AS TO THE SEA SHE FELT HIM IN CRY AND
THEN SAID THAT MAN COMING

TO THE SAME SOULS AS TO STAND ONWARDS WE SAW HER SUNSET FORTH
TO OUR HANDS TOGETHER WITH ONE ANOTHER THE TALES OF PRAYER
AND TALENTS INSTINCTIVE

THE SIZE OF THE BRANCH OF THE WINTER UNTIL IT WAS TOLD THAT
MOSES CALLED POULTRY CORPORATION TO THE FEMALE SO THAT ALL
THE SAVAGES ENBODIES IN THE BODIES OR IN THE BLISS IF

Speaker verification WavLM-TDNN: https:
//github.com/microsoft/UniSpeech/tree/
main/downstreams/speaker_verification

DNSMOS: https://github.com/microsoft/
DNS-Challenge/tree/master/DNSMOS

VALL-E demo page more samples:
https://www.microsoft.com/en-us/
research/project/vall-e-x/vall-e

SeamlessM4T: https://github.com/
facebookresearch/seamless_communication

EnCodec: https://github.com/
facebookresearch/encodec
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