
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1543–1556
August 11-16, 2024 ©2024 Association for Computational Linguistics

Dependency Transformer Grammars: Integrating Dependency Structures
into Transformer Language Models

Yida Zhao, Chao Lou, Kewei Tu*

School of Information Science and Technology, ShanghaiTech University
Shanghai Engineering Research Center of Intelligent Vision and Imaging

{zhaoyd2023,louchao,tukw}@shanghaitech.edu.cn

Abstract

Syntactic Transformer language models aim to
achieve better generalization through simulta-
neously modeling syntax trees and sentences.
While prior work has been focusing on adding
constituency-based structures to Transformers,
we introduce Dependency Transformer Gram-
mars (DTGs), a new class of Transformer lan-
guage model with explicit dependency-based
inductive bias. DTGs simulate dependency
transition systems with constrained attention
patterns by modifying attention masks, incor-
porate the stack information through relative
positional encoding, and augment dependency
arc representation with a combination of token
embeddings and operation embeddings. When
trained on a dataset of sentences annotated with
dependency trees, DTGs achieve better general-
ization while maintaining comparable perplex-
ity with Transformer language model baselines.
DTGs also outperform recent constituency-
based models, showing that dependency can
better guide Transformer language models.
Our code is released at https://github.com/
zhaoyd1/Dep_Transformer_Grammars.

1 Introduction

Transformer language models have shown strong
performance on language modeling tasks and a
broad spectrum of downstream tasks (Radford
et al., 2019; Devlin et al., 2019; Brown et al., 2020).
Despite the great power of the Transformer archi-
tecture (Vaswani et al., 2017), it lacks the induc-
tive biases of syntactic structures, which has been
hypothesized to improve generalization (Everaert
et al., 2015). A straightforward way to incorporate
such biases into Transformers is explicit modeling
of syntactic structures.

Inspired by earlier work of generative parsing as
language modeling that integrates syntactic struc-
tures into RNNs (Dyer et al., 2016; Choe and Char-

* Corresponding Author

niak, 2016), recent studies have focused on adapt-
ing this method to Transformer architectures (Qian
et al., 2021; Yoshida and Oseki, 2022; Sartran et al.,
2022; Murty et al., 2023). The models proposed by
these studies are categorized as syntactic language
models because they jointly model the distribution
of surface strings and their corresponding syntactic
trees. Experiments show that these models achieve
competitive perplexity in language modeling and
gain better syntactic generalization, supporting the
above hypothesis on the benefits of introducing
inductive bias of syntactic structures. However,
the structural supervision that has been used in all
these models is based on constituency trees and it
is unclear of the performance of dependency-based
Transformer syntactic language models. Different
from constituency structures, which model recur-
sive syntactic compositions, dependency structures
focus more on the relationship between tokens,
which is similar to the self-attention mechanism in
Transformer, hinting at potential synergy between
the two.

In this paper, we propose Dependency Trans-
former Grammars (DTGs), dependency-based syn-
tactic language models that learn joint distribu-
tions of sentences and dependency trees. DTGs
introduce an inductive bias of dependency struc-
tures to Transformers by (i) modeling transition
sequences of transition-based dependency parsers
instead of sentences, (ii) simulating the stack op-
erations in transition-based dependency parsers
through modification of attention masks, (iii) incor-
porating the stack information of transition-based
systems through relative positional encoding of
stack depth, and (iv) representing head-dependent
relations through a combination of head token em-
beddings and transition operation embeddings. Fol-
lowing a line of previous work in generative depen-
dency parsing (Titov and Henderson, 2007; Cohen
et al., 2011; Buys and Blunsom, 2015), the gen-
erative formulation of our model is based on the

1543

https://github.com/zhaoyd1/Dep_Transformer_Grammars
https://github.com/zhaoyd1/Dep_Transformer_Grammars

arc-standard system (Nivre, 2004), which builds a
dependency tree in a bottom-up manner. We also
explore models using other dependency transition
systems for comparison.

Our experiments show that DTGs achieve com-
parable perplexity in language modeling and im-
proved syntactic generalization on both the BLiMP
benchmark (Warstadt et al., 2020) and the SG test
suites (Hu et al., 2020) over Transformer language
model baselines. Furthermore, DTGs outperform
constituency-based syntactic language models in
both language modeling and syntactic generaliza-
tion.

In summary, our contributions are as follows.

• We propose dependency-based syntactic lan-
guage models, DTGs, to incorporate depen-
dency inductive bias into Transformers.

• We primarily build DTGs using the arc-
standard transition system, while we also
study the usage of other dependency transi-
tion systems.

• Experimental results on two syntactic gener-
alization benchmarks show the benefits of in-
troducing inductive bias of dependency struc-
tures.

2 Preliminaries: Transition-based
Dependency Parsing

Given a sentence, transition-based dependency
parsing predicts a sequence of predefined transi-
tions between states that incrementally build a de-
pendency parse tree. A state contains a stack σ with
token i on the top, a buffer β with j at its leftmost
side, and a set A of dependency arcs, denoted as(σ∣i, j∣β,A).

In this work, we focus on unlabeled projective
dependency parsing for the simplicity of its tran-
sition systems. There are several different transi-
tion systems for projective dependency parsing, as
shown in Table 1. Arc-standard (Nivre, 2004) is
a widely used transition system that defines three
transitions: SHIFT, LEFTARC and RIGHTARC. Arc-
standard builds dependency trees in a bottom-up
manner, that is, every token is not connected to
its head token until it gathers all of its dependents.
Arc-eager (Nivre, 2003) is another transition sys-
tem that adds one more transition: POP. The main
difference between arc-standard and arc-eager lies
in the scope of arcs. Arc-standard only allows

inducing arcs in the stack while arc-eager eases
the restriction by defining arc transitions between
the stack and the buffer. As a result, dependency
trees are no longer built from bottom to up in
arc-eager. A later system arc-hybrid (Kuhlmann
et al., 2011) combines LEFTARC in arc-eager and
RIGHTARC in arc-standard. Another more re-
cent system arc-swift (Qi and Manning, 2017) ex-
tends arc-inducing to non-local cases: transition
LEFTARC/RIGHTARC[k] in arc-swift can be seen as
k − 1 POP operations followed by one arc-inducing
in arc-eager.

The above dependency parsing transition sys-
tems can be changed into a generative form, such
that they generate sentences along with their associ-
ated dependency trees. The main change to the tran-
sition systems is that tokens need to be generated
instead of being shifted from the buffer. Specifi-
cally, in arc-standard we substitute SHIFT with a
token generation transition GEN, while retaining the
other transitions (Titov and Henderson, 2007; Co-
hen et al., 2011; Buys and Blunsom, 2015). Other
systems require additional efforts to obtain a gen-
erative form because they contain the usage of the
buffer head in LEFTARC and/or RIGHTARC before
shifting it to the stack. Simply replacing SHIFT
with GEN cannot ensure the existence of the two to-
kens involved in a newly generated arc. Therefore,
we need to insert a GEN’ transition,1 which gener-
ates a new token but puts it in the buffer, before any
LEFTARC/RIGHTARC transition that involves an un-
generated token. The SHIFT transitions are omitted
because any generated token will be shifted to the
stack once a new token is generated.

We can use an oracle to extract a transition se-
quence from a dependency parse tree: An arc-
inducing transition is generated whenever possi-
ble, and a POP transition (in arc-eager) is gen-
erated when it is impossible to generate other
transitions, i.e., the transition preference order is
LEFTARC/RIGHTARC > GEN > POP.

3 Model

DTG follows the generative form of the arc-
standard dependency transition system and gen-
erates a sequence of transitions that construct a sen-
tence x and its dependency tree y incrementally.
The sequence consists of three types of transitions:

• GEN(x): generating a token x, which corre-
1To simplify, we will refer to GEN’ as GEN, which can be

distinguished according to transition systems.

1544

arc-standard arc-hybrid
Shift (σ, i∣β,A) ⇒ (σ∣i, β, A)
LArc (σ∣i∣j, β,A) ⇒ (σ∣j, β,A ∪ {(j → i)})
RArc (σ∣i∣j, β,A) ⇒ (σ∣i, β, A ∪ {(i → j)})

Shift (σ, i∣β,A) ⇒ (σ∣i, β,A)
LArc (σ∣i, j∣β,A) ⇒ (σ, j∣β,A ∪ {(j → i)})
RArc (σ∣i∣j, β,A) ⇒ (σ∣i, β, A ∪ {(i → j)})

arc-eager arc-swift

Shift (σ, i∣β,A) ⇒ (σ∣i, β, A)
LArc (σ∣i, j∣β,A) ⇒ (σ, j∣β,A ∪ {(j → i)})
RArc (σ∣i, j∣β,A) ⇒ (σ∣i∣j, β,A ∪ {(i → j)})
Pop (σ∣i, β, A) ⇒ (σ, β,A)

Shift (σ, i∣β,A) ⇒ (σ∣i, β, A)
LArc[k] (σ∣ik∣ . . . ∣i1, j∣β,A)

⇒ (σ, j∣β,A ∪ {(j → ik)})
RArc[k] (σ∣ik∣ . . . ∣i1, j∣β,A)

⇒ (σ∣ik∣j, β,A ∪ {(ik → j)})
Table 1: Transitions defined by different transition systems (adapted from Qi and Manning (2017))

<ROOT>

Dep tree

Sentence

Transitions

There is a difference

 GEN 1 LA 1

 1 2 3 4

 1
 4

 GEN 2 GEN 3

 GEN 4 LA 2 RA 3 RA 4

 2
 3

Figure 1: An example sentence with its dependency tree
and transition sequence. Numbers in blue and red are
indices of tokens and arcs respectively.

sponds to the GEN operation in generative arc-
standard and is exactly what a standard Trans-
former decoder does at each step;

• LEFTARC or LA: inducing an arc from the most
recent unconnected token (i.e., a token that
has not been connected to its head) to the sec-
ond most recent unconnected token, which
corresponds to the LEFTARC operation in arc-
standard;

• RIGHTARC or RA: inducing an arc from the
second most recent unconnected token to the
most recent unconnected token, which cor-
responds to the RIGHTARC operation in arc-
standard.

An example is shown in Figure 1.
We write α(x,y) = (α0, α1, ..., αT−1) as the

transition sequence of length T of sentence x and
parse tree y, where each αt belongs to one of the
three types mentioned above. DTG is a Trans-
former decoder that models the distribution of
α(x,y) in the manner of causal language mod-
eling, that is, p(α(x,y)) = ∏

i
p(αi∣α<i). It dif-

fers from a standard Transformer in several aspects
in order to incorporate the dependency inductive
bias, including attention masks, positional encod-
ing, augmented representation of arcs, and con-

strained generation, which we discuss in the fol-
lowing subsections.

3.1 Arc-Standard via Attention Mask

DTGs generate the transition sequence autoregres-
sively. A standard Transformer language model
makes predictions based on the complete gener-
ation history. In contrast, to incorporate the de-
pendency inductive bias into DTGs, we generate
transitions based on the stack in arc-standard. The
stack is encoded into the model with different at-
tention forms and is updated by input transitions.

When a GEN transition comes, the transition
system pushes a new token onto the stack and
then gathers the stack information to generate the
next transition, which we realize by the first at-
tention form, STACK attention. When a transi-
tion changing the dependency structure comes, i.e.,
a LEFTARC/RIGHTARC transition, the stack is up-
dated in two steps: (i) pop two tokens from the
stack and designate one as the head of the other
and (ii) push the head token back onto the stack.
The two steps are realized by the second form of
attention, COMPOSE attention, which updates the
representation of the head by consuming its de-
pendent but ignoring everything else to reflect the
newly induced dependency arc. Then all the stack
information is gathered for generating the next tran-
sition, which is again realized by STACK attention.
Therefore, two forms of attention are required for
one transition. As each transition can only use
one form of attention in Transformer, we duplicate
the arc transitions, namely LEFTARC/RIGHTARC and
LEFTARC2/RIGHTARC2. The former encodes depen-
dency information with COMPOSE attention and
makes no generation, while the latter triggers the
generation of the next transition with STACK at-
tention. After the duplication, the sequence length
increases from T to T

′. We denote the new se-

1545

i Input Attn. Mask Prediction

0 <ROOT> STACK GEN(There)
1 There STACK GEN(is)
2 is STACK LEFTARC
3 LEFTARC + is COMPOSE -
4 LEFTARC2 + is STACK GEN(a)
5 a STACK GEN(difference)
6 difference STACK LEFTARC
7 LEFTARC + difference COMPOSE -
8 LEFTARC2 + difference STACK RIGHTARC
9 RIGHTARC + is COMPOSE -
10 RIGHTARC2 + is STACK RIGHTARC
11 RIGHTARC + <ROOT> COMPOSE -
12 RIGHTARC2 + <ROOT> STACK <END>

(a) Transition sequence after duplicating LEFTARC/RIGHTARC
transitions. We do not have to make predictions for positions
3, 7, 9, 11.

<ROOT>

There

LA

is

LA2

a

diff.

LA

LA2

RA

RA2

RA

RA2

<R
OO
T>

Th
ere is LA LA2 a diff. LA LA2 RA RA2 RA RA2

(b) Attention mask. Tokens are simplified for a tight view.
We use orange to represent COMPOSE and blue to represent
STACK.

Figure 2: Transition sequence and attention masks of an example sentence

Algorithm 1 COMPOSE/STACK attention

Require: α
′ sequence of transitions

Ensure: A ∈ RT
′×T ′

attention mask
1: S ← [] ▷ Empty stack
2: A ← 0
3: for i ← 0 to T

′ do
4: if type(a′[i]) = LEFTARC or
5: type(a′[i]) = RIGHTARC then ▷ COMPOSE
6: Aii ← 1
7: l← S.pop()
8: r← S.pop()
9: Ail ← 1

10: Air ← 1
11: S.push(i) ▷ View transition i as the head token
12: else ▷ STACK
13: if type(a′[i]) ≠ LEFTARC2 and
14: type(a′[i]) ≠ RIGHTARC2 then
15: S.push(i)
16: end if
17: for j ∈ S do
18: Aij ← 1
19: end for
20: end if
21: end for
22: return A ▷ Attention mask

quence as α
′, which is the exact input sequence

of our model. Note that this does not change the
distribution of α(x,y), as the generation sequence
remains unchanged. An example of the expanded
transition sequence and the corresponding attention
forms is shown in Figure 2a.

The two forms of attention can be realized by
leveraging different attention masks. We represent

the attention masks as A ∈ RT
′×T ′

, where Aij = 1
means position j can be attended from i and Aij =
0 means position j is masked from i. Our models
generate transitions in an autoregressive manner, so
the attention mask is causal, i.e., Aij = 0 for j > i.

STACK attention is performed at each position
i which needs to predict a new transition, i.e., α′

i ∈{GEN(x), LEFTARC2, RIGHTARC2}. From position i,
we attend to all the unmasked positions before i
(including i) to collect all the information on the
stack for generation.

COMPOSE attention is performed at each po-
sition i where α

′
i ∈ {LEFTARC, RIGHTARC}. From

position i, we attend to the positions of the most re-
cent two unmasked tokens, i.e., the top two tokens
on the stack in arc-standard, which forms a head-
dependent pair. Then we mask the two attended
positions from subsequent positions, effectively
popping the two tokens from the stack. The newly
computed representation serves as a substitute for
the head token that has absorbed the information
of its dependent and is pushed back onto the stack.

Algorithm 1 shows how to compute attention
masks for a transition sequence as described above.
We also show attention masks of an example tran-
sition sequence in Figure 2b.

3.2 Relative Positional Encoding

We design the positional encoding for DTGs based
on the relative positional encoding in Transformer-

1546

XL (Dai et al., 2019). In Transformer-XL, the po-
sitional encoding is based on the distance between
the attending position i and the attended position
j, i.e., Rij = i − j. In DTGs, we modify the for-
mulation to reflect the stack information. Crucially,
Rij is only computed when Aij = 1. For STACK
attention, we define d(i) as the depth in the stack,
which increases from the top to the bottom. We
then define Rij = d(i) − d(j). For COMPOSE
attention, we define two positions, 0 and −1, to
distinguish between the head and the dependent
to be composed, i.e., Rij = 0 if token j is the
head token and Rij = −1 if token j is the depen-
dent token. The new representation computed with
COMPOSE inherits the depth of the head token,
i.e., d(i) = d(j) if token j is the composed head
token.

3.3 Arc Representation
In standard language models, generated tokens
are fed back into models as history. For arc-
inducing transitions in DTGs, the generated transi-
tions have surface forms of LEFTARC or RIGHTARC
while the tokens ought to be pushed back are the
head tokens. We propose to feed a combination
of LEFTARC/RIGHTARC and the head token via sum-
ming the embedding of these two parts. This formu-
lation stems from the following two considerations:
(i) the attention in DTGs cannot distinguish be-
tween LEFTARC and RIGHTARC, so the embedding
of LEFTARC/RIGHTARC acts as an indicator of the
arc direction; (ii) the representation computed with
COMPOSE is viewed as a substitute of the com-
posed head token by subsequent positions, so we
add the embedding of the head token to bias the
representation.

3.4 Other Transition Systems via Attention
Mask

We also design the attention mechanism for gen-
erative arc-eager and arc-swift and name the re-
sulting models DTG-eager and DTG-swift. We
do not work on generative arc-hybrid because its
transition sequences are exactly the same as that of
generative arc-standard.

For DTG-eager, we make two modifications
based on DTG: (i) Change the COMPOSE atten-
tion of RIGHTARC by not masking the position of
the dependent token because in arc-eager, the de-
pendent token can still induce arcs to subsequent
tokens. (ii) For transition POP, we define POP-
STACK attention, which pops the stack top. The

stack top is the second most recent unmasked to-
ken in most cases, and the most recent one is the
head of the buffer. However, if all tokens have been
generated and thus the buffer is empty, the stack
top is the most recent unmasked token.

For DTG-swift, LEFTARC and RIGHTARC are dec-
orated by an additional positive number k. This
affects ranges of attending and masking in COM-
POSE attention. That is, we attend to not only
the head-dependent pair but also the k − 1 tokens
between them, and we mask all these k + 1 tokens
for subsequent positions.

More details and examples of these two models
are provided in Appendix A.

3.5 Constraints on Inference
We define several constraints on transition gener-
ation during DTGs inference to make it consis-
tent with the corresponding transition-based depen-
dency parsing systems:

• For all the systems, the LEFTARC and
RIGHTARC transition can only be generated if
at least two tokens exist in the stack.

• For arc-eager, POP can only be generated if
the top of the stack has been recognized as a
right dependent of some head token.

• For arc-swift, the value of k in
LEFTARC/RIGHTARC[k] must not exceed
the size of the stack.

4 Experiments

We compare DTGs with DTG-eager, DTG-swift,
two Transformer-XL baselines, and constituency-
based syntactic Transformer language models. The
two Transformer-XL baselines follow those of Sar-
tran et al. (2022): (i) TXL (tokens) is a standard
Transformer-XL that generates sentences only, and
(ii) TXL (trans) is Transformer-XL that gener-
ates transition sequences just like DTG, but uses
standard attention masks and positional encod-
ing. Constituency-based syntactic Transformer lan-
guage models include: (i) the “generative parsing
as language modeling” of Qian et al. (2021) (PLM),
(ii) Transformer Grammars of Sartran et al. (2022)
(TG) and (iii) Pushdown Layers of Murty et al.
(2023) (Pushdown).

Dataset and Preprocessing All the models are
trained on the BLLIP-LG dataset of Charniak et al.
(2000), with training splits from Hu et al. (2020).

1547

Model PPL (↓) BLiMP (↑) SG (↑)

Models without syntactic inductive bias
TXL (tokens) 14.8 75.3 76.6

Constituency-based models
PLM 29.8

♢
75.1 80.2

TG 18.4
♣

73.5
♣

82.5

Pushdown 19.9
♢

75.6 82.3
Dependency-based models

TXL (trans) 14.4 77.3 81.1

O
ur

s DTG-eager 15.5 75.2 -
DTG-swift 15.0 76.2 -
DTG 14.9 76.1 83.9

Table 2: Results of our models and baselines. ♢: Results
are taken from prior work and are only for reference
due to differences in tokenization. ♣: We rerun the
code from the original work (Sartran et al., 2022) and
obtain better perplexity than the reported result in it. All
results for PLM and Pushdown are taken from Murty
et al. (2023). The SG result for TG is taken from Sartran
et al. (2022).

For our models, we obtain unlabeled projective
dependency trees by parsing the dataset with a
Biaffine-roberta parser (Dozat and Manning, 2017)
implemented in Supar2. Tokenization is performed
with the same scheme as in Sartran et al. (2022)
with SentencePiece (Kudo and Richardson, 2018).
Note that we model each sentence independently
in all the experiments.

Training Details We use the same hyperparame-
ters as in Sartran et al. (2022) for training our mod-
els, using 16-layer models with 252M parameters.
To accelerate the training of token embeddings, we
add a multiplier of 2.0 to the learning rate of em-
bedding weights. More details can be found in
Appendix B.

4.1 Sentence-Level Language Modeling

We evaluate the perplexity of the models on the
BLLIP-LG dataset of Charniak et al. (2000), with
test splits from Hu et al. (2020).

Setup For syntactic language models that jointly
model the distributions of sentences and syntactic
trees, i.e., p(x,y), we compute the string proba-
bility p(x) = ∑y p(x,y). It is impossible to com-
pute p(x) precisely due to the large space of all
possible trees, so we follow Sartran et al. (2022) to
approximate it using a relatively small set of trees

2
https://github.com/yzhangcs/parser

sampled from a proposal model q(y∣x). For our
depdendency-based models, we use the Biaffine-

roberta (Dozat and Manning, 2017) parser as the
proposal model to sample 300 unlabeled projective
dependency trees without replacement as a pro-
posal tree set Y′. p(x) is then approximated by
∑y∈Y′ p(x,y), which is an exact lower bound of
the true value of p(x) (hence leading to an upper
bound of perplexity). We evaluate the models by
sentence-level perplexity.

Results We report the perplexity of all the models
in Table 2. DTG achieves comparable perplexity
with TXL (tokens) and DTG-swift, outperforming
DTG-eager. TXL (trans) achieves lower perplexity
than TXL (tokens) even though the reported result
of TXL (trans) is an upper bound of its true per-
plexity. It shows that jointly modeling dependency
trees and sentences is helpful for sentence-level
language modeling.

The perplexity upper bound of DTG can be seen
to be lower than that of TG. There are two possi-
ble interpretations of this result: (i) Dependency
trees give better guidance than constituency trees
in syntactic language modeling. (ii) 300 trees may
be too few to get an accurate approximation of per-
plexity when sampling from a large set of possible
trees. Evaluating DTG and TG requires samples of
unlabeled projective dependency trees and labeled
constituency trees, respectively. The number of
the former is much smaller than the number of the
latter. Therefore, sampling 300 trees may give a
much tighter perplexity upper bound for DTG than
for TG, resulting in a gap in the reported results.
Unfortunately, it requires nontrivial work to distin-
guish between the two possibilities and we leave it
for future work.

4.2 Syntactic Generalization

To measure the syntactic generalization, we evalu-
ate our models on BLiMP (Warstadt et al., 2020)
and SG test suites (Hu et al., 2020).

Setup on BLiMP BLiMP contains 67 general-
ization tests, each with 1000 sentence pairs. Each
sentence pair consists of a grammatical sentence
and an ungrammatical sentence. Models are eval-
uated by whether they assign a higher probability
to the grammatical one. We use the same setup
as in Section 4.1, sampling 300 trees for each sen-
tence and calculating a lower bound of marginal
probability p(x) for comparison.

1548

https://github.com/yzhangcs/parser

Lic
en

sin
g

Lo
ng

-D
ist

an
ce

Dep
en

den
cie

s

Agr
ee

m
en

t

Gar
den

-P
at

h

Eff
ec

ts
Gro

ss

Syn
ta

ct
ic

Sta
te

Cen
te

r

Em
bed

ding

0

0.25

0.5

0.75

1

S
co

re
s

Ours TXL (trans)

Figure 3: Scores on the six circuits of the SG test suites.

Setup on SG SG consists of test suites for six
fine-grained syntactic phenomena. Each test suite
has a specific inequality formula for evaluation.
These inequalities are based on incremental natu-
ral processing, requiring computing the surprisal
values, i.e., − log p(xt∣x<t). We implement the
word-synchronous beam search (Stern et al., 2017;
Hale et al., 2018) to get the marginal probability at
each token t and calculate the surprisal value. We
fix the beam size at 300.

Results The results are reported in Table 2. For
BLiMP, we found that most of the constituency-
based syntactic language models perform compa-
rably with our baseline TXL (tokens), while DTG,
DTG-swift, and TXL (trans) outperform them. For
SG, all syntactic language models perform better
than TXL (tokens), and DTG achieves the highest
score. These results show that explicit modeling of
syntactic structures is helpful for better generaliza-
tion in Transformer language models, and depen-
dency relations may lead to greater improvements
in generalization than constituency compositions.

We further compare TXL (trans) with DTG. The
SG scores of 6 circuits are shown in Figure 3. In
SG, DTG achieves a much higher average score
than TXL (trans) and outperforms TXL (trans) in 4
circuits while maintaining comparable scores in the
other 2 circuits. Further discussion of SG scores
can be found in Appendix D. On the other hand,
TXL (trans) performs better than DTG on BLiMP.
We believe it is because BLiMP evaluates semantic
knowledge in addition to syntactic knowledge as de-
tailed in Warstadt et al. (2020), even though BLiMP
is used as a syntactic testset in previous work of
syntactic language models (Qian et al., 2021; Murty
et al., 2023). Syntax-motivated attention masking
in DTG, while helpful in syntactic modeling, hin-

Model UAS (↑)

Biaffine-roberta 96.9
TXL (trans) 97.0
DTG 97.0

Table 3: UAS on the PTB test set.

ders acquisition of semantic information. Please
refer to Appendix C for more discussion. It is thus
an interesting future direction to integrate syntactic
language models with standard language models
so as to get the best of both worlds.

4.3 Parse Reranking

Setup We study to what extent DTG and
TXL (trans) have learned to produce correct de-
pendency structures. We still sample 300 trees with
the Biaffine-roberta parser and rerank them using
the two models. We convert human-annotated con-
stituency trees in the Penn Treebank (PTB) (Marcus
et al., 1993) test split into dependency trees with
CoreNLP 3.3.0 (Manning et al., 2014) and then
evaluate the UAS of the reranked trees on them.

Result We present the results in Table 3. TXL
(trans) and DTG both achieve a slightly higher
score than the proposal model Biaffine-roberta. Note
that both models are trained on the dependency
parse trees produced by Biaffine-roberta. The results
show that both models successfully learn about
dependency structures from Biaffine-roberta.

5 Analysis

5.1 Arc Representation

We compare three different representations of
LEFTARC/RIGHTARC in DTG : (i) the default for-
mulation of summing the LEFTARC/RIGHTARC em-
bedding and the embedding of the head token x,
(denoted as w + arc); (ii) the embedding of the
LEFTARC/RIGHTARC alone (denoted as arc); (iii)
the embedding of the head token alone (denoted
as w). DTG models with these representations are
trained and evaluated with the same setting as in
Section 4.

The result is reported in Table 4. The default for-
mulation outperforms the other two representations,
showing that both the head token embedding and
the LEFTARC/RIGHTARC embedding play a positive
role in arc representation.

1549

Model PPL (↓) BLiMP (↑)

w 15.1 75.9
arc 15.2 75.8
w+arc 14.9 76.1

Table 4: Results of different arc representations.

Parser PPL (↓) BLiMP (↑)

Biaffine 15.1 76.0
Biaffine-roberta 14.9 76.1

Table 5: Results of using different external parsers.

5.2 Dependency Parses for Training

We use an external parser to provide dependency
trees in the training data and sample 300 trees in
sentence probability evaluation. Here, we study
how the quality of the external parser affects our
model’s performance. We compare two parsers,
vanilla Biaffine without pre-trained token embed-
dings and Biaffine-roberta,3 as the external parser
used in training and evaluation. Note that Biaffine-

roberta is more accurate than vanilla Biaffine.
The result is reported in Table 5. We see an

improvement in both perplexity and generalization
when using a better parser.

6 Related Work

Augmenting language models with syntactic bias
has been studied for a long time. One line of work
adds constituency-based syntactic structures to lan-
guage models through jointly modeling the distri-
bution of sentences and structures (Chelba, 1997;
Roark, 2001; Henderson, 2004; Choe and Charniak,
2016; Kim et al., 2019). The RNNG model (Dyer
et al., 2016) is a representative work of syntactic
language models, using recursive networks to build
representations of phrases. More recent work of
syntactic language models is based on Transform-
ers (Qian et al., 2021; Yoshida and Oseki, 2022;
Sartran et al., 2022; Murty et al., 2023). Qian
et al. (2021) and Sartran et al. (2022) constrain
the attention with syntactic bias, while Pushdown
Layers (Murty et al., 2023) enforce structural con-
straints via gradient based learning. The above
work is all based on constituency structures, and
there has been some work considering dependency
trees with simple neural networks (Titov and Hen-

3Also from https://github.com/yzhangcs/parser

derson, 2007; Cohen et al., 2011; Buys and Blun-
som, 2015; Mirowski and Vlachos, 2015). Most
of them, however, focus more on generative de-
pendency parsing while scratching the surface of a
language modeling setting. A more general work
is Prange et al. (2022), which both introduces con-
stituency and dependency graphs to augment Trans-
former language modeling, but it requires given
gold trees for generation. Following the work of
generative dependency parsing and the constrained
attention patterns used in Sartran et al. (2022) and
other work (Strubell et al., 2018; Peng et al., 2019;
Zhang et al., 2020; Nguyen et al., 2020; Fernan-
dez Astudillo et al., 2020; Lou and Tu, 2023), we
propose DTG, a novel class of dependency-based
syntactic language models. It is the first syntactic
language model that designs a dependency-based
constrained attention mechanism for Transformers.

Another line of work augments models by learn-
able structures. Some studies integrate stack-
structured memory into models, where updating
patterns are learned from data rather than being dic-
tated by predefined syntactic inductive bias (Joulin
and Mikolov, 2015; Yogatama et al., 2018; DuSell
and Chiang, 2021, 2023). Besides, some studies
propose to learn structural attention patterns (Kim
et al., 2017; Wang et al., 2019; Shen et al., 2021,
2022). For example, Kim et al. (2017) assumes
that the attention scores are subject to linear-chain
or tree conditional random fields (CRFs; Lafferty
et al., 2001). These kinds of augmentation lead to
better generalization but usually cost longer run-
ning time than naive counterparts.

Some other studies focus on examining the syn-
tactic knowledge acquired by standard attention
after pretraining (Htut et al., 2019; Kovaleva et al.,
2019; Kim et al., 2020; Ravishankar et al., 2021).
These studies have identified that certain attention
heads align their attention patterns with syntactic
structures, thereby providing substantial evidence
for the benefits of introducing syntactic inductive
bias. In addition, some work re-invents attention us-
ing dependency structures and CRFs (Wu and Tu,
2023), motivating more linguistically principled
studies.

7 Conclusion

We propose DTGs, a new type of syntactic lan-
guage models that add explicit dependency bias
into Transformers. DTGs simulate dependency
transition systems with constrained attention pat-

1550

https://github.com/yzhangcs/parser

terns and incorporate stack information through
relative positional encoding. Experiments show
that DTGs surpass Transformer language model
baselines and other constituency-based syntactic
language models on syntactic generalization while
maintaining competitive perplexity. This implies
that the presence of dependency information does
improve the performance of Transformer language
models.

Limitations

DTGs rely on dependency trees for training, which
are predicted by an external parser in this study.
However, for languages lacking accurate depen-
dency parsers, our methods might not offer benefits.
Additionally, we restrict trees in our study to be in
the Standard Dependency representation (de Marn-
effe and Manning, 2008) and only consider non-
labeled projective dependency trees at the sentence
level. The investigation of other dependency repre-
sentations, such as Universal Dependencies (Nivre
et al., 2020), more complex trees and document-
level settings is left for future research.

For training and inference, DTGs cannot utilize
some recent advancements for Transformers eas-
ily, including rotary position embeddings (Su et al.,
2021) and Flash attention (Dao et al., 2022), due
to our attention mask patterns and relative position
encodings. Moreover, evaluating a sentence’s prob-
ability with DTGs requires marginalizing over all
possible trees, which is intractable. In this study,
we approximate this by sampling 300 trees. How-
ever, this is still time-consuming and only provides
an upper bound for the perplexity metric.

References
Tom Brown, Benjamin Mann, Nick Ryder, Melanie

Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates,
Inc.

Jan Buys and Phil Blunsom. 2015. Generative incre-
mental dependency parsing with neural networks. In

Proceedings of the 53rd Annual Meeting of the As-
sociation for Computational Linguistics and the 7th
International Joint Conference on Natural Language
Processing (Volume 2: Short Papers), pages 863–
869, Beijing, China. Association for Computational
Linguistics.

Eugene Charniak, Don Blaheta, Niyu Ge, Keith Hall,
John Hale, and Mark Johnson. 2000. Bllip 1987-89
wsj corpus release 1. Linguistic Data Consortium,
36.

Ciprian Chelba. 1997. A structured language model. In
35th Annual Meeting of the Association for Compu-
tational Linguistics and 8th Conference of the Euro-
pean Chapter of the Association for Computational
Linguistics, pages 498–500, Madrid, Spain. Associa-
tion for Computational Linguistics.

Do Kook Choe and Eugene Charniak. 2016. Parsing
as language modeling. In Proceedings of the 2016
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 2331–2336, Austin, Texas.
Association for Computational Linguistics.

Shay B. Cohen, Carlos Gómez-Rodríguez, and Giorgio
Satta. 2011. Exact inference for generative proba-
bilistic non-projective dependency parsing. In Pro-
ceedings of the 2011 Conference on Empirical Meth-
ods in Natural Language Processing, pages 1234–
1245, Edinburgh, Scotland, UK. Association for
Computational Linguistics.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Car-
bonell, Quoc Le, and Ruslan Salakhutdinov. 2019.
Transformer-XL: Attentive language models beyond
a fixed-length context. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics, pages 2978–2988, Florence, Italy. Asso-
ciation for Computational Linguistics.

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and
Christopher R’e. 2022. Flashattention: Fast and
memory-efficient exact attention with io-awareness.
ArXiv, abs/2205.14135.

Marie-Catherine de Marneffe and Christopher D. Man-
ning. 2008. The Stanford typed dependencies repre-
sentation. In Coling 2008: Proceedings of the work-
shop on Cross-Framework and Cross-Domain Parser
Evaluation, pages 1–8, Manchester, UK. Coling 2008
Organizing Committee.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Timothy Dozat and Christopher D. Manning. 2017.
Deep biaffine attention for neural dependency pars-
ing. In International Conference on Learning Repre-
sentations.

1551

https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.3115/v1/P15-2142
https://doi.org/10.3115/v1/P15-2142
https://doi.org/10.3115/976909.979681
https://doi.org/10.18653/v1/D16-1257
https://doi.org/10.18653/v1/D16-1257
https://aclanthology.org/D11-1114
https://aclanthology.org/D11-1114
https://doi.org/10.18653/v1/P19-1285
https://doi.org/10.18653/v1/P19-1285
https://api.semanticscholar.org/CorpusID:249151871
https://api.semanticscholar.org/CorpusID:249151871
https://aclanthology.org/W08-1301
https://aclanthology.org/W08-1301
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://openreview.net/forum?id=Hk95PK9le
https://openreview.net/forum?id=Hk95PK9le

Brian DuSell and David Chiang. 2021. Learning hierar-
chical structures with differentiable nondeterministic
stacks. arXiv preprint arXiv:2109.01982.

Brian DuSell and David Chiang. 2023. Stack attention:
Improving the ability of transformers to model hier-
archical patterns. arXiv preprint arXiv:2310.01749.

Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros,
and Noah A. Smith. 2016. Recurrent neural network
grammars. In Proceedings of the 2016 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 199–209, San Diego, California.
Association for Computational Linguistics.

Martin BH Everaert, Marinus AC Huybregts, Noam
Chomsky, Robert C Berwick, and Johan J Bolhuis.
2015. Structures, not strings: Linguistics as part of
the cognitive sciences. Trends in cognitive sciences,
19(12):729–743.

Ramón Fernandez Astudillo, Miguel Ballesteros, Tahira
Naseem, Austin Blodgett, and Radu Florian. 2020.
Transition-based parsing with stack-transformers. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2020, pages 1001–1007, Online.
Association for Computational Linguistics.

John Hale, Chris Dyer, Adhiguna Kuncoro, and
Jonathan Brennan. 2018. Finding syntax in human
encephalography with beam search. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 2727–2736, Melbourne, Australia. Association
for Computational Linguistics.

James Henderson. 2004. Discriminative training of
a neural network statistical parser. In Proceedings
of the 42nd Annual Meeting of the Association for
Computational Linguistics (ACL-04), pages 95–102,
Barcelona, Spain.

Phu Mon Htut, Jason Phang, Shikha Bordia, and
Samuel R. Bowman. 2019. Do attention heads
in bert track syntactic dependencies? ArXiv,
abs/1911.12246.

Jennifer Hu, Jon Gauthier, Peng Qian, Ethan Wilcox,
and Roger Levy. 2020. A systematic assessment
of syntactic generalization in neural language mod-
els. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
1725–1744, Online. Association for Computational
Linguistics.

Armand Joulin and Tomas Mikolov. 2015. Inferring
algorithmic patterns with stack-augmented recurrent
nets. Advances in neural information processing
systems, 28.

Taeuk Kim, Jihun Choi, Daniel Edmiston, and Sang goo
Lee. 2020. Are pre-trained language models aware
of phrases? simple but strong baselines for grammar
induction. In International Conference on Learning
Representations.

Yoon Kim, Carl Denton, Luong Hoang, and Alexan-
der M. Rush. 2017. Structured attention networks.
In International Conference on Learning Representa-
tions.

Yoon Kim, Alexander Rush, Lei Yu, Adhiguna Kuncoro,
Chris Dyer, and Gábor Melis. 2019. Unsupervised
recurrent neural network grammars. In Proceedings
of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and
Short Papers), pages 1105–1117, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Olga Kovaleva, Alexey Romanov, Anna Rogers, and
Anna Rumshisky. 2019. Revealing the dark secrets
of BERT. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
4365–4374, Hong Kong, China. Association for Com-
putational Linguistics.

Taku Kudo and John Richardson. 2018. SentencePiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 66–71, Brussels, Belgium.
Association for Computational Linguistics.

Marco Kuhlmann, Carlos Gómez-Rodríguez, and Gior-
gio Satta. 2011. Dynamic programming algorithms
for transition-based dependency parsers. In Proceed-
ings of the 49th Annual Meeting of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 673–682, Portland, Oregon, USA.
Association for Computational Linguistics.

John D. Lafferty, Andrew McCallum, and Fernando
C. N. Pereira. 2001. Conditional random fields:
Probabilistic models for segmenting and labeling se-
quence data. In Proceedings of the Eighteenth In-
ternational Conference on Machine Learning, ICML
’01, page 282–289, San Francisco, CA, USA. Morgan
Kaufmann Publishers Inc.

Chao Lou and Kewei Tu. 2023. AMR parsing with
causal hierarchical attention and pointers. In Pro-
ceedings of the 2023 Conference on Empirical Meth-
ods in Natural Language Processing, pages 8942–
8955, Singapore. Association for Computational Lin-
guistics.

Christopher Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven Bethard, and David McClosky.
2014. The Stanford CoreNLP natural language pro-
cessing toolkit. In Proceedings of 52nd Annual Meet-
ing of the Association for Computational Linguis-
tics: System Demonstrations, pages 55–60, Balti-
more, Maryland. Association for Computational Lin-
guistics.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated cor-

1552

https://doi.org/10.18653/v1/N16-1024
https://doi.org/10.18653/v1/N16-1024
https://doi.org/10.18653/v1/2020.findings-emnlp.89
https://doi.org/10.18653/v1/P18-1254
https://doi.org/10.18653/v1/P18-1254
https://doi.org/10.3115/1218955.1218968
https://doi.org/10.3115/1218955.1218968
https://doi.org/10.18653/v1/2020.acl-main.158
https://doi.org/10.18653/v1/2020.acl-main.158
https://doi.org/10.18653/v1/2020.acl-main.158
https://openreview.net/forum?id=H1xPR3NtPB
https://openreview.net/forum?id=H1xPR3NtPB
https://openreview.net/forum?id=H1xPR3NtPB
https://openreview.net/forum?id=HkE0Nvqlg
https://doi.org/10.18653/v1/N19-1114
https://doi.org/10.18653/v1/N19-1114
https://doi.org/10.18653/v1/D19-1445
https://doi.org/10.18653/v1/D19-1445
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://aclanthology.org/P11-1068
https://aclanthology.org/P11-1068
https://doi.org/10.18653/v1/2023.emnlp-main.553
https://doi.org/10.18653/v1/2023.emnlp-main.553
https://doi.org/10.3115/v1/P14-5010
https://doi.org/10.3115/v1/P14-5010
https://aclanthology.org/J93-2004

pus of English: The Penn Treebank. Computational
Linguistics, 19(2):313–330.

Piotr Mirowski and Andreas Vlachos. 2015. Depen-
dency recurrent neural language models for sentence
completion. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics
and the 7th International Joint Conference on Natu-
ral Language Processing (Volume 2: Short Papers),
pages 511–517, Beijing, China. Association for Com-
putational Linguistics.

Shikhar Murty, Pratyusha Sharma, Jacob Andreas, and
Christopher Manning. 2023. Pushdown layers: En-
coding recursive structure in transformer language
models. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing,
pages 3233–3247, Singapore. Association for Com-
putational Linguistics.

Xuan-Phi Nguyen, Shafiq Joty, Steven Hoi, and Richard
Socher. 2020. Tree-structured attention with hierar-
chical accumulation. In International Conference on
Learning Representations.

Joakim Nivre. 2003. An efficient algorithm for pro-
jective dependency parsing. In Proceedings of the
Eighth International Conference on Parsing Tech-
nologies, pages 149–160, Nancy, France.

Joakim Nivre. 2004. Incrementality in deterministic
dependency parsing. In Proceedings of the Workshop
on Incremental Parsing: Bringing Engineering and
Cognition Together, pages 50–57, Barcelona, Spain.
Association for Computational Linguistics.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Gin-
ter, Jan Hajivc, Christopher D. Manning, Sampo
Pyysalo, Sebastian Schuster, Francis M. Tyers, and
Daniel Zeman. 2020. Universal dependencies v2: An
evergrowing multilingual treebank collection. In In-
ternational Conference on Language Resources and
Evaluation.

Hao Peng, Roy Schwartz, and Noah A. Smith. 2019.
PaLM: A hybrid parser and language model. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 3644–
3651, Hong Kong, China. Association for Computa-
tional Linguistics.

Jakob Prange, Nathan Schneider, and Lingpeng Kong.
2022. Linguistic frameworks go toe-to-toe at neuro-
symbolic language modeling. In Proceedings of the
2022 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 4375–4391, Seat-
tle, United States. Association for Computational
Linguistics.

Peng Qi and Christopher D. Manning. 2017. Arc-swift:
A novel transition system for dependency parsing.
In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume 2:

Short Papers), pages 110–117, Vancouver, Canada.
Association for Computational Linguistics.

Peng Qian, Tahira Naseem, Roger Levy, and Ramón
Fernandez Astudillo. 2021. Structural guidance for
transformer language models. In Proceedings of the
59th Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 3735–3745, Online. As-
sociation for Computational Linguistics.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Vinit Ravishankar, Artur Kulmizev, Mostafa Abdou,
Anders Søgaard, and Joakim Nivre. 2021. Atten-
tion can reflect syntactic structure (if you let it). In
Proceedings of the 16th Conference of the European
Chapter of the Association for Computational Lin-
guistics: Main Volume, pages 3031–3045, Online.
Association for Computational Linguistics.

Brian Roark. 2001. Probabilistic top-down parsing
and language modeling. Computational Linguistics,
27(2):249–276.

Laurent Sartran, Samuel Barrett, Adhiguna Kuncoro,
Miloš Stanojević, Phil Blunsom, and Chris Dyer.
2022. Transformer grammars: Augmenting trans-
former language models with syntactic inductive bi-
ases at scale. Transactions of the Association for
Computational Linguistics, 10:1423–1439.

Yikang Shen, Shawn Tan, Alessandro Sordoni, Peng
Li, Jie Zhou, and Aaron Courville. 2022. Unsuper-
vised dependency graph network. In Proceedings
of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 4767–4784, Dublin, Ireland. Association for
Computational Linguistics.

Yikang Shen, Yi Tay, Che Zheng, Dara Bahri, Donald
Metzler, and Aaron Courville. 2021. StructFormer:
Joint unsupervised induction of dependency and con-
stituency structure from masked language modeling.
In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
7196–7209, Online. Association for Computational
Linguistics.

Mitchell Stern, Daniel Fried, and Dan Klein. 2017. Ef-
fective inference for generative neural parsing. In
Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pages
1695–1700, Copenhagen, Denmark. Association for
Computational Linguistics.

Emma Strubell, Patrick Verga, Daniel Andor, David
Weiss, and Andrew McCallum. 2018. Linguistically-
informed self-attention for semantic role labeling.

1553

https://aclanthology.org/J93-2004
https://doi.org/10.3115/v1/P15-2084
https://doi.org/10.3115/v1/P15-2084
https://doi.org/10.3115/v1/P15-2084
https://doi.org/10.18653/v1/2023.emnlp-main.195
https://doi.org/10.18653/v1/2023.emnlp-main.195
https://doi.org/10.18653/v1/2023.emnlp-main.195
https://openreview.net/forum?id=HJxK5pEYvr
https://openreview.net/forum?id=HJxK5pEYvr
https://aclanthology.org/W03-3017
https://aclanthology.org/W03-3017
https://aclanthology.org/W04-0308
https://aclanthology.org/W04-0308
https://doi.org/10.18653/v1/D19-1376
https://doi.org/10.18653/v1/2022.naacl-main.325
https://doi.org/10.18653/v1/2022.naacl-main.325
https://doi.org/10.18653/v1/P17-2018
https://doi.org/10.18653/v1/P17-2018
https://doi.org/10.18653/v1/2021.acl-long.289
https://doi.org/10.18653/v1/2021.acl-long.289
https://doi.org/10.18653/v1/2021.eacl-main.264
https://doi.org/10.18653/v1/2021.eacl-main.264
https://doi.org/10.1162/089120101750300526
https://doi.org/10.1162/089120101750300526
https://doi.org/10.1162/tacl_a_00526
https://doi.org/10.1162/tacl_a_00526
https://doi.org/10.1162/tacl_a_00526
https://doi.org/10.18653/v1/2022.acl-long.327
https://doi.org/10.18653/v1/2022.acl-long.327
https://doi.org/10.18653/v1/2021.acl-long.559
https://doi.org/10.18653/v1/2021.acl-long.559
https://doi.org/10.18653/v1/2021.acl-long.559
https://doi.org/10.18653/v1/D17-1178
https://doi.org/10.18653/v1/D17-1178
https://doi.org/10.18653/v1/D18-1548
https://doi.org/10.18653/v1/D18-1548

In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
5027–5038, Brussels, Belgium. Association for Com-
putational Linguistics.

Jianlin Su, Yu Lu, Shengfeng Pan, Bo Wen, and Yunfeng
Liu. 2021. Roformer: Enhanced transformer with
rotary position embedding. ArXiv, abs/2104.09864.

Ivan Titov and James Henderson. 2007. A latent vari-
able model for generative dependency parsing. In
Proceedings of the Tenth International Conference on
Parsing Technologies, pages 144–155, Prague, Czech
Republic. Association for Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Yaushian Wang, Hung-Yi Lee, and Yun-Nung Chen.
2019. Tree transformer: Integrating tree structures
into self-attention. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 1061–1070, Hong Kong, China. As-
sociation for Computational Linguistics.

Alex Warstadt, Alicia Parrish, Haokun Liu, Anhad Mo-
hananey, Wei Peng, Sheng-Fu Wang, and Samuel R.
Bowman. 2020. BLiMP: The benchmark of linguis-
tic minimal pairs for English. Transactions of the
Association for Computational Linguistics, 8:377–
392.

Haoyi Wu and Kewei Tu. 2023. Probabilistic trans-
former: A probabilistic dependency model for con-
textual word representation. In Findings of the As-
sociation for Computational Linguistics: ACL 2023,
pages 7613–7636, Toronto, Canada. Association for
Computational Linguistics.

Dani Yogatama, Yishu Miao, Gabor Melis, Wang Ling,
Adhiguna Kuncoro, Chris Dyer, and Phil Blunsom.
2018. Memory architectures in recurrent neural net-
work language models. In International Conference
on Learning Representations.

Ryo Yoshida and Yohei Oseki. 2022. Composition, at-
tention, or both? In Findings of the Association
for Computational Linguistics: EMNLP 2022, pages
5822–5834, Abu Dhabi, United Arab Emirates. As-
sociation for Computational Linguistics.

Zhuosheng Zhang, Yuwei Wu, Junru Zhou, Sufeng
Duan, Hai Zhao, and Rui Wang. 2020. Sg-net:
Syntax-guided machine reading comprehension. In
Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pages 9636–9643.

A Examples of DTG-eager and
DTG-swift

The example of DTG-eager is shown in Figure 4.
The main difference with DTGs is the new transi-
tion POP. It directly masks the top of the stack and
attends to other positions, denoted as POPSTACK
attention.

The example of DTG-swift is shown in Figure 5.
The newly introduced ARC number is represented
within [].

B Other Experimental Details

Using subword tokenizers Previously, we al-
ways assume that each word corresponds to a single
token. However, subword tokenizers (e.g., Senten-
cePiece) may divide a word into several subtokens.
In our work, we do not consider dependencies
among subtokens within a word. All dependen-
cies between words are converted to arcs between
the last subtokens of these words. For masking,
once a word should be masked, all of its subtokens
are masked. For arc representation, we use the
embedding of the last subtoken of the head word.

Computational costs We spent one NVIDIA
A6000 GPU for each training, which lasted ap-
proximately 35 hours.

C Discussion on the Results of BLiMP

An example testcase in the QUANTIFIERS cat-
egory of BLiMP is to judge whether “An actor
arrived at at most six lakes” or “No actor arrived at
at most six lakes” is acceptable. The correct answer
is that the former is acceptable while the latter is
not, because superlative quantifiers cannot embed
under negation. A stardard Transformer language
model could assign a lower probability to the sec-
ond sentence because it could lower the probability
of generating “at most” by attending to “No”. In
DTG , however, “No” as a determiner is absorbed
into “actor” and hence masked from the attention
when generating “at most”. While doing this can
be beneficial to syntactic generalization, it hinders
semantic judgment in this case.

D Discussion on the Results of SG

To measure the overlap that DTG and TXL (trans)
get right on SG, we count the numbers of correct
examples and wrong examples of both models and
the results are shown in Table 6.

1554

https://api.semanticscholar.org/CorpusID:233307138
https://api.semanticscholar.org/CorpusID:233307138
https://aclanthology.org/W07-2218
https://aclanthology.org/W07-2218
https://doi.org/10.18653/v1/D19-1098
https://doi.org/10.18653/v1/D19-1098
https://doi.org/10.1162/tacl_a_00321
https://doi.org/10.1162/tacl_a_00321
https://doi.org/10.18653/v1/2023.findings-acl.482
https://doi.org/10.18653/v1/2023.findings-acl.482
https://doi.org/10.18653/v1/2023.findings-acl.482
https://openreview.net/forum?id=SkFqf0lAZ
https://openreview.net/forum?id=SkFqf0lAZ
https://doi.org/10.18653/v1/2022.findings-emnlp.428
https://doi.org/10.18653/v1/2022.findings-emnlp.428

i Input Attn. Mask Label

0 <ROOT> STACK GEN(There)
1 There STACK GEN(is)
2 is STACK LEFTARC
3 LEFTARC + is COMPOSE -
4 LEFTARC2 + is STACK RIGHTARC
5 RIGHTARC + <ROOT> COMPOSE -
6 RIGHTARC2 + <ROOT> STACK GEN(a)
7 a STACK GEN(difference)
8 difference STACK LEFTARC
9 LEFTARC + difference COMPOSE -
10 LEFTARC2 + difference STACK RIGHTARC
11 RIGHTARC + is COMPOSE -
12 RIGHTARC2 + is STACK POP
13 POP STACK POP
14 POP STACK POP
15 POP STACK <END>

(a) Transition sequence after duplicating
LEFTARC/RIGHTARCs. We do not have to make pre-
dictions for positions 3, 5, 9, 11.

<ROOT>

There

LA

is

LA2

RA

RA2

a

diff.

LA

LA2

RA

RA2

<R
OO
T>

Th
ere is LA LA2 RA RA2 a diff. LA LA2 RA RA2

POP

POP

POP

POP POP POP

(b) Attention mask. Tokens are simplified for a tight view.
We use orange to represent COMPOSE and blue to represent
STACK and POPSTACK.

Figure 4: Arc-eager processing of an example sentence

DTG correct DTG wrong

TXL (trans) correct 616 57

TXL (trans) wrong 69 100

Table 6: Numbers of examples that DTG and TXL
(trans) get right/wrong on SG.

The overlap between the examples that these two
models both get right is large. But they still get
a few different examples wrong. A representative
example is “The manager to the side of the archi-
tects likes to gamble” and “The manager to the side
of the architects like to gamble”. The former sen-
tence is grammatical while the latter is ungrammat-
ical. TXL (trans) fails to assign a higher surprisal
to “like” than “likes” because it is distracted by
the plural form “architects” right before the verb
“like”, while DTG manages to do so. The reason for
DTG’s success can be attributed to the composition
of the distracting phrase “to the side of the archi-
tects”. When generating “likes”, as the distracting
phrase has been composed, DTG can focus more
on “The manager”.

1555

i Input Attn. Mask Label

0 <ROOT> STACK GEN(There)
1 There STACK GEN(is)
2 is STACK LEFTARC
3 LEFTARC[1] + is COMPOSE -
4 LEFTARC2[1] + is STACK RIGHTARC
5 RIGHTARC[1] + <ROOT> COMPOSE -
6 RIGHTARC2[1] + <ROOT> STACK GEN(a)
7 a STACK GEN(difference)
8 difference STACK LEFTARC
9 LEFTARC[1] + difference COMPOSE -
10 LEFTARC2[1] + difference STACK RIGHTARC
11 RIGHTARC[1] + is COMPOSE -
12 RIGHTARC2[1] + is STACK .
13 . STACK RIGHTARC
14 RIGHTARC[2] + is COMPOSE -
15 RIGHTARC2[2] + is STACK <END>

(a) Transition sequence after duplicating
LEFTARC/RIGHTARCs. We do not have to make pre-
dictions for positions 3, 5, 9, 11, 14.

<ROOT>

There

LA[1]

is

LA2[1]

RA[1]

RA2[1]

a

diff.

LA[1]

LA2[1]

RA[1]

RA2[1]

<R
OO

T>

Th
ere is LA LA2 RA RA2 a diff. LA LA2 RA RA2

.

RA[2]

RA2[2]

. RA RA2

(b) Attention mask. Tokens are simplified for a tight view.
We use orange to represent COMPOSE and blue to rep-
resent STACK. The number in [] is the ARC number of
LEFTARC/RIGHTARC.

Figure 5: Arc-swift processing of an example sentence

1556

