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Abstract

Recent state-of-the-art recommender systems
predominantly rely on either implicit or ex-
plicit feedback from users to suggest new items.
While effective in recommending novel options,
many recommender systems often use unin-
terpretable embeddings to represent user pref-
erences. This lack of transparency not only
limits user understanding of why certain items
are suggested but also reduces the user’s abil-
ity to scrutinize and modify their preferences,
thereby affecting their ability to receive a list of
preferred recommendations. Given the recent
advances in Large Language Models (LLMs),
we investigate how a properly crafted prompt
can be used to summarize a user’s preferences
from past reviews and recommend items based
only on language-based preferences. In par-
ticular, we study how LLMs can be prompted
to generate a natural language (NL) user pro-
file that holistically describe a user’s prefer-
ences. These NL profiles can then be leveraged
to fine-tune a LLM using only NL profiles to
make transparent and scrutable recommenda-
tions. Furthermore, we validate the scrutabil-
ity of our user profile-based recommender by
investigating the impact on recommendation
changes after editing NL user profiles. Accord-
ing to our evaluations of the model’s rating
prediction performance on two benchmarking
rating prediction datasets, we observe that this
novel approach maintains a performance level
on par with established recommender systems
in a warm-start setting. With a systematic anal-
ysis into the effect of updating user profiles
and system prompts, we show the advantage
of our approach in easier adjustment of user
preferences and a greater autonomy over users’
received recommendations.

1 Introduction

Personalized recommender systems often rely on
building latent representations from past user inter-
actions to provide recommendations. These mod-
els, while effective, suffer from a lack of inter-

Figure 1: Overall architecture of UPR. In Step 1, we
identify and rank user preferences from user reviews.
Features are highlighted in bold. In Step 2, we use
an LLM to generate a personalized, scrutable natural
language (NL) profile based on the user’s top features.
In Step 3, we train a scrutable, NL-based recommender
system using the generated NL profile to predict the
user’s rating for a target item.

pretability on the learned users’ preferences, mak-
ing it challenging to provide intuitive explanations
for recommendations. For example, many Collab-
orative Filtering (CF) techniques learn latent em-
beddings (He et al., 2017; Salakhutdinov and Mnih,
2007) to represent information about every user
and item. These embeddings are complex, contin-
uous vectors that cannot be easily interpreted or
modified (Radlinski et al., 2022). In fact, since col-
laborative filtering builds embeddings via past in-
teractions, users would need to significantly change
their interaction history to receive new recommen-
dations that align with their current preferences.

Given the strong performance of Large Lan-
guage Models (LLMs) in a wide variety of NLP
tasks (Touvron et al., 2023; Jiang et al., 2023) as
well as the inherent scrutable nature of text-based
inputs, we explore how we can prompt LLMs with
a natural language (NL) description of a user’s
preferences (i.e., user profiles) to provide greater
transparency on how a model provides new recom-
mendations. Furthermore, by using NL preferences
rather than embeddings, a user can easily scrutinize
and update their preferences when needed.

For recommender systems, we define trans-
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parency as a faithful representation behind the
recommendation mechanism and scrutability as
a direct and meaningful way to inspect and mod-
ify a user representation (Zhang and Chen, 2020).
Addressing these issues is vital: if users receive
poor recommendations, they should understand
why and have the means to modify their represen-
tation for better results. Research has shown that
explanations that justify a recommendation help
users make better and faster decisions and promote
trust in the system (Zhang and Chen, 2020; Tintarev
and Masthoff, 2015).

Recent works in transparent recommendation
systems have explored using pre-defined tem-
plates (Li et al., 2020) and automatically generated
text (Li et al., 2021, 2023a; Xie et al., 2022) to
explain recommendations to users. However, these
works focused on explaining individual item rec-
ommendations rather than holistic, personalized
preferences. Another approach to transparent and
scrutable recommender systems is set-based pref-
erences, which aim to explain a user’s general pref-
erences for a particular domain (Radlinski et al.,
2022; Balog et al., 2019). Specifically, rather than
giving a rating for each individual item, a user
can categorize groups of items into sets, which are
then used to recommend new items. For example,
a user can state that they generally like ‘action’
movies and generally dislike ‘romance’ movies.
This transparency lets users understand the model’s
interpretation and adjust their profile accordingly,
leading to more aligned recommendations. Chang
et al. (Chang et al., 2015) have shown that set-based
preferences allow users to elicit preferences faster,
leading to higher satisfaction with the resulting rec-
ommended items. Sanner et al. (2023) found that
LLMs are competitive recommender systems in a
near cold-start setting. In particular, they collected
language-based user profiles from crowdsourced
workers and found that by using few-shot prompt-
ing with the PaLM model (Chowdhery et al., 2022),
they were able to achieve similar performance to
item-based collaborative filtering methods.

In this paper, we propose User Profile
Recommendation (UPR) depicted in Fig. 1, a
language-based approach to set-based, transparent
recommendations in a warm-start setting. Unlike
a cold-start setting, a warm-start setting contains
significantly more user-item interactions and could
further improve the performance of collaborative
filtering methods (He et al., 2017). In lieu of a

real-world dataset of NL profiles, which is both ex-
pensive and challenging to collect, we instead sim-
ulate users writing and modifying NL profiles by
prompting instruction-tuned LLMs to generate pro-
files based on past user reviews. We first exemplify
that these machine-generated NL profiles qualita-
tively summarize a user’s preferences concisely
while maintaining a scrutable format. Furthermore,
according to the conducted experiments on two
benchmark datasets, Amazon Review (Movies and
TV) and TripAdvisor , we show how NL user pro-
files can be used to train a transparent, NL-based
recommendation system based on scrutable NL pro-
files rather than uninterpretable user embeddings.
We observe that our NL-based approach has com-
petitive recommendation performance to popular
baseline recommender systems while also being
transparent and scrutable.

Our model enables a transparent and scrutinized
recommendation process with competitive recom-
mendation accuracy. In addition, past work sug-
gests that a transparent and scrutable model is pre-
ferred because it allows users to understand the rea-
soning behind the model’s recommendations and
easily modify their preferences to receive new rec-
ommendations (Radlinski et al., 2022; Balog et al.,
2019). To validate the advanced transparency and
scrutability of our UPR model, we investigate how
editing user profiles affects recommendation per-
formance. For reproducibility, we publicly release
all data and code1.

Our key contributions include:

• A novel method to simulate NL user prefer-
ence profiles from user feedback by prompt-
ing instruction-tuned LLMs, which are shown
to be fluent, informative, concise, and relevant
through a user study.

• A unique recommendation technique that pri-
oritizes language-based input over learned
embeddings, maintaining performance levels
comparable to non-transparent baseline rec-
ommenders.

• An analysis of how editing a user profile im-
pacts the downstream recommendation task.

1https://github.com/jeromeramos70/user-profile-
recommendation
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2 Related Works

2.1 Explainable Recommendation
Explainable recommendation aims to both generate
relevant recommendations and provide a justifica-
tion for why those items are being recommended.
One of the two main perspectives of explainable
recommendation research is explainable machine
learning (Li et al., 2023a). Explainable machine
learning uses various computational techniques to
understand and convey why a model returns a par-
ticular explanation. Examples of machine-learning-
based explainable recommender systems include
using pre-defined templates (Li et al., 2020; Ba-
log et al., 2019), counterfactual explanations (Tran
et al., 2021), visualization (Geng et al., 2022), and
natural language generation for an item-level rec-
ommendation, meaning that the explanation is for
a target user-item pair (Li et al., 2023a, 2021). No-
tably, these works (Li et al., 2023a, 2021, 2020)
often make use of user and item identifiers to create
uninterpretable embeddings, meaning that a user
would need to dramatically change their interac-
tion history in order to update their recommenda-
tions. Rather than focusing on explaining a sin-
gle recommendation (i.e., output) for a given user,
we focus on making the input of the model fully
transparent and scrutable. By focusing on natural
language as the input of the model, the user has
full transparency on what data is used to generate
recommendations and can seamlessly update the
input as necessary. This approach can be seen as
more similar to content filtering methods (Aggar-
wal, 2016; Deshpande and Karypis, 2004), which
matches the attributes of items with the interests
or preferences indicated in a user’s profile. How-
ever, by leveraging LLMs, we are able to use the
pretrained knowledge that an LLM has on the item
set and fine-tune a user’s NL profile to increase
performance on the recommendation task.

2.2 Set-Based Preferences
Many papers investigate the scenario where pref-
erences are expressed over sets, which are then
used to recommend individual items (Sharma et al.,
2019; Balog et al., 2019; Chang et al., 2015). These
set-based preferences are then used to generate rec-
ommendations for individual items. One example
of set-based preferences is tagging, where a user
selects keyword(s) for each item. Examples of tags
include “superhero”, “action”, etc. These tags help
users indicate their preferences in their own person-

alized language. Similarly, Mysore et al. (2023a)
generates a transparent user profile by selecting a
small set of human-readable concepts from a global
inventory of keywords to enable controllable rec-
ommendations. Past research has shown that users
are able to elicit preferences over sets faster than
rating each item individually (Chang et al., 2015).

Most similar to our work is the transparent model
presented by Sanner et al. (Sanner et al., 2023),
which studies how NL profiles can be used as
input for LLMs in near-cold start settings to ob-
tain competitive performance with baseline recom-
mender models. The main novelty of our work
is that we compare the performance of language-
based preferences in a warm start scenario, where
recommender systems have access to significantly
more user-item interactions. Furthermore, rather
than collecting human written NL profiles like San-
ner et al. (2023), we instead use LLMs to auto-
matically generate an NL profile based on past
reviews. Mysore et al. (2023b) has previously
shown that historical user reviews can be used to
generate synthetic narrative queries with LLMs for
narrative-driven recommendation. Not only does
this approach allow us to explore how LLMs can be
used to summarize user preferences in a scrutable
and editable format, but it also mitigates the time-
intensive, costly task of crowdsourcing high-quality
NL profiles written by users. These NL profiles
serve as an automated way to generate set-based
preferences from past reviews, which users can
modify and edit as needed. Lastly, we are the first
work that we are aware of that evaluates how NL
profiles can be updated to receive new recommen-
dations from an LLM-based recommender system
in a warm-start setting.

3 Methodology

3.1 Goal of User Profiles

Currently, there is no open-source, large-scale
dataset of language-based preferences for recom-
mendation. Furthermore, collecting such a dataset
is both challenging and expensive because of the
amount of data and quality needed to effectively
fine-tune and benchmark a model. Instead, we
leverage user text reviews and explicit ratings to in-
fer a user’s preferences and generate a correspond-
ing NL profile. Not only do these reviews give
us insight into which features the user likes and
dislikes, but they also allow us to generate person-
alized profiles written with the user’s own terminol-
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ogy. In addition, by generating NL profiles, users
can automatically receive both their NL profiles
and corresponding recommendations. The user
can then adjust and modify the profile accordingly,
which can save time versus manually crafting a
prompt that provides accurate recommendations.

Balog et al. (Balog et al., 2019) explored using
tags, user-written keywords to describe an item, to
generate template-based profiles. Although tags
have been commonly used for recommendation
tasks (Bogers, 2018; Chen et al., 2020), past re-
search has pointed out issues with tag quality (Sen
et al., 2007). In addition, tags may not provide suf-
ficient granularity of preferences (Radlinski et al.,
2022). We argue that text-based profiles are closer
to how a user naturally describes their personalized
preferences versus a set of tags.

3.2 Identifying and Ranking User Preferences

Let I be the set of all items with respect to target
user u. Each item i ∈ I has a (normalized) rating
r ∈ [−1, 1], where ratings lower than 0 mean the
user disliked an item and ratings higher than 0 mean
the user liked the item. Additionally, each item con-
tains an explanation e, which is a sentence written
by the user in their review that best describes their
feedback for that item. Using a phrase-level senti-
ment analysis toolkit (Zhang et al., 2014), we can
also extract a feature word f from e, where f is
the important keyword of the explanation. For ex-
ample, in the explanation, “the swimming pool is
fantastic”, pool is the extracted feature. We can
then infer a user’s set-based preference for a partic-
ular feature f by calculating the average rating of
If , the set of all items whose feature is f :

rf =
∑

i∈If
ri, (1)

where rf < 0 means that the user dislikes feature
f in general and rf > 0 means the user generally
likes f . We then calculate a utility score U(f) for
a given feature f to take into account how often a
user uses a particular feature in reviews and sub-
tract a discount statement based on its statistical
strength. We define U(f) as:

U(f) = |r(f)| × cov(f)× sig(f), (2)

where cov(f) and sig(f) are the coverage and sig-
nificance scores for a particular feature f . We de-
fine the coverage score as the ratio of items whose

feature is f over the entire item set.

cov(f) =
|If |
|I| . (3)

Additionally, we define the significance score as a
discount statement where the statistical strength is
less than two standard errors, that is:

sig(f) = min

(
2, |rf |/

σt√
|If |

)
, (4)

where σf is the variance of Rf , which is defined
as the set of all ratings r ∈ R with feature f . To re-
duce the noise in the ranking process, we grouped
features by their stems, which were extracted using
the NLTK Porter stemmer (Bird et al., 2009). By
doing so, we can treat features such as “pool” and
“pools” as a single entity rather than two separate
features. We manually inspect the preprocessed
data to ensure that the grouped entities are similar
and remove features that are overly generic (e.g.,
the feature ‘film’ in the movie domain). Once the
utility scores for the entire dataset have been calcu-
lated, we use the features with the highest scores to
describe a user’s preferences. Since we calculate
significance scores using absolute values, features
that are disliked by the user may also be included
in the profile.

Note that our user preference identification and
ranking algorithm is similar to what was devel-
oped by Balog et al. (Balog et al., 2019) for the
MovieLens-20M (ML-20M) dataset (Harper and
Konstan, 2015). However, there are a few key dif-
ferences in our method, which mainly stem from
how the user feedback data is structured. For exam-
ple, our user review data contains only one feature
per item rather than multiple tags per item. Thus,
our coverage score rewards features that appear
more in the dataset rather than adding a penalty
if they are overused. In our scenario, we argue
that this is beneficial because if a user writes a re-
view with a certain feature often, it means that this
feature is important to them.

3.3 Transforming Preferences to NL Profiles
After identifying a user’s top features, we can trans-
form the list of relevant reviews into an NL profile
that captures a user’s general preferences for the
target domain. Using an instruction-tuned LLM,
we can prompt the model to summarise the list of
reviews to create a holistic profile that explains the
user’s general preferences for a particular domain
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(shown in Appendix A.1). After several iterations
of prompt engineering, we provide 5 reviews per
feature in the prompt, which fits within the max
token constraint during experimentation. Since
user-written reviews are used in the prompt, the
resulting NL profile is generated with each user’s
personalized semantics. Since there is no ground
truth for NL profiles, we instead analyze the quality
of the profiles in Section 5.3 and the utility of the
generated profiles by evaluating the performance
of a transparent recommender system trained on
the NL profiles.

3.4 Recommendation Task
Similar to the P5 prompts for LLM-based recom-
mendation (Geng et al., 2022), we complete the
rating prediction task by adding the NL profile to a
prompt (shown in Appendix A.2) and fine-tuning
an LLM to complete a regression task. One key
difference from traditional approaches is that no
user identifiers or item identifiers are used during
the NL profile generation or recommendation tasks.
Thus, users can easily scrutinize the recommen-
dation pipeline at any stage because all inputs are
natural language-based rather than identifier-based.
We further explore scrutability in Section 5.4.

4 Experimental Setup

4.1 Datasets
We conduct our experiments on two publicly avail-
able explainable recommender datasets, Amazon
Movies and TV (Amazon-MT) (He and McAuley,
2016) and TripAdvisor2 (hotels), which focus on
generating explanations for a user-item pair (Li
et al., 2020). Each dataset consists of a user identi-
fier, an item identifier, a rating from 1 to 5, and an
explanation extracted from user reviews. We use an
8:1:1 train/validation/test split. The datasets were
preprocessed to exclude any records where the ti-
tle of the item is missing. To ensure a warm-start
setting, every user and item appear at least once in
each split, and there are at least 5 reviews per user
in the training set. For reproducibility, we save all
profiles generated for recommendation.

4.2 Evaluation Metrics
To measure recommendation accuracy, we use Root
Mean Squared Error (RMSE) and Mean Absolute
Error (MAE), two common metrics in the rating
prediction task for these datasets (Li et al., 2020,

2https://www.tripadvisor.com

Table 1: Statistics of the Amazon-MT and TripAdvisor
datasets.

Amazon-MT TripAdvisor

#users 4,811 9,765
#items 5,459 6,280
#records 288,693 320,023
#features 5,114 5,069
#records per user 60.01 32.77
#records per item 52.88 50.96
#words per explanation 14.14 13.01

2023a). MAP with a relevance threshold of 4.0 and
nDCG are calculated using condensed lists, follow-
ing the evaluation strategy outlined by Sakai (Sakai,
2007); that is, we only consider items that are ex-
plicitly rated in the test set.

4.3 Baselines

We compare our model with the following baseline
recommender systems. All baseline models are
implemented using the Cornac library with default
parameters (Truong et al., 2021).

• Most Popular: An algorithm that recom-
mends items with the most ratings.

• UserKNN-BM25 (Aggarwal, 2016): A col-
laborative filtering method that uses K-
Nearest Neighbors to calculate distance be-
tween users with BM25 re-weighting.

• Item-KNN-cosine (Deshpande and Karypis,
2004): A collaborative filtering method that
uses K-Nearest Neighbors to calculate cosine
distance between items.

• MF (Koren et al., 2009): Matrix Factoriza-
tion learns latent user and item embeddings to
provide recommendations.

• NeuMF (He et al., 2017): a hybrid recommen-
dation model that combines matrix factoriza-
tion with multi-layer perceptrons.

In addition, we compare our model with two
item-level explainable recommender models that
describe why a user might like a target item. For ex-
ample, given “user A” and “item 123” as input, the
model might return a rating of 4.0 with the follow-
ing explanation: “the swimming pool is fantastic”.
Note that both of these models are considered col-
laborative filtering, meaning that they mainly rely
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on user and item identifiers to generate recommen-
dations. While not directly analogous due to our
task of generating explainable NL profiles as input
to a recommender model, this comparison yields in-
sights into the performance of explainable models
trained for rating prediction.

• PETER+ (Li et al., 2021): a small trans-
former designed for rating prediction and ex-
planation generation using context prediction.

• PEPLER-MLP (Li et al., 2023a) An item-
level explainable model that fine-tunes GPT-2
for rating prediction and explanation genera-
tion for a user-item pair.

4.4 Implementation Details
For NL profile generation, we use the features de-
fined in the datasets to identify and rank a user’s set-
based preferences. We then use a custom prompt
for each user to generate an NL profile. We ex-
periment with generating NL profiles using the
7B instruction-tuned versions of Llama2 (Touvron
et al., 2023) and Mistral (Jiang et al., 2023). We
generate each NL profile with a maximum of 200
tokens, a number of features set to 5, and a temper-
ature of 0.7. For reproducibility, we save all gener-
ated user profiles used to fine-tune our model3.

For the recommendation task, we train each
model on the training set, tune hyperparameters
on the validation set, and report the performance
on the test set. The models are trained using ei-
ther the Llama2 or Mistral-based profiles. We use
GPT-2 (Radford et al., 2019) as our pre-trained lan-
guage model and train with a batch size of 8 and
the AdamW optimizer (Kingma and Ba, 2015) with
a learning rate of 3e-4. For full implementation de-
tails, including prompts used and hyperparameter
tuning, refer to Appendix A.

5 Results and Analysis

5.1 Recommendation Performance
We report the performance of our model compared
to baseline models in Table 2. We observe that
UPR performs comparatively well with our base-
line models and is consistently competitive across
all metrics. Importantly, all compared models learn
user preferences from all interactions by taking
advantage of the efficiency of embeddings. In con-
trast, UPR is limited to the information provided

3https://github.com/jeromeramos70/user-profile-
recommendation

in the profile, which has a maximum length of
200 tokens. Consequently, UPR can only learn
from a fraction of the interactions in the dataset.
Nevertheless, UPR performs fairly well under the
aforementioned constraints, meaning that LLMs
can identify relevant items using only interaction
data distilled into a short amount of text.

Even though the NL profile comparatively con-
tains fewer features about the user, we observe that
scrutable NL profiles can be used as a substitute
for uninterpretable user embeddings without sac-
rificing much in performance. Given that newer
models such as GPT-3 (Brown et al., 2020) have
shown better performance than GPT-2 (Radford
et al., 2019) and are trained on more data and natu-
ral language tasks, we anticipate that our model’s
performance will improve with larger-scale models.
However, SOTA models contain significantly more
parameters, meaning that more powerful hardware
is needed to train them.

Given the competitive performance of UPR, we
argue that an explainable model may be useful in
real-life scenarios where human users value the
transparency and scrutability of a set-based pref-
erence model. For example, if a user wanted to
change their profile preferences in the collaborative
filtering model, they would need to make many
changes to their interaction history to see a sub-
stantial difference in their recommended items. For
future work, we plan to study how human users
interact with UPR and investigate the tradeoffs
between traditional recommender methods and a
transparent, scrutable recommender model.

5.2 Effects of Number of Features on
Recommendation Performance

Figure 2: RMSE and MAE over a varying number of
features in NL profile for the Amazon-MT dataset.

To examine the impact that the number of fea-
tures contained in an NL profile has on recommen-
dation performance, we run an ablation study that
studies how changing k, the number of features
used to generate the NL profile affects the down-
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Table 2: Recommendation Performance on the Amazon-MT and TripAdvisor datasets. The best-performing values
are highlighted in bold.

Amazon-MT TripAdvisor

Model RMSE MAE nDCG@10 MAP RMSE MAE nDCG@10 MAP

MostPop 1.505 0.962 0.896 0.815 1.277 0.902 0.932 0.857
UserKNN 0.960 0.707 0.935 0.864 0.836 0.634 0.952 0.883
Item-KNN 1.045 0.790 0.897 0.823 0.890 0.683 0.953 0.852
MF 0.925 0.686 0.941 0.870 0.786 0.599 0.960 0.891
NeuMF 0.943 0.694 0.936 0.866 0.819 0.634 0.955 0.886
PETER+ 0.924 0.685 0.941 0.870 0.803 0.621 0.958 0.889
PEPLER-MLP 0.925 0.672 0.941 0.869 0.793 0.606 0.959 0.889
UPR (Llama2) 0.944 0.678 0.938 0.866 0.804 0.616 0.955 0.885
UPR (Mistral) 0.941 0.679 0.940 0.870 0.804 0.610 0.952 0.887

stream recommendation task. In particular, we
prompt LLama2 to generate NL profiles but only
use reviews from the top-k feature for each user,
where k ∈ {1, 2, 3, 4, 5}. Each set of NL profiles
is then used to fine-tune UPR.

Observing the changes in RMSE and MAE in
Figure 2, a discernible trend emerges: augment-
ing the count of features reduces the loss, but the
improvement in performance sees diminishing re-
turns as additional features are incorporated. This
observed trend is rationalized by the arrangement
of features in order of significance, implying that
subsequently added features hold lesser relevance
for the user. Furthermore, the diminishing returns
of adding features provides empirical evidence that
the feature ranking methodology in Section 3.2
helps select the best features to use in the profile.

An important point to note is that the incorpora-
tion of an excessive number of lower-ranked fea-
tures may potentially introduce noise into the user
profile. Given that a user profile can only accom-
modate a finite amount of text, this noise might, in
turn, compromise the efficacy of the recommenda-
tions provided. As a follow-up study, we plan to
research how to strategically select the number of
features and reviews that best capture a user’s holis-
tic preferences and optimize the recommendation
performance. Furthermore, we set the max token
limit of an NL profile to 200 tokens. We found
that this was qualitatively a reasonable max length
for a profile. However, more research is needed to
study the tradeoffs between the length of the profile
with regard to recommendation performance and
cognitive load for users.

Table 3: User study measuring the quality of the gen-
erated NL profiles. We report the average number of
satisfactory samples out of 50 samples per domain.

Metric Amazon-MT TripAdvisor

Fluency 95% 92%
Informativeness 86% 82%
Conciseness 75% 72%
Relevance 90% 87%

5.3 Qualitative Case Study on NL Profiles
As there is no ground-truth data available for the
NL profile generation task, we instead assess the
quality of our generated NL profiles by conducting
a qualitative case study with users. Five partici-
pants, all of whom are master’s students at a univer-
sity, were shown 50 NL profiles from each dataset
and were tasked with answering whether each NL
profile met each of the following criteria:

1. Fluency: Is the NL profile both syntactically
and semantically correct?

2. Informativeness: Does the NL profile pro-
vide important information for a user profile?

3. Conciseness: Is the NL profile written in a
concise manner?

4. Relevance: Given the list of reviews, is the
NL profile relevant to the user?

Participants were shown positive and negative ex-
amples per criteria in order to improve annotation
quality. Each question is answered with a “yes” or
“no”. We show the results of the user study in Table

13977



Figure 3: Change in Coverage@10 between edited pro-
file versus original profiles when adding a new prefer-
ence for a target feature.

3. The Fleiss’ kappa coefficient among annotators
was 0.82, suggesting a very high level of agree-
ment. Overall, annotators were highly satisfied
with the quality of our generated NL profiles. Both
Amazon-MT and TripAdvisor scored well on flu-
ency, informativeness, and relevance but lower on
conciseness. During follow-up discussions, annota-
tors felt that the profiles contained few grammatical
errors and were generally relevant and informative.
However, they also pointed out that profiles could
be excessively long at times and contain redundant
information. Given that we used a zero-shot ap-
proach to generate profiles, we anticipate that NL
profiles can be improved through either additional
prompt engineering or fine-tuning on the NL profile
generation task.

From manual inspection of the NL profiles for
Amazon-MT, we noticed that Llama2 and Mistral
were sometimes able to infer actors and characters
of a film based on the review, even when not ex-
plicitly mentioned. Although this capability can
potentially improve the downstream recommenda-
tion task, the ability to infer information can also
lead to hallucinations. Consequently, the model
can also generate inaccurate facts and negatively
impact performance. Further research is needed to
ensure that the NL profile generated is factual and
aligns with the user’s interests.

5.4 Scrutinising NL Profile Preferences
To evaluate the scrutability capabilities of UPR, we
simulate a user adding a new preference to their NL
profile. In particular, we select 200 random users
from the original profiles O that do not express any
preference towards target feature t. We then prompt

Mistral-Instruct-7B to edit the profile such that the
user likes t (shown in Appendix A.5) to obtain
the edited profile set C. We randomly sample 100
items from the test set where feature f = t and
100 items where f ̸= t. Finally, we run the model
at inference time and calculate the Coverage@10,
which is defined as the number of items in the top-
10 recommendations where f = t, divided by 10.
We repeat this sampling process five times on both
datasets and use different seeds for robustness. We
report the change in Coverage@10 between O and
C in Figure 3, defined as Ct −Ot.

We observe that the Coverage@10 for all t in-
creases across all samples when using C, meaning
that a user can simply add a preference towards
t to the NL profile, and the model will update
the recommendations accordingly. In addition, the
variance of the change in coverage shows that the
recommendations can be correctly altered consis-
tently.

Importantly, UPR does not require further fine-
tuning when adding new preferences because the
model learned how to interpret NL profiles effec-
tively during the training phase. Furthermore, the
features of each item were not explicitly passed to
the model during fine-tuning or inference, mean-
ing that the model has learned the features of each
item from the NL profiles and its own pre-trained
knowledge.

Overall, we show that UPR is able to learn the
features of each item during training, meaning that
a user can scrutinize and edit their profile to in-
stantly receive updated recommendations. In con-
trast, there is no simple way to update user pref-
erences in traditional collaborative filtering meth-
ods. Consequently, a user would need to drastically
change their interaction history to align the recom-
mendations with their current interests.

It is important to note that the reviews used to
determine the features during the sampling process
may be written by an arbitrary user A in Amazon-
MT rather than the target user B. Thus, user A
might consider the item a ‘comedy’ movie, but
user B may not use the same terminology because
preferences are subjective. Furthermore, user B
still expresses preferences on other features. This
means that they may highly rate non-target items
in both O and C, which can lead to a decreased
change in coverage.
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6 Conclusion and Future Work

In this work, we propose a novel recommendation
model that replaces uninterpretable user embed-
dings with transparent, natural language profiles
that holistically describe a user’s preferences. We
show that instruction prompting can be used with
large language models to create fluent, informative,
and personalized user profiles based on user re-
views. By encoding user preferences using natural
language, we are able to develop a recommender
system that is both transparent and scrutable. Ex-
perimental results show that our method has compa-
rable performance to popular recommender models.
In addition, we show that by adding new prefer-
ences to the NL profile, we can quickly provide
updated recommendations. For future work, we
plan to investigate multi-turn updates to NL pro-
files to simulate user updates over time and explore
how scrutability can be used to adjust recommen-
dations to be less biased.

7 Limitations

The performance of UPR is heavily dependent on
the quality of the user reviews in the dataset, mean-
ing that preferences that are not explicitly men-
tioned often in the review corpora will not be cap-
tured in the NL profile. Furthermore, the average
rating in both datasets is 4.0/5.0, meaning that the
vast majority of NL profiles contain only positive
preferences. Thus, the model does not have many
negative preferences to train on, making it difficult
to edit a negative preferences to the profile (shown
in Appendix A.6).

Another major limitation of using LLMs for
recommendation is that they are notably slower
than traditional recommender systems. Thus, users
would need to wait a significantly longer amount of
time to receive recommendations, which can lead
to lower levels of satisfaction.

Finally, the model is bottlenecked by the infor-
mation contained in the NL profile, meaning that
the length of the profile and the number of fea-
tures impacts recommendation performance. How-
ever, there is a concern that a verbose NL profile
increases cognitive load for users. In terms of prac-
tical utility, making the NL profile too long and
difficult to scrutinize negatively impacts usability
for users. Future work can explore the tradeoffs
between recommendation performance and human
preferences.

8 Ethical Considerations

There are several ethical considerations to consider
when using large language models for recommen-
dation. Firstly, LLMs may show bias towards more
popular items, which can lead to lesser-known
items being ignored. Since recommender systems
learn from user interactions, a bias amplification
loop can be created that causes a greater discrep-
ancy between popular and less-popular items (Chen
et al., 2023). Furthermore, LLMs have also been
criticized for unfairness with regards to underrepre-
sented demographics, highlighting the importance
of metrics that evaluate various social biases in
LLMs (Salutari et al., 2023). Finally, hallucina-
tions are a problematic issue in LLMs because the
model may generate plausible, but incorrect infor-
mation. In the case of recommender systems, the
model might create an NL profile with incorrect
information or recommend an item that does not
exist (Li et al., 2023b). Consequently, safeguards
must be added to ensure that any output from the
language model is truthful and accurate.
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A Appendix

A.1 NL Profile Generation

To generate the profiles, we use the top 5 features
calculated per user in Section 3.2. We then use 5
random reviews from each feature as input for the
prompt, shown in Table 5. We set the max tokens
generated to 200, temperature to 0.7, and seed to 0.

A.2 Recommendation Task

We encode and fine-tune our model using the
following prompt:

“{profile} Based on my user profile, from a scale of
1 to 5 (1 being the lowest and 5 being the highest),
i would give {title} a rating of”

where {profile} is the user profile and {title} is
the target item. In order to improve performance,
we scale ratings from 1-5 to 0-1 when updating
the loss per batch. Ratings are scaled back to their
original values during evaluation.

A.3 Implementation Details

For the recommendation task, we experiment with
the number of features k set between 1 to 5. For
hyperparameter tuning, we experiment with a learn-
ing rate of 1e-3, 3e-4, 1e-5, learning scheduler of
linear and cosine, and batch sizes of 8, 16, and 32.
In addition we train the model for 10 epochs, with
early stopping after 3 epochs of no improvement.

A.4 Qualitative Test Study

The participants are master’s students from the
United Kingdom who volunteered to participate
in the study. The study took about 30 minutes on
average. All participants agreed to allow the data
to reported for research purposes only. There is no
identifiable or sensitive information recorded in the
user study.

Before annotating the samples, the participants
were provided with both positive and negative ex-
amples for each of the four questions to help them
better understand the task. The participants were
then shown every sample from the randomly se-
lected pool of profiles and were asked to indicate
whether the profile fulfilled each of the four criteria.
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Figure 4: Change in Coverage@10 between counterfac-
tual profile versus original profiles for a target feature.

A.5 Adding New Preferences to NL Profile

When sampling users and items from the test set,
we use seeds={0, 42, 100, 200, 300}. To generate
the edited profile set C, we a few shot prompt,
shown in Table 5, with max token set to 300, tem-
perature of 0.7, and seed of 0.

During experimentation, we found that we
needed to increase the max token size of the pro-
files to yield a change in recommendations because
the profile needs more tokens to express a new
preference in the NL profile. To obtain recommen-
dations, we use the same prompt in Appendix A.2
using our fine-tuned model at inference time.

A.6 Editing Negative Preferences to NL
Profile

We experiment with editing an existing positive
preference towards target feature t in a NL profile
to a negative preference to see if a user can receive
less recommendations of t by scrutinizing the
profile. We repeat the same sampling method
in Section 5.4, but instead select 200 users that
positively mention target feature t in their profile.
We then use the following prompt with Llama2 to
counterfactually edit the profile such that the user
does not like t.

"Rewrite the user profile so that the user does
not like beach movies. Keep the profile as sim-
ilar as possible for all other preferences: {profile}."

To keep the counterfactual profiles as similar as
possible to the original profiles, excluding t, we
use the same hyperparameters in Appendix A.1.

We record the change in coverage for the top-

10 recommendations between the counterfactual
versus original profiles in Figure 4. We observe
that the coverage drops, as expected, but the over-
all change is minor across the three features we
tested. This can be attributed to the strong skew
towards positive reviews in the data, meaning that
vast majority of NL profiles used during training
do not contain any negative preferences. In future
work, we plan to train the model using more neg-
ative preferences in order to realize dislikes in the
updated recommendations.

13982



Table 4: We prompt an instruction-tuned LLM with the relevant reviews to generate cohesive and relevant NL
profiles. The result is one NL profile included in our dataset.

Instruction: Summarize in a single paragraph using the first person my general
movie and tv preferences based on my reviews. Do not mention the word
reviews.
Reviews:
- not the most brilliant actress even in the best of circumstances
- in the past 5 years or so i’ve watched close to 8 to 10 films about elizabeth i
...
- bergman & fellini ( tim burton in this century ) remain my all-time favorite
directors
Result:
I enjoy watching movies and TV shows, particularly those with strong per-
formances and well-crafted stories. I have a preference for classic films and
directors such as Bergman and Fellini, and I appreciate a good adaptation of a
play. I also enjoy watching actors take on complex roles and explore their craft.
While I have mixed opinions on some actresses, I generally enjoy watching a
talented performance. Recently, I have been drawn to films about Elizabeth I,
and I appreciate a good historical drama. Additionally, I find it refreshing when
a director can successfully weave together multiple storylines and timelines
into a cohesive and engaging film.
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Table 5: A few shot prompt example to add a new preference towards target feature t to the profile. For all few shot
prompts used for this experiment, refer to our repository.

Modify the user profile so that the user also likes comedy movies. Keep all the
profile as similar as possible for all other preferences.
Original Profile: I generally prefer action-packed movies and TV shows with
plenty of stunts and excitement, but I also appreciate subtle moments of quiet
subtlety and powerful performances. I prefer to watch DVDs instead of most
TV shows, and I have a special interest in the works of certain directors like
Steven Spielberg and Michael Mann. I have been impressed by the recent works
of directors like Steven Soderbergh, and I believe they are making great strides
in modern cinema.
New Profile: I generally prefer action-packed movies and TV shows with
plenty of stunts and excitement, and now I’ve found a liking for comedy movies
too, enjoying their humor alongside the subtle moments of quiet subtlety and
powerful performances that I appreciate. I prefer to watch DVDs over TV
shows, maintaining a special interest in directors like Steven Spielberg and
Michael Mann. The recent works of directors like Steven Soderbergh also
impress me, as I believe they contribute significantly to modern cinema.
Original Profile: As for my movie preferences, I tend to enjoy films that offer
a unique perspective and don’t rely too heavily on cliches. I appreciate when
there is a clear focus on character development and backstory, but I also enjoy
when filmmakers take risks and try something new. I have mixed feelings about
movies that try to tackle complex issues like bioterrorism, as they can often
feel overly sensationalized or heavy-handed. Ultimately, I’m drawn to movies
that offer a fresh take on familiar themes and have a strong sense of style and
pacing.
New Profile: As for my movie preferences, I tend to enjoy films that offer a
unique perspective, including comedy movies, and steer clear of relying too
heavily on cliches. I appreciate clear focus on character development and
backstory, and value when filmmakers take risks and introduce humor alongside
their innovation. My views on movies tackling complex issues like bioterrorism
are mixed, as they can feel sensationalized. Ultimately, I’m drawn to movies
with a fresh take on familiar themes, strong sense of style, pacing, and those
that blend genres effectively, including smart comedies that offer insightful
laughs.
Original Profile: I have a preference for movies and TV shows that showcase
talented actors, particularly those who can bring depth and nuance to their roles.
While I appreciate the performances of actors like John Malkovich and Danny
DeVito, I sometimes wish for a more convincing fit in certain roles. However, I
also enjoy a good story and will often watch movies and shows regardless of
the actors involved. I have a tendency to be critical in my reviews, but I also
believe in being honest and providing constructive feedback.
Result:
I have a preference for movies and TV shows that showcase talented actors,
including those who excel in comedy, and appreciate depth and nuance in their
roles. While I admire the performances of actors like John Malkovich and
Danny DeVito, I sometimes wish for a more convincing fit in certain roles.
However, I also enjoy a good story and will often watch movies and shows
regardless of the actors involved. I strive to be honest and constructive in my
reviews, providing valuable feedback for the benefit of both creators and fellow
viewers.
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