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Abstract

Grammatical error correction (GEC) is a task
dedicated to rectifying texts with minimal edits,
which can be decoupled into two components:
detection and correction. However, previous
works have predominantly focused on direct
correction, with no prior efforts to integrate
both into a single model. Moreover, the ex-
ploration of the detection-correction paradigm
by large language models (LLMs) remains un-
derdeveloped. This paper introduces an inte-
grated detection-correction structure, named
DeCoGLM, based on the General Language
Model (GLM). The detection phase employs
a fault-tolerant detection template, while the
correction phase leverages autoregressive mask
infilling for localized error correction. Through
the strategic organization of input tokens and
modification of attention masks, we facilitate
multi-task learning within a single model. Our
model demonstrates competitive performance
against the state-of-the-art models on English
and Chinese GEC datasets. Further experi-
ments present the effectiveness of the detection-
correction structure in LLMs, suggesting a
promising direction for GEC.

1 Introduction

Grammatical error correction (GEC) is a task
focused on automatically rectifying grammati-
cal errors in human-written text (Wang et al.,
2021). GEC models are applied in language
learning (Katinskaia and Yangarber, 2021; Caines
et al., 2023; Kaneko et al., 2022), enhancing au-
tomatic speech recognition (Liao et al., 2023),
and aiding in text data labeling (Sun et al.,
2023). The two primary approaches in GEC are
Sequence-to-Sequence (Seq2Seq) and Sequence-
to-Edit (Seq2Edit). Without detection, Seq2Seq
treats GEC as the direct generation for correct text,
providing high flexibility (Junczys-Dowmunt et al.,
2018; Ge et al., 2018). On the other hand, Seq2Edit
views GEC as a sequence labeling task for edit la-

   Finally, I will have high salary when I am Journalist.Source

   Finally, I will have [MASK] high salary when I am [MASK].Masked

   Finally, I will have a high salary when I am a  journalist.Corrected

Localized Error Correction

      a             a  journalistPieces

Detect and Apply Template

Figure 1: Detection and correction process of
DeCoGLM. Detection and Correction are incorporated
in one General Language Model (GLM).

bels, showcasing high precision by controlled edits
(Awasthi et al., 2019; Stahlberg and Kumar, 2020;
Omelianchuk et al., 2020). The advent of large
language models (LLMs) has further expanded
Seq2Seq model capabilities (Ouyang et al., 2022;
Zeng et al., 2022). Despite their unprecedented
performance in various tasks (Chang et al., 2024),
LLMs underperform than low-parameter models in
GEC due to the over-correction phenomenon (Qu
and Wu, 2023; Coyne et al., 2023).

While the detection-correction structure can har-
ness the strengths of both Seq2Seq and Seq2Edit,
most existing works merely utilize detection as
additional input for Seq2Seq models (Yuan et al.,
2021a; Li et al., 2022, 2023a). Moreover, all pre-
vious detection-correction systems comprise sep-
arate models (Chen et al., 2020). In contrast, we
introduce a novel GEC model, named DeCoGLM,
based on the General Language Model (GLM) (Du
et al., 2022). This model employs an integrated
detection-correction structure to detect errors and
generate localized corrections. As depicted in Fig-
ure 1, the error detection phase employs a template
rule to construct masked text based on detection
results. During the correction phase, the model
leverages the autoregressive mask infilling capabil-
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ity of the GLM to generate correct text pieces for
erroneous parts, thereby saving inference time. To
incorporate both detection and correction within a
single model, we devise a multi-task learning ap-
proach, organizing input text with attention mask
adjustments. Results on English and Chinese GEC
benchmarks demonstrate that our proposed model
surpasses previous detection-correction models and
is comparable to state-of-the-art (SOTA) models.
To further explore the potential of applying the
detection-correction structure to LLMs, the detec-
tion and correction phases are separated, termed
DeGLM and CoGLM respectively. Our proposed
single system, comprising a small detection model
and an LLM corrector, outperforms other Seq2Seq
LLMs. In summary, our primary contributions are:

• A novel GEC model, DeCoGLM, which incor-
porates a detection-correction structure based
on the GLM.

• The design of a multi-task training method
that integrates detection and correction within
a single model.

• The exploration of using LLMs for GEC,
which involves deploying large error correc-
tion models with the support of small detec-
tion models.

2 Related Work

2.1 Sequence-to-Sequence GEC

Seq2Seq models (Lewis et al., 2019; Raffel et al.,
2020) have demonstrated high performance in GEC
(Junczys-Dowmunt et al., 2018; Choe et al., 2019;
Zhao et al., 2019; Katsumata and Komachi, 2020).
Techniques such as data synthesis (Stahlberg and
Kumar, 2021; Grundkiewicz et al., 2019), train-
ing schedule (Lichtarge et al., 2020; Bout et al.,
2023), and decode reranking methods (Kaneko
et al., 2019; Zhang et al., 2023; Zhou et al., 2023)
have been incorporated into previous Seq2Seq
GEC models. SOTA model architectures typically
supplement Seq2Seq models with additional infor-
mation (Li et al., 2023a; Zhang et al., 2022b; Fang
et al., 2023a). However, a significant drawback of
Seq2Seq GEC models is the inference cost, as these
models generate tokens sequentially and waste time
copying source tokens (Sun et al., 2021).

As the latest Seq2Seq models, LLMs have
emerged as a new paradigm for natural language
processing (NLP) tasks following the introduction

of GPT-3 and ChatGPT (Brown et al., 2020). Nev-
ertheless, recent studies have shown that LLMs
underperform current SOTA models on both En-
glish and Chinese GEC benchmarks (Coyne et al.,
2023; Loem et al., 2023; Qu and Wu, 2023; Li
et al., 2023b). Existing datasets and evaluation
methods (Bryant et al., 2017) favor minimum edits
as the rule for correction. However, GPT models
often produce over-corrected sentences with un-
necessary edits (Fang et al., 2023b; Coyne et al.,
2023). In contrast to the Seq2Seq GEC methods
that directly perform overall generation, our work
only focuses on localized error correction, which
not only saves inference time but also mitigates the
over-correction phenomena in LLMs.

2.2 Sequence-to-Edit GEC

Seq2Edit methods generate edit operations for
ungrammatical sentences (Stahlberg and Kumar,
2020). For instance, LaserTagger (Malmi et al.,
2019) predicts token-level edit operations, which
has been adopted in subsequent methods like PIE
and GECToR (Awasthi et al., 2019; Omelianchuk
et al., 2020). As a representative model, GECToR
predicts four classes of edits and grammatical trans-
formations, achieving high-precision results. Lai
et al. (2022) further enhances it by addressing its
deficiencies in multi-round correction. However,
Seq2Edit methods necessitate intricate designs for
edits, which are not language-agnostic. In con-
trast, our proposed model retains a limited set of
language-agnostic edit operations and can flexibly
conduct edits by autoregressive generation.

2.3 Detection-Correction GEC

The GEC task can be divided into two processes:
detection and correction (Rei and Yannakoudakis,
2016; Bell et al., 2019). Prior research incorporates
detection results as supplementary information for
Seq2Seq correction models (Kaneko et al., 2020;
Yuan et al., 2021b; Li et al., 2023a). The methods
proposed by Mallinson et al. (2020) and Yakovlev
et al. (2023) employ the Masked Language Model
(MLM) (Devlin et al., 2018) to obtain corrections,
which are constrained by mask number. Chen et al.
(2020) introduces error span detection and correc-
tion to address the GEC problem, which allows
for flexible corrections while maximizing time ef-
ficiency. Building on this, we further integrate the
detection and correction tasks into a single GLM
model, enabling mutual benefits between the two
tasks, which is not achieved by previous works.
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block position IDs are utilized for marking the original positions of text pieces and the inner order of tokens.

3 Methods

Our proposed model leverages the design of the
GLM. Given a sentence with MASK tokens, GLM
utilizes autoregressive blank infilling (Du et al.,
2022) to generate a corresponding segment for each
MASK position. These segments are termed as text
pieces. This section describes how GLM is utilized
to integrate detection and correction into a single
model, as depicted in Figure 2. Additionally, the
design of multi-task training is also outlined here.

3.1 Error Detection
Drawing from the four edit classes by Omelianchuk
et al. (2020), we utilize token-level detection labels
that do not include any specific word or grammar.
Given that the mask-infilling process can generate
empty text pieces, the REPLACE and DELETE
operations are consolidated into the ERROR label.
Consequently, the detection labels comprise KEEP
(K), ERROR (E), and INSERT (I). Given the
tokens of source text as:

xs = x1sx
2
s . . . x

n
s (1)

, the objective of error detection is to predict detec-
tion labels derived by the alignment between the
source text and the target text (correct text):

d = d1d2 . . . dn, di ∈ L = {K,E, I} (2)

Detection Model The proposed model begins
by extracting the representations of the source text
tokens by GLM as Equation 3. The final detection
label predictions are generated through a detection
head, implemented by a feed-forward network FN
and softmax function, as shown in Equation 4:

hs = h1sh
2
s . . . h

n
s = GLM(xs) (3)

p
(
d̂i = l|xs

)
= Softmax(FN

(
his
)
), l ∈ L (4)

Fault-tolerant Template The source text xs is
transformed into masked text xm based on the de-
tection labels using the following template rules.
Each continuous interval containing only ERROR
labels is replaced with a MASK token. For each
position of INSERT, a MASK token is inserted.
The form of masked text is shown in Equation 5:

xm = xs1m1xs2m2 . . .mkxsk+1
, (5)

where mi is the i-th MASK token introduced in
xs, and xsi denotes the i-th correct subinterval
of source text. If all the labels are KEEPs, the
source text is directly output as the corrected result.
Despite potential inaccuracies in detections, our
model can tolerate a certain degree of false posi-
tives. In the instance where the correct token is
identified as ERROR or INSERT, the corrector can
mitigate such errors by either restoring the original
text piece or generating an empty text piece.
Aggressive Detection Utilizing the fault-tolerant
template enables more aggressive detection, em-
phasizing the recall of ERROR and INSERT. Focal
Loss (Lin et al., 2020) is used as the loss function
to tackle the issue of imbalanced classification be-
cause the majority of tokens correspond to KEEP
labels. The training objective for error detection is
given by Equation 6:

ℓD = −αD (1− pθ (d|xs))
γ log (pθ (d|xs)) (6)

where θ represents the model parameters and γ is
a hyper-parameter set to 2. αD denotes the corre-
sponding weight factors for detection labels. To
strengthen aggressive error detection, αK for the
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KEEP category is set to 1, while αEI = 2 is set for
the ERROR and INSERT categories.

3.2 Localized Error Correction
In the training data, detection labels are derived
from the alignment of sequences between the
source text xs and the target text y. The corre-
sponding masked text xm can be formulated in
Equation 5 with xsi representing the i-th aligned
segment. For each unaligned position replaced with
mi, the correct text piece is denoted as ci. Conse-
quently, the target text can be represented as:

y = xs1c1xs2c2 . . . ckxsk+1
(7)

Leveraging the GLM pretrained by autoregres-
sive blank infilling task, we fine-tune the GLMs for
localized error correction. The probability distri-
bution prediction for the j-th token in the i-th text
piece ci is given in Equation 8:

p
(

ˆci,j = w|xs,xm, c<i, c
<j
i

)
=

GLMH
(
xs,xm, c<i, c

<j
i

)
, w ∈ V

(8)

where GLMH denotes the GLM model with its
original token prediction head, w is any token in
the vocabulary, and c<j

i refers to all tokens with
index < j in text piece ci.

3.3 Multi-Task Organization
Multi-task Learning. The cross-entropy loss
function, shown in Equation 9, is used as the train-
ing objective for error correction task:

ℓC = −
∑

i,j

log
(
pθ

(
ci,j |xs,xm,c<i,c<j

i

))
(9)

For multi-task learning, we utilize a weighted
loss function to enable the model to concurrently
acquire error detection and correction capabilities.
The training objective for this DeCoGLM model is
to minimize the loss function given by:

ℓ = ℓ̄C + wD ℓ̄D (10)

where ℓ̄C and ℓ̄D are the token-level averages of ℓC
and ℓD respectively. The detection loss weight wD

is set to 10 to balance the scales of the two losses.
For the impact of the loss weights on the model’s
performance, please refer to Section 5.2.
Attention Mask To unify the two tasks into a sin-
gle model, source text xs, masked text xm, and text
pieces c are concurrently fed into the GLM model.
The prediction of detection labels is conditioned
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Figure 3: Attention Mask Example. The source text is
xs = x1

sx
2
sx

3
sx

4
s, and the target text is y = c11x

3
sx

4
sc

1
2c

2
2.

If the cell at row i and column j is colored, it indicates
that the i th token can pay attention to the j th token. The
region enclosed by dashed lines indicates the attention
removed compared to the original GLM.

on xs, while the autoregressive text prediction re-
lies on xs, xm, and all previously generated text
pieces. Therefore, the attention from xm to xs is
eliminated to prevent detection from using xm and
c, with other part adhering to the original GLM
attention mask. This is depicted in Figure 3.
Two Stage Supervised Fine-tuning Given that
error detection is not infallible, the input during the
correction phase may contain inaccuracies, with
a distribution deviation from the training samples
constructed with right detection labels. This issue
is also observed in other detection-correction works
(Chen et al., 2020; Li et al., 2023a). To address
this, we add a second supervised fine-tuning stage
(SFT2), which employs a detection-enhanced ap-
proach: initially, all detection results on the training
set are obtained using the model trained with data
constructed by perfect detection (SFT1). Then, new
training data is generated by augmenting the origi-
nal labels with the fault detection results, leading to
a secondary training of the SFT1 model. Examples
of the two-stage training samples are provided in
Table 7 in the appendix.

3.4 Separate Models
The detection and correction phases can be imple-
mented using two separate GLMs, named DeGLM
and CoGLM respectively in this paper. Their train-
ing objectives are defined by Equation 6 and 9,
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respectively. This decomposition facilitates the
customization of distinct models for the detection
and correction phases. However, in scenarios with
limited computational resources, the Parameter-
Efficient Fine-Tuning (PEFT) (Fu et al., 2023) is
ineffective for DeCoGLM due to the significant
disparities between the sequence labeling task of
the error detection module and the mask-infilling
pretraining task of GLM. To apply our approach
to LLMs, we propose training a large version of
CoGLM using the detection-enhanced method, sim-
ilar to the second stage fine-tuning discussed in
Section 3.3.

3.5 Detection Control

During inference, the model needs to predict detec-
tion labels for the source text first, then transform
it into masked text. Subsequently, both of them
are input together for generating text pieces. This
decoupling allows us to regulate the correction pro-
cess using the probabilities of the three detection
labels, thereby harnessing the model’s potential to
enhance benchmark performance. Three control
modes are designed:
KEEP Threshold (δ): Any prediction with KEEP
probability exceeding δ is directly set to KEEP.
ERROR Lower Bound (ϕe): Any ERROR prob-
ability prediction falling below ϕe is directly set
to 0, thereby precluding the prediction of ERROR
when pe < ϕe.
INSERT Lower Bound (ϕi): Any INSERT proba-
bility prediction below ϕi is directly set to 0, pre-
cluding the prediction of INSERT when pi < ϕi.

The three inference hyper-parameters can be de-
termined using a greedy grid search based on the
metrics on the validation set. We discuss them in
Section 5.5.

4 Experiments

4.1 Datasets and Evaluation

For the English GEC task, we evaluate the perfor-
mance on the CoNLL-14 test set (Ng et al., 2014)
using the M2 Scorer (Dahlmeier and Ng, 2012),
and on the BEA-19 test set (Bryant et al., 2019) us-
ing the ERRANT scorer (Bryant et al., 2017). The
model is pretrained on synthetic dataset C4-200M
(Stahlberg and Kumar, 2021) and fine-tuned on
the cleaned Lang8 dataset (CLang8) (Rothe et al.,
2021). For the large version of CoGLM model,
we utilize smaller datasets including FCE (Yan-
nakoudakis et al., 2011), NUCLE (Dahlmeier et al.,

2013), and W&I+LOCNESS (Bryant et al., 2019)
for fine-tuning, following Zhou et al. (2023). The
BEA-19 dev set is used for model selection.

For the Chinese GEC task, we synthesize pre-
training data from the People’s Daily corpus1 us-
ing rule-based insertion, replacement, and deletion.
The models are fine-tuned on the Chinese Lang8
dataset (Zhao et al., 2018) and the HSK dataset,
following Zhang et al. (2022a), and on the FCGEC
training set, respectively. The models are evaluated
on MuCGEC and FCGEC test sets using ChER-
RANT (Zhang et al., 2022a; Xu et al., 2022). Fur-
ther details are provided in Appendix A.

4.2 Model Settings

Proposed Models The open-source GLMs are
utilized as the backbones for both DeCoGLM
and separate models. The detection head com-
prises a feed-forward network with a single
hidden layer, the dimension of which matches
that of the GLM hidden state. The English
base model employs glm-roberta-large, while
glm-large-chinese is used as the Chinese base
model. The large CoGLM models for error correc-
tion, denoted as CoGLM (10B), uses glm-10b and
glm-10b-chinese as backbones. Due to the re-
striction of computational resources, large models
are fine-tuned on the relatively small fine-tuning
dataset mentioned in Section 4.1 by LoRA (Hu
et al., 2021), without datasets for pretraining. Refer
to Appendix B.2 for detailed configurations.
Comparison with Previous Works In the main
experiment, we present the results of single sys-
tems trained on parallel data without any reranker.
GECToR (Omelianchuk et al., 2020) represents
the Seq2Edit models, while BART and T5 (Lewis
et al., 2019; Raffel et al., 2020) are SOTA back-
bones of Seq2Seq GEC methods. SynGEC (Zhang
et al., 2022b) incorporates syntactic information
into the BART model. The performance of GEC-
ToR and BART model on the Chinese dataset is
the reproduced result under our data configuration,
and the results for BART on the English dataset
are reported by Zhang et al. (2022b). We also
present the results of four models involving the
detection-correction process. SpanDC (Chen et al.,
2020) comprises a span detector and a generator.
Multi-Encoder (Yuan et al., 2021a) encodes error
categories as auxiliary information. GEC-DePend
(Yakovlev et al., 2023) integrates error detection

1https://github.com/shibing624/pycorrector
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English Chinese
CoNLL-14 test BEA-19 test MuCGEC test FCGEC test

Single System Parameters P R F0.5 P R F0.5 P R F0.5 P R F0.5

Primary Results
GECToR 110M 77.5 40.1 65.3 79.2 53.9 72.4 46.72 27.14 40.83 46.11 34.35 43.16
BART 400M 73.6 48.6 66.7 74.0 64.9 72.0 41.90 29.48 38.64 38.38 37.62 38.23
T5 770M - - 66.1 - - 72.1 - - - - - -
SynGEC 110M+400M 74.7 49.0 67.6 75.1 65.5 72.9 54.69 29.10 46.51 - - -
SpanDC 125M+209M 72.6 37.2 61.0 70.4 55.9 66.9 - - - - - -
Multi-Encoder 110M+107M 71.3 44.3 63.5 73.3 61.5 70.6 - - - - - -
GEC-DePenD 253M 73.2 37.8 61.6 72.9 53.2 67.9 - - - - - -
TemplateGEC 125M+770M 74.8 50.0 68.1 76.8 64.8 74.1 - - - - - -
DeGLM-CoGLM 335M+335M 75.1 49.0 67.8 76.4 63.4 73.4 47.22 30.08 42.39 52.95 39.20 49.48
DeCoGLM 335M 75.1 49.4 68.0 77.4 64.6 74.4 45.01 31.77 41.55 55.75 37.91 50.96

Resource-restricted LLMs
ChatGLM2 6B 61.72 45.58 57.64 56.89 58.73 57.25 31.35 21.39 28.68 44.30 17.08 33.59
ChatGLM3 6B 60.63 47.50 57.46 59.48 60.37 59.65 30.62 21.60 28.26 41.06 19.93 33.88
LLaMA2/Baichuan 7B 67.24 51.84 63.47 66.16 66.12 66.15 36.47 25.18 33.47 51.83 24.08 42.12
LLaMA2/Baichuan 13B 68.43 55.30 65.33 69.46 69.28 69.42 37.91 26.90 35.04 56.65 27.11 46.52
DeGLM-CoGLM 335M+10B 70.58 52.65 66.08 72.80 67.57 71.69 47.48 29.92 42.49 56.09 38.02 51.22

GPT-4 Zeroshot
ZeroShot - 59.64 58.32 59.37 55.69 70.44 58.13 36.36 27.71 34.22 18.83 4.08 10.93
+DeGLM - 66.40 54.81 63.70 64.92 69.42 65.78 32.68 30.90 32.31 25.60 16.98 23.24

Table 1: Results on English and Chinese GEC benchmarks. The parameter counts of the backbones of each system
are shown in the second column. Under restricted resource, LLMs are fine-tuned using smaller datasets by LoRA.
The highest metric is indicated in bold, while the second highest metric value is underlined.

with correction by the MLM. TemplateGEC (Li
et al., 2023a) uses the output of the GECToR model
as supplementary information for Seq2Seq models.
Comparison with LLMs For the LLMs treating
GEC as a Seq2Seq task, we fine-tune ChatGLM2,
ChatGLM3 (Du et al., 2022), and Llama2 (Tou-
vron et al., 2023) with LoRA. As Llama2 is not
optimized for Chinese, the results on the Chinese
dataset are obtained using the Baichuan (Yang et al.,
2023) models.
GPT-4 We report the zero-shot performance of
GPT-4 on four datasets with prompting. We at-
tempt to incorporate detection results in the form
of masked text into the prompt of GPT-4, aiming
to enhance the performance on GEC tasks.

4.3 Main Results

Table 1 presents the main results. According to
the last two rows of primary results, the integrated
detection-correction model outperforms the sep-
arate models in most cases in terms of the F0.5

metric, despite having only half the parameter
count. This suggests that the designed multi-task
learning mutually reinforces detection and correc-
tion, which will be further discussed in Section
5.1. DeCoGLM achieves the highest or second-
highest F0.5 performance on three datasets, demon-
strating comparable performance to SOTA GEC
models. Considering the model parameter counts,
our model outperforms all previous works with

the detection-correction process, indicating that the
well-designed detection-correction structure can
achieve the SOTA level in GEC, a field typically
dominated by Seq2Seq models. Furthermore, the
inference speed of the localized error correction
is significantly faster than the globalized error cor-
rection of the Seq2Seq method, with the details
provided in Appendix C. These results also under-
score the potential of GLM in the GEC field.

Despite limitations of data quantity and fine-
tuning methods, fine-tuning LLMs with over 10B
parameters yields results approaching SOTA level,
suggesting that LLMs can reduce the need for ex-
tensive supervised data for fine-tuning. The strat-
egy of small detection models assisting large mod-
els in localized correction yields improved perfor-
mance across all datasets, primarily due to higher
precision. This suggests that the model reduces
over-correction at the expense of a certain level
of recall. On the English dataset, GPT-4 exhibits
a similar trend when incorporated with detection
results, indicating that detection results can stably
improve the GEC capability of LLMs, thus present-
ing a promising future direction for GEC.

5 Analysis

5.1 Interaction of Detection and Correction

In Section 4.3, we mentioned that detection and
correction tasks can mutually benefit each other.
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BEA-19 dev MuCGEC dev FCGEC dev
Model Parameters AccD RecE RecI AccC AccD RecE RecI AccC AccD RecE RecI AccC
DeCoGLM 335M 94.56 65.60 63.95 90.54 84.44 52.72 25.74 74.24 96.74 54.57 51.13 84.44
DeGLM 335M 94.49 64.88 62.82 - 84.20 52.54 23.93 - 96.96 54.85 47.87 -
CoGLM 335M - - - 90.27 - - - 74.55 - - - 83.94

Table 2: The metrics of detection and correction tasks on the development set. The results are presented using four
metrics (3 detection metrics and 1 correction metric): overall accuracy in the detection phase (AccD), recall for
the detection label ERROR (RecE), recall for the detection label INSERT (RecI), and the accuracy of next token
prediction during the localized error correction.

F0.5 on dev set
wD αEI BEA-19 MuCGEC FCGEC
20 2 60.30 34.45 40.57

10

- 60.09 35.17 41.52
1 59.93 34.25 42.89
2 60.81 35.09 42.49
3 60.29 35.82 40.72
4 60.12 35.03 41.49

5 2 60.60 34.53 42.10
1 2 59.64 33.23 36.72

Table 3: The preliminary experimental results of differ-
ent loss weights. wD and αEI is defined in Section 3.3
and 3.1. The "-" value of αEI represents the usage of
cross-entropy other than Focal Loss.

To further verify this, we conduct experiments us-
ing the integrated model (DeCoGLM, 335M) and
two separate models for detection and correction
(DeGLM, 335M; CoGLM, 335M), as shown in
the primary results in Table 1. Without employing
two-stage fine-tuning involving data enhancement,
the models are trained on the same dataset, and
their performance on the development set for de-
tection and correction metrics is presented in Table
2. The integrated model exhibits superior detection
and correction capabilities over separate models. A
fairer comparison should involve two separate mod-
els with a parameter count of 335M/2 = 167.5M,
but currently, there is no GLM backbone of ap-
proximately this size. In this scenario with fewer
parameters, the advantage of the integrated model
is expected to be even greater.

5.2 Weights of Multi-Task Training

To establish two weights that significantly impact
the training objective: the detection loss weight wD

in Equation 10, and the ERROR and INSERT loss
weight αEI in Equation 6, we conduct preliminary
experiments, which include only the two stages
of fine-tuning. The obtained results are presented
in Table 3. Based on a preliminary observation
on the loss scale, we initially set wD = 10 and
explore experimental results under varying αEI .

CoNLL-14 test BEA-19 test
K E I D P R F0.5 P R F0.5

✓ ✓ 69.67 50.91 64.89 72.18 65.14 70.65
✓ ✓ ✓ 69.25 51.26 64.71 72.33 65.46 70.85
✓ ✓ ✓ ✓ 68.48 49.95 63.75 71.23 64.48 69.77

Table 4: Results under different detection label sets.
K=KEEP, E=ERROR, I=INSERT and D=DELETE.

The outcomes suggest that the Focal Loss along
with moderately increasing αEI to achieve aggres-
sive detection introduced in Section 3.3 is effective.
After setting αEI = 2, we conducted additional
experiments with different wD. The overall experi-
mental results indicate that αEI = 2 and wD = 10
constitute a suitable setup.

5.3 Detection Label Set

In the design outlined in Section 3.1, ERROR
includes both replacement and deletion, as the
deletion can be considered as replacing with zero-
length text. The results for this design are shown
in the second row of Table 4. INSERT can also
be further merged into the ERROR label. This can
be achieved by considering the INSERT operation
as replacing the token xi at the insertion position
with xicj , where cj represents tokens to be in-
serted. The results corresponding to this approach
are shown in the first row of Table 4. Additionally,
we demonstrate the results of applying four detec-
tion labels (KEEP, ERROR, INSERT, DELETE)
in the last row. Overall, our designed three-label
scheme performs relatively better, as the insertion
operation in the two-label mode requires disrupting
the correct part of the source text, and encountering
DELETE in the four-label mode will lead to direct
deletion, which makes the model unable to recover
from faults in the error correction phase.

5.4 Ablation Study

To explore the effectiveness of various components
in the designed detection-correction model, we con-
duct an ablation study focusing on synthetic data,
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CoNLL-14 test BEA-19 test
BackBone Pretrained SFT1 SFT2 Ctrl P R F0.5 P R F0.5

GLM-Roberta Yes ✓ ✓ ✓ 75.07 49.40 68.00 77.36 64.63 74.43
GLM-Roberta Yes ✓ ✓ × 70.47 54.96 66.70 72.75 69.28 72.03
GLM-Roberta Yes ✓ × ✓ 75.27 48.24 67.69 76.55 62.34 73.21
GLM-Roberta Yes ✓ × × 68.38 57.35 65.84 69.00 71.02 69.39
GLM-Roberta Yes × × × 54.04 45.99 52.21 45.12 58.60 47.30
GLM-Roberta No ✓ ✓ ✓ 72.78 46.42 65.36 75.54 59.87 71.78
GLM-Roberta No ✓ ✓ × 69.25 51.26 64.71 72.33 65.46 70.85
GLM-Roberta No ✓ × ✓ 68.25 49.33 63.39 69.66 61.94 67.97
GLM-Roberta No ✓ × × 63.92 52.46 61.25 66.27 66.01 66.21
BART-large No ✓ ✓ ✓ 69.53 45.62 62.93 72.01 57.84 68.64
BART-large No ✓ ✓ × 66.39 49.80 62.24 69.25 63.28 67.97
BART-large No ✓ × ✓ 67.54 43.66 60.88 68.08 55.14 65.03
BART-large No ✓ × × 62.75 50.40 59.81 64.67 63.62 64.46

Table 5: Ablation study results. The "Ctrl" denotes the proposed detection control.

backbone, two-stage fine-tuning, and detection con-
trol. The results are shown in Table 5.

Effectiveness of synthetic data In the pro-
posed model, both the English and Chinese models
undergo pretraining with a large-scale synthetic
dataset of GEC. A comparison between the top
and middle rows of Table 5 reveals that pretrain-
ing indeed provides a stable improvement in model
performance, although the data used is not from
real scenarios.

Effectiveness of GLM backbone The detection-
correction structure can also be implemented in
Seq2Seq models. We applied the proposed method
to the BART model and conducted experiments.
An additional detection head is integrated into the
BART encoder, while the decoder generates text
pieces for localized error correction. The experi-
mental results, depicted in the bottom rows of Table
5, consistently demonstrate superior performance
when employing GLM as the backbone compared
to using BART. This can be attributed, in part, to
the consistency between the original pretraining
task of GLM and the training objective of the cor-
rection task, as defined in Equation 9. However, the
pretraining pattern of BART differs. Additionally,
the separation of BART’s encoder and decoder into
two distinct modules may not effectively foster the
mutual enhancement of detection and correction
abilities in multi-task learning.

Effectiveness of Two Stage Fine-tuning As de-
scribed in Section 3.3, two fine-tuning stages differ
in the training data: SFT1 constructs training sam-
ples using only ground-truth detection labels, while
SFT2 utilizes both ground-truth detection labels
and the detection results from the model trained
in the first stage. As evident from the compari-
son in Table 5, SFT1 significantly improves the

model’s performance than the model pretrained on
the synthetic dataset. Comparing the results exclu-
sively differing in SFT2 in Table 5, it is observed
that SFT2 consistently enhances F0.5, primarily
attributed to the improvement in precision while
maintaining recall relatively constant. This vali-
dates the effectiveness of the two-stage supervised
fine-tuning design.
Detection Control From Table 5, it is evident
that, under the scenario of employing the same
trained model, setting three hyper-parameters for
the detection phase also enhances the F0.5 perfor-
mance. This approach primarily aims at improving
precision. However, upon closer inspection, it is
noticeable that this technique results in a more sub-
stantial reduction in recall compared to the second-
stage fine-tuning. For all GLM models incorporat-
ing detection control, the recall on the CoNLL-14
test set is consistently below 50%, and the recall
on the BEA-19 test set is consistently below 65%.
Thus, the effectiveness of detection control stems
more from the trade-off between precision and re-
call, as discussed in the next section.

5.5 Precision-Recall Trade off

Adjusting the threshold for KEEP prediction prob-
ability (δ) and the probability lower bounds for
ERROR and INSERT predictions (ϕe, ϕi) defined
in Section 3.5 allows for further adjustment of pre-
cision and recall, resulting in improved F0.5 scores.
We performed a parameter search on the validation
set to identify configurations maximizing F0.5, and
the results are depicted in Figure 4.

Without setting ϕe and ϕi, δ = 0.38 achieved the
highest F0.5 of 63.2 on BEA-19 dev set. Then, we
fix δ = 0.38 and perform a grid search for ϕe, ϕi.
All results are presented as points in the right plot of
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Figure 4: Results of detection control on BEA-19 dev
set. The heat value represents the value of F0.5.

Figure 4, and nearly all points are located within the
region enclosed by the dashed line in the bottom-
left. The dashed line represents the boundary of
the model’s capability, and the intersection point
with the F0.5 contour line represents the optimal
performance attainable by the model. The point
with the highest F0.5 = 63.5 is the one closest to
the intersection point, with ϕe = 0.5 and ϕi =
0.6. Under this parameter configuration, the model
achieved an F0.5 value of 74.43 on the BEA-19
test set, as shown in Table 1. The detection control
offers such a straightforward implementation of the
precision-recall trade-off.

6 Conclusion

We introduce a novel language-agnostic detection-
correction structure via GLM for the GEC task.
The structure employs a three-label error detection
pattern and uses Focal Loss for aggressive detec-
tion. The correction phase leverages the mask-
infilling capability of GLM to generate correct
text pieces. A multi-task learning approach is
designed to integrate both functionalities within
the same model, optimized using a weighted loss
function. Experimental results show proposed
model DeCoGLM outperforms previous detection-
correction structures and achieves F0.5 scores com-
parable to SOTA on English and Chinese GEC
benchmarks. The effectiveness of the detection-
correction structure is further validated by apply-
ing it to open-source LLMs and GPT-4, indicating
that incorporating error detection information im-
proves the performance of LLMs on GEC datasets
by reducing over-correction. Ablation studies con-
firm the efficacy of our model design and the abil-
ity to trade off precision and recall can be real-
ized by detection control. We aim for this work to
further guide GEC research within the detection-
correction paradigm. The code and related mod-
els are available at https://github.com/GMago-
LeWay/GECFramework.

Limitations

Incremental methods proven effective on Seq2Seq
models, such as incorporating syntactic informa-
tion (Zhang et al., 2022b), refining training data
(Mita et al., 2020), and employing additional
models for reranking during the generation phase
(Zhang et al., 2023; Zhou et al., 2023), are not im-
plemented in this work. The main objective of this
paper is to propose a novel GEC architecture, with
these additional tricks serving as potential avenues
for future extensions. Furthermore, due to resource
restrictions, we are unable to apply our integrated
detection-correction structure to LLMs. This is be-
cause the sequence labeling task differs from the
generative tasks that LLMs are designed to perform,
necessitating full-parameter fine-tuning to integrate
the two tasks. Additionally, in our investigation of
LLMs as correction models, models with parame-
ters exceeding 13B are not utilized. The absence
of full-parameter fine-tuning on LLMs and exper-
iments with larger models due to resource con-
straints leaves room for further exploration of the
application of the detection-correction paradigm
on LLMs.

Ethics Statement

The datasets and models we used are publicly avail-
able and utilized only for research purposes. The
datasets do not contain any information that names
or uniquely identifies individual people or offen-
sive content. LLMs are utilized in our experiments,
consistent with their intended use in natural lan-
guage processing tasks. The models we designed
will be published and intended for academic re-
search in the field of grammatical error correction,
in accordance with the original access conditions
of the models used.

The detection-correction structure we designed
limits the model to making only localized modifica-
tions to the text, preventing it from generating text
without constraints, thereby significantly reducing
the potential risks associated with the model. How-
ever, It is worth noting that the modifications made
by the designed model may alter certain facts in
the text, leading to hallucination, especially when
modifications occur in named entities.

ChatGPT is utilized as the AI Assistant to polish
the paper writing.
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A Dataset

A.1 Dataset Statistics

Dataset #Sentences Usage As training data of
C4-200M 183,894,319 Pretraining DeCoGLM, DeGLM, CoGLM
Synthetic-CH 33,166,047 Pretraining DeCoGLM, DeGLM, CoGLM
CLang8(EN) 2,372,119 Fine-tuning DeCoGLM, DeGLM, CoGLM
FCE all 33,236 Fine-tuning CoGLM (10B)
NUCLE 57,157 Fine-tuning CoGLM (10B)
W&I+LOCNESS 34,308 Fine-tuning CoGLM (10B)
Lang8 (CH) 1,092,285 Fine-tuning All
HSK 95,320 Fine-tuning All
FCGEC train 36,341 Fine-tuning CoGLM (10B)
BEA19 dev 4,384 Validation -
MuCGEC dev 1,137 Validation -
FCGEC dev 2,000 Validation -
CoNLL-14 test 1,312 Testing -
BEA19 test 4,477 Testing -
MuCGEC test 6,000 Testing -
FCGEC test 3,000 Testing -

Table 6: Dataset statistics. The rightmost column in-
dicates the models that utilize the respective dataset;
"All" signifies that DeCoGLM, DeGLM, CoGLM, and
CoGLM (10B) all used the dataset as the training set.

In the experiments described in Section 4.1, the
datasets used are outlined in Table 6. Due to
constraints on our computational resources, the
CoGLM (10B) models are fine-tuned on relatively
smaller datasets, and the models are not pre-trained
on synthetic datasets.

A.2 Dataset for Training

As shown in Table 6, for relatively small models,
we first pretrain using the publicly available C4-
200M English GEC synthetic dataset and our syn-
thesized Chinese GEC dataset to obtain two pre-
trained models. Subsequently, the English model
is fine-tuned using the CLang8 dataset, while the
Chinese model is fine-tuned using the Lang8 Chi-
nese dataset and the FCGEC dataset to yield two
individual models. For the results of the models
used for comparison in the primary results of Ta-
ble 1, the GECToR and BART results on the two
Chinese datasets are reproduced according to our
training procedure, while the rest are as reported
in the original papers, where they utilized various
training data configurations. Most models are fine-
tuned using the NUCLE, W&I+LOCNESS, and
FCE datasets. Besides, GECToR uses the PIE-9M
as the pretraining dataset (Awasthi et al., 2019).

For LLMs, we did not perform pretraining; in-
stead, we directly applied the LoRA method using
the NUCLE, W&I+LOCNESS, and FCE datasets
for the English model. For Chinese, we trained
two models using Lang8 (CH) and FCGEC. The
training data for CoGLM (10B) and other LLMs
used for comparison are completely consistent.

A.3 Dataset Examples
In Sections 3.1 and 3.2, we describe the construc-
tion of training data. By aligning the source text
with the target text, we derive error detection la-
bels and masked text, thereby constructing training
samples as illustrated in Figure 2. In Section 3.3,
we elaborate on a two-stage supervised fine-tuning
approach, where the training data for the second
stage is reconstructed based on the detection predic-
tions made by the model trained in the first stage.
During data construction, model-induced false pos-
itives for ERROR and INSERT are incorporated to
generate new masked text and corresponding text
pieces. It is crucial to note that this process is solely
aimed at creating new masked text to enhance the
model’s ability to address false positives during the
correction phase, while the detection labels used
in training remain unchanged. Examples of the
constructed training data are provided in Table 7,
where "<s>" denotes the "begin of sentence" token
and "</s>" represents the "end of sentence" token.
For the sake of brevity, these tokens are omitted in
the content of this paper except in Figure 2.

B Details of Experiments

B.1 Loss Weight
We pre-determine the weights in multi-task learn-
ing by intuitively observing the scales of two losses.
This preliminary experiment was conducted on the
CLang8 dataset, and the loss curves are depicted in
Figure 5. It is evident from the figure that the detec-
tion loss ℓD and correction loss ℓC differ by roughly
an order of magnitude. Consequently, we initially
set wD = 10, determine the weights for ERROR
and INSERT categories in Focal Loss denoted by
αEI , and subsequently test whether wD = 10 is an
optimal choice, as discussed in Section 5.2.

Figure 5: Loss curves in standard training condition.
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Stage Items Example 1 Example 2

SFT1

Source Text xs <s>The every male employees were standing in the back row .</s> <s>They are covered with rust so bad .</s>
Target Text y <s>All the male employees were standing in the back row .</s> <s>They are covered with rust so badly .</s>
Masked Text xm <s>[MASK] male employees were standing in the back row .</s> <s>They are covered with rust so [MASK] .</s>
Text Pieces Input <|startofpiece|> All the <|startofpiece|> badly
Text Pieces Target All the <|endofpiece|> badly <|endofpiece|>
Detection Labels K E E K K K K K K K K K K K K K K K K K E K K

SFT2

Detections by SFT1 K E E K E E K K K K K K K K K K K K I K K K K
Merged Detecions K E E K E E K K K K K K K K K K K K I K E K K
Masked Text x′

m <s>[MASK] male [MASK] standing in the back row.</s> <s>They are covered with rust [MASK] so [MASK] .</s>
Text Pieces Input <|startofpiece|> All the <|startofpiece|> employees were <|startofpiece|> <|startofpiece|> badly
Text Pieces Target All the <|endofpiece|> employees were <|endofpiece|> <|endofpiece|> badly <|endofpiece|>

Table 7: Examples of training data from CLang8 dataset in two fine-tuning stages. In detection labels, K=KEEP,
E=ERROR and I=INSERT.

Configuration EN Pretrain EN finetune CH Pretrain CH finetune
DeCoGLM-Training

Backbone GLM-RoBERTa-large (Du et al., 2022) GLM-large-chinese (Du et al., 2022)
Backbone Parameters 335M 335M
Batch size 12 12 12 12
Update frequecy 10 20 8 8(M), 10(F)
Max epochs (20M iterations) 20 2 10(M), 20(F)
Evaluation key (SFT1) - AD-Accuracy AD-Accuracy AD-Accuracy
Evaluation key (SFT2) - General-Accuracy - General-Accuracy
Evaluation interval 10000 2000 4000 2000(M), 200(F)
Early stop - 10 - 10
Max source text length 128 128 128 128
Warm-up steps (SFT1) 10000 1000 1000 1000(M), 200(F)
Warm-up steps (SFT2) - 1000 - 1000(M), 200(F)
Weight Decay 1× 10−4 1× 10−4 1× 10−4 1× 10−4

Learning rate scheduler Polynomial Polynomial Polynomial Polynomial
Learning rate (SFT1) 2× 10−5 3× 10−6 2× 10−5 1× 10−5 (M), 4× 10−5(F)
Learning rate (SFT2) - 1× 10−6 - 5× 10−6 (M), 1× 10−5(F)

DeCoGLM-Inference
KEEP threshold 0.38 None
ERROR lower bound 0.5 None
INSERT lower bound 0.6 None
Beam size 3 3
Max tokens per piece 10 10

Table 8: The model hyper-parameters of proposed DeCoGLM. Both pretraining and fine-tuning configurations
are presented. EN and CH represent English models and Chinese models, respectively. In the settings of Chinese
fine-tuned models, M and F represent models for MuCGEC and FCGEC, respectively. The bottom of the table
presents the hyper-parameters of inference.

B.2 Model Configurations

The training configurations for the integrated
detection-correction model (DeCoGLM) and the
parameters used during inference are presented in
Table 8. To conserve computational resources dur-
ing training, early stopping is employed, which
requires the pre-definition of evaluation metrics on
the validation set. Two primary metrics are uti-
lized: (1) AD-Accuracy, defined as the sum of the
recall for ERROR and INSERT and the accuracy
of next token prediction by GLM, aiming to rein-
force the aggressive detection principle mentioned
in Section 3.1; (2) General-Accuracy, the geomet-
ric mean between the recall for the three detection
labels and the accuracy of next token prediction

by GLM. The configurations for training the sep-
arate models, DeGLM and CoGLM, are similar
to those in Table 8. The pre-trained models in-
clude glm-roberta-large, glm-large-chinese,
glm-10b, and glm-10b-chinese, accessible
through HuggingFace2. We implement all
the designed models using PyTorch, including
DeCoGLM, DeGLM, and CoGLM.

All models are trained by the Trainer from the
transformers3 package in Python, on NVIDIA RTX
4090 GPUs. Due to resource constraints, all ex-
periments are conducted with a fixed random seed
(111), and single-run results are reported. We adopt
the approach recommended by Rothe et al. (2021)

2https://huggingface.co
3https://huggingface.co/docs/transformers/index
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Mode Prompt

ZeroShot

Reply with a corrected version of the input sentence with all grammatical and spelling errors fixed. If there are no errors,
reply with a copy of the original sentence.

Input sentence: [TEXT]
Corrected sentence:

+DeGLM

Reply with a corrected version of the input sentence with all grammatical and spelling errors fixed. If there are no errors,
reply with a copy of the original sentence.
Hint: We have detected some possible grammatical errors and replaced every error span with a [MASK] to get a masked
sentence, you can reference the masked sentence to give final corrected sentence. If there is no [MASK] in the masked sentence,
it means that we have not detected any grammatical errors in the input sentence.

Input sentence: [TEXT]
Masked Sentence: [MASKED_TEXT]
Corrected sentence:

Table 9: GPT-4 prompts used in experiments, following Coyne et al. (2023).

F0.5 on test set Average inference time per sample (ms)
Backbone Structure CoNLL-14 BEA-19 Detection Correction Total

GLM-Roberta De-Co 64.71 70.85 14.5 69.1 83.6
BART-large De-Co 62.24 67.97 17.1 43.4 60.5
BART-large Seq2Seq 64.46 67.94 - 266.2 266.2

Table 10: Time consumed in inference. De-Co represents the proposed detection-correction structure.

to post-process the model’s predictions on English
test datasets, aiming to ensure greater alignment of
tokenization with the evaluation data.

B.3 GPT-4 Prompts
The prompts utilized during the inference of GPT-4
are illustrated in Table 9. For the Chinese tasks, the
prompts are the direct translation of the correspond-
ing English prompts. The API version of GPT-4
used in this paper is Preview-0315.

C Inference Speed

We conduct a brief evaluation of the inference
speed of our proposed detection-correction struc-
ture, and the average inference speeds on the
CoNLL-14 and BEA-19 test sets are presented in
Table 10. The models are trained exclusively on the
CLang8 dataset, and during the inference phase, no
hyperparameters are adjusted, utilizing only beam
search. Our proposed model achieves slightly bet-
ter performance while maintaining a faster infer-
ence speed (≈3x) than the Seq2Seq model. The
experiments are conducted on an NVIDIA RTX
4090 GPU, with the same constrained batch size of
1 during inference.
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