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Abstract

Research in the field of speech emotion recogni-
tion (SER) relies on the availability of compre-
hensive datasets to make it possible to design
accurate emotion detection models. This study
introduces the Multimodal Emotion Recogni-
tion and Sentiment Analysis (MERSA) dataset,
which includes both natural and scripted speech
recordings, transcribed text, physiological data,
and self-reported emotional surveys from 150
participants collected over a two-week period.
This work also presents a novel emotion recog-
nition approach that uses a transformer-based
model, integrating pre-trained wav2vec 2.0
and BERT for feature extractions and addi-
tional LSTM layers to learn hidden representa-
tions from fused representations from speech
and text. Our model predicts emotions on di-
mensions of arousal, valence, and dominance.
We trained and evaluated the model on the
MSP-PODCAST dataset and achieved compet-
itive results from the best-performing model
regarding the concordance correlation coeffi-
cient (CCC). Further, this paper demonstrates
the effectiveness of this model through cross-
domain evaluations on both IEMOCAP and
MERSA datasets.

1 Introduction

Emotions play a significant role in human interac-
tions, as they can significantly impact our thoughts
and actions (Picard, 2000). Speech-based Emo-
tion Recognition (SER) has become increasingly
popular over the last two decades due to its wide
range of applications in human-computer interac-
tions such as digital learning and mental health
monitoring (Singh et al., 2023). In SER systems,
emotions are commonly represented in two ways.
Studies that classify emotions categorically often
use emotions derived from Plutchik’s wheel of emo-
tions (Plutchik and Kellerman, 2013) or Ekman’s
six basic emotion types, which include anger, fear,
disgust, happiness, sadness, and surprise, some-

times with some variations (Ekman, 1992). Emo-
tions can also be measured along continuous di-
mensions, including valence (pleasantness), arousal
(intensity), and dominance (control) (Russell and
Mehrabian, 1977). The dimensional approach to
studying emotions has become increasingly popu-
lar, as it can capture subtle emotional changes and
represent more complex emotions than the discrete
approach.

Despite the significant interest in SER in
academia and industry, several challenges must
be addressed. One of the significant challenges is
the need for comprehensive natural datasets (Wang
et al., 2022; Singh and Goel, 2022). Many datasets
in this field are collected under simulated environ-
ments, which may not accurately reflect genuine
emotions in real-world scenarios. Although some
datasets claim to be natural, they often source their
data from movies, TV shows, and online videos,
raising questions about their naturalness. Another
common challenge for SER is to improve the accu-
racy of emotion prediction. Previous research has
explored emotions from various sources like text,
speech, vision, and physiological data, either sepa-
rately (unimodal) or together (multimodal). Com-
bining different modalities has become a popular
approach in emotion recognition, which many stud-
ies have shown to lead to more accurate prediction
than the unimodal approach (Hou et al., 2022; Lee
et al., 2020; Sun et al., 2021). However, there is a
dearth of prior research using physiological cues
for SER due to limited availability of such data.

Our work aims to address these challenges. First,
we introduce the Multimodal Emotion Recogni-
tion and Sentiment Analysis (MERSA) dataset,
which consists of data collected from 150 partici-
pants in real-world scenarios using a mobile crowd-
sensing approach (Ganti et al., 2011). The data
was collected through daily and weekly ecolog-
ical momentary assessments (EMAs). In total,
we collected 37.42 hours of audio and 2,650 self-
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reported assessments from the EMAs. Addition-
ally, we obtained 49,550 hours of physiological
data from a wrist-worn wearable device. We la-
beled the speech data using a novel method cov-
ering both dimensional and sentiment labels for
each utterance. Second, we developed a model us-
ing a transformer-based approach by implementing
wav2vec (Baevski et al., 2020) and BERT (De-
vlin et al., 2018) to extract acoustic and linguistic
features. We trained and evaluated the model on
the MSP-PODCAST (Lotfian and Busso, 2017)
dataset. The best-performing model achieved com-
petitive concordance correlation coefficient (CCC)
scores on valence and arousal, and we further eval-
uated the model on the IEMOCAP and the MERSA
datasets to demonstrate its cross-domain effective-
ness and reproducibility.

Our work is divided into several sections. Sec-
tion 2 covers related work, while Section 3 explains
how we acquired and pre-processed the MERSA
dataset. Our proposed model is described in Sec-
tion 4, and Section 5 presents the datasets, models,
and evaluation metrics used in our experiments,
along with the results. We finally conclude our
work and identify its limitations in Sections 6 and 7.

2 Related Work

This section discusses existing datasets frequently
used for natural language processing (NLP) re-
search and prior works in multimodal SER, includ-
ing both categorical and dimensional approaches.

2.1 Multimodal Datasets

CH-SIMS (Yu et al., 2020) contains 2,281 video
segments from real-world scenarios, with multi-
modal and unimodal annotations for each utter-
ance. CMU-MOSEI (Zadeh et al., 2018) in-
cludes over 3,000 YouTube videos covering var-
ious topics, such as reviews and debates, and care-
fully selected and annotated by experts. MSP-
PODCAST (Lotfian and Busso, 2017) is a col-
lection of podcast recordings from audio-sharing
websites featuring natural conversations on a wide
range of topics and continually updated since
2017. DECAF (Abadi et al., 2015) captures par-
ticipants’ responses to music videos and movie
clips, alongside physiological signals from EOG,
ECG, and EMG sensors, annotated by 7 exter-
nal experts. RECOLA (Ringeval et al., 2013)
records spontaneous interactions during a remote
collaborative task, including self-reports at the be-

ginning and end of the task, involving 46 partici-
pants. MOUD (Pérez-Rosas et al., 2013) focuses
on Spanish-language YouTube review videos, pair-
ing each utterance with its audio, video stream, and
manual transcription. SEMAINE (McKeown et al.,
2011) provides 959 conversations from 150 par-
ticipants, complete with detailed annotations and
transcriptions. YouTube (Morency et al., 2011)
encompasses a vast collection of product reviews
and opinions from the social media platform, high-
lighting the diversity of public sentiment. Finally,
the widely popular IEMOCAP (Busso et al., 2008)
repository offers a rich dataset from ten speakers,
capturing spoken communication scenarios, facial
expressions, and hand movements.

2.2 Multimodal Emotion Recognition

2.2.1 Categorical
MHA (Yoon et al., 2019) utilizes an attention mech-
anism to selectively focus on relevant text data
segments, which are then applied to correspond-
ing audio frames to improve classification accu-
racy. CAN (Lee et al., 2020) integrates aligned au-
dio and text signals by applying attention weights
from one modality to the other, complementing
the mutual information utilized for classification.
MCSAN (Sun et al., 2021) investigates both inter-
modal and intra-modal interactions between audio
and text. It introduces a cross-attention mechanism
that allows each modality to attend to the other,
refining feature representation through this guided
attention. Sun (Sun et al., 2023) proposes two aux-
iliary tasks to improve multimodal data integration.
This approach helps the network to better capture
and align emotion-related features across modali-
ties, addressing the challenge of insufficient fusion
between audio and text data.

2.2.2 Dimensional
Due to the lack of labeled datasets, the work in (Li
et al., 2021) utilizes unsupervised pre-training
within its contrastive predictive training model and
an attention-based emotion recognizer to enhance
performance, demonstrating the potential of lever-
aging unsupervised techniques for improved accu-
racy. The work presented in (Triantafyllopoulos
et al., 2023) introduces a novel multistage fusion
method, integrating two information streams across
several neural network layers. Combining data out-
puts from BERT and CNN, this approach tested
different fusion stages to identify the most effective
combination for emotion prediction. In (Atmaja
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and Akagi, 2020), the authors explore a multitask
learning approach, finding that text data alone is
effective for valence prediction. In contrast, speech
data can yield competitive results for arousal and
dominance, underscoring the variable impact of
different modalities on emotion recognition. The
work in (Atmaja and Akagi, 2021) adopts a two-
stage training process for acoustic and text features,
employing an SVM for classification through a late
fusion method. In (Srinivasan et al., 2022), the
authors focus on improving speech representations
in predicting emotions by fine-tuning wav2vec and
HuBERT, with additional linguistics features from
a pre-trained BERT. This approach demonstrates
the effectiveness of the audio-only model using
student-teacher transfer learning by achieving a
high concordance correlation coefficient (CCC) on
valence, with and without linguistic features. Fi-
nally, in (Wagner et al., 2023), the authors employ
a transformer-based approach using HuBERT and
wav2vec to achieve good results using only acous-
tic features. Different variants of wav2vec and
HuBERT were tested to find the best-performing
model.

3 The MERSA Dataset

3.1 Data Acquisition

This study recruited 150 college students and staff
between October 2022 and August 2023. Partic-
ipants met a member of the research team twice
in our lab: once for enrollment, device pick-up,
and device setup, and the second time to return
the device. During the initial visit, participants
received detailed information about the data col-
lection procedures and signed a physical consent
form. To ensure ethical research practices, we
received approval from our school’s Institutional
Review Board (IRB), and every team member re-
ceived training through the Collaborative Institu-
tional Training Initiative (CITI Program). A sum-
mary of all the collected data is shown in Table 1.
Each participant was required to participate for two
weeks, although a few participants voluntarily ex-
tended their participation by a few days.

The participants had to complete two primary
tasks during the data collection period. First, they
were required to complete a daily Emotional State
Survey (ESS) using their smartphones. The ESS
consisted of 30 questions, including nine questions
that required spoken responses recorded via the
phone’s microphone. The first audio question asked

Total enrolled participants 150
Male 95
Female 55
Another gender 0
Minimum age 19
Maximum age 51
Average age 25
Median age 24
Surveys collected 3,629
PHQ-9 surveys collected 274
Surveys with audios 2,376
Surveys with audios and emotional la-
bels

1,181

Audio recordings collected 21,384
Total audio length (Hours) 37.42
Average audio length (Seconds) 6.3
Average words per recording 12
Electrocardiogram tests collected 2,376
Daytime physiological data length
(Hours)

49,550

Sleep sessions recorded 2,751

Table 1: Statistics of the MERSA dataset.

participants to describe any significant events or
incidents that happened that day, and the subse-
quent eight audio questions required reading pre-
scripted content aloud. The ESS also included
the Positive Affect (PA) and Negative Affect (NA)
Schedule (PANAS) (Watson et al., 1988), compris-
ing 20 items equally divided between positive and
negative effects. Participants responded on a Lik-
ert scale ranging from 1 (“very slightly or not at
all”) to 5 (“extremely”), and the questions also
probed the timing of these emotions. All responses
were consolidated into a single submission, with
PANAS responses serving as the benchmark for
data annotation. Figure 1 shows the 20 terms used
in PANAS and the responses received from partici-
pants through daily ESS submissions.

Second, participants were instructed to wear the
Fitbit Charge 5 wrist-worn tracker for at least 10
hours daily to collect extensive physiological data.
The choice of Fitbit Charge 5 for our data collec-
tions was based on its ease of use, diverse sensor
capabilities, long battery life, data quality, and data
accessibility (Reid et al., 2017; Dontje et al., 2015;
Diaz et al., 2015), making it superior to many other
devices on the market. Further details about the
device are available in its specifications and user
manual (fit, 2023b,a).
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Figure 1: The 20 terms used in PANAS and the distribution of responses we received through daily ESS.

Our study also included collecting an initial de-
mographic survey, a condensed version of the ESS
excluding the PANAS, and a weekly survey incor-
porating the Patient Health Questionnaire-9 (PHQ-
9) (Kroenke et al., 2001). To the best of our knowl-
edge, MERSA is the most comprehensive dataset
in this field regarding naturalness and comprehen-
siveness. It has the most significant number of real-
world speakers participating (same as AVEC and
SEMAINE), the most significant length of audio
recordings, and an extensive amount of physiologi-
cal data collected simultaneously.

To ensure the quality and quantity of data col-
lected in a crowdsourcing study, it is essential to
monitor participant compliance (Hu et al., 2020;
Zhang et al., 2023). To achieve this, we created
a Java-based web platform to track the study ad-
herence of each participant, including the number
of EMAs submitted and Fitbit usage. Similar to
the work in (Faust et al., 2017), we measured Fit-
bit usage by counting the number of minutes per
day that the device recorded a heartbeat, using a
threshold of 10 hours (600 minutes). The visual-
ization tool allowed us to quickly identify gaps in
the sensor stream and monitor participant progress.
Over the entire study period, we found the mean
Fitbit usage to be 92%, with a median of 100%. We
also collected 2,376 audio-based surveys from 150
students, ranging from 1 to 46, with a median of

13. This result is impressive because participants
were only required to complete 14 daily surveys.
The number of weekly survey submissions ranged
from 1 to 10, with a median of 2, surpassing our
expectations, with some participants contributing
significantly more than required.

3.2 Annotation
Our annotation process distinguishes itself from
methodologies like those used in the IEMOCAP
and MSP-PODCAST datasets, which employ Self-
Assessment Manikins (SAMs) (Lang et al., 1980;
Bradley and Lang, 1994) and expert evaluations
to label audio data along the dimensions of va-
lence, arousal, and dominance. We have adopted a
unique and novel method to label our data, which
involves self-reported emotions from participants.
This approach is supported by theories and val-
idations from credible sources from (Mehrabian
and Russell, 1974; Mehrabian, 1997; Russell and
Mehrabian, 1977; Wyczesany and Ligeza, 2015).
These sources have identified emotional states used
in PANAS for their unique properties, which show
that most of the PA and NA terms in PANAS are di-
rectly proportional to scales of valence, dominance,
and arousal. Following this property, we can label
the data using the following method.

To compute valence and dominance scores from
PA, we directly utilize the scores for PA terms as
they are, within a range of 1 to 5 for each term.
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Dataset Year Type Modalities Subjects Source Sent Emo Language Duration
(hh:mm:ss)

MERSA 2023 Natural {a, t, p} 150 Crowdsourced ✓ ✓ English 37:42:00
CH-SIMS 2020 Natural {a, t, v} 474 Online ✓ ✗ Mandarin 02:19:00
CMU-MOSEI 2018 Natural {a, t, v} 1,000 Online ✓ ✓ English 65:53:36
MSP-PODCAST 2017 Natural {a, t} 2,100 Online ✓ ✓ English 237:56:00
DECAF 2015 Induced {a, v, p} 30 Crowdsourced ✗ ✓ English 44:00:00
RECOLA 2013 Natural {a, v, p} 46 Crowdsourced ✗ ✓ French 03:50:00
MOUD 2013 Natural {a, t, v} 101 Online ✓ ✗ Spanish 00:41:30
AVEC 2012 Natural {a, v} 150 Crowdsourced ✗ ✓ English 06:30:00
SEMAINE 2011 Acted {a, v, t} 150 Crowdsourced ✗ ✓ English 06:30:00
YouTube 2011 Natural {a, t, v} 47 Online ✓ ✗ English 00:23:30
IEMOCAP 2008 Acted {a, t, v} 10 Crowdsourced ✗ ✓ English 11:28:12

Table 2: Comparison of the MERSA dataset with previous sentiment analysis and emotion recognition datasets.
Modality covers the subset of modalities from (a) audio, (t) text,(v) vision, (p) physiological. Duration represents
total length of raw data before any preprocessing.

However, for negative affect terms, the scoring is
inverted: a score of ‘1’ (indicating minimal neg-
ativity) is reinterpreted as ‘5’, and conversely, a
score of ‘5’ (indicating extreme negativity) is rein-
terpreted as ‘1’. This method allows the aggregated
scores from PA and NA to determine the valence
and dominance scores, varying from a minimum of
20 to a maximum of 100. Calculating arousal in-
volves a more straightforward approach by directly
summing the scores from PA and NA without in-
verting any values. This method represents the
first attempt to correlate PANAS emotional states
directly with the dimensional scores of valence,
arousal, and dominance.

Our sentiment labeling process closely aligns
with the characteristics of PANAS to label emo-
tions as positive, negative, or neutral. We follow a
similar approach to label valence by inverting the
NA and summing up the scores from the PA. This
results in a sentiment score range between 20 and
100. Our dataset is initially unlabeled, so we do not
use the actual distribution of emotions to set our
threshold. Instead, we divide the sentiment score
range into three evenly distributed ranges between
20 and 100 for sentiment labeling.

3.3 Transcription

The speech data from the participants in MERSA
were first transcribed using the Amazon AWS tran-
scription service. Subsequently, to check for ac-
curacy, these automatic transcriptions underwent
manual transcription. The manual checks were
thoroughly carried out to ensure transcription ac-
curacy, resulting in a word error rate (WER) of

1.6%. An overview of the MERSA dataset and
other well-known datasets used for SER and senti-
ment analysis is presented in Table 2.

4 Proposed Framework

To provide a clear understanding of the network
architecture of our emotion recognition system,
we have included Figure 2. The audio input and
corresponding transcriptions were processed sep-
arately using wav2vec (Baevski et al., 2020) and
BERT (Devlin et al., 2018) to extract features, and
both are foundational models for speech-related ap-
plications. The wav2vec 2.0 was pre-trained on a
large LibriVox dataset and fine-tuned on the whole
Libri Speech dataset. It achieved the best results
(WER) while using 100 times less labeled data than
previous SOTA ASR systems. The model has over
95 million parameters and 12 transformer layers,
with a model dimension of 768. BERT was pre-
trained on a large corpus of English text and applies
its self-attention mechanism to learn contextualized
word embeddings. The BERT-base model has 12
transformer layers, 110 million parameters, and an
embedding size 768.

Before being processed by wav2vec, the audio
files were checked to ensure they were already in
16kHz and mono channel format. The raw audio
is processed using wav2vec to transform it into a
sequence of 768-dimensional feature vectors per
time step. Given a raw audio waveform, Xaudio,
of shape [T ], where T is the number of time steps
in the audio signal, Wav2Vec 2.0 processes Xaudio
through its layers to produce a high-dimensional
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Figure 2: The overall workflow and architecture of our
proposed method, consisting of 3 main modules.

representation, Haudio, of shape [T,D], with D be-
ing the feature dimension (e.g., 768 for the base
model). Mean pooling is applied across the time
dimension to condense Haudio into a single feature
vector, Faudio, representing the entire audio clip:

Faudio =
1

T

T∑

t=1

Haudio(t)

This results in the final feature vector, Faudio, of
shape [D]. Similarly, the BERT model extracts a
sequence of 768-dimensional feature vectors from
the text, and we utilize the [CLS] token represen-
tation to obtain a single 768-dimensional feature
vector, resulting in Ftext of shape [D] to ensure text
features are condensed to the same dimensionality.

Then, audio and textual feature vectors are con-
catenated to form a unified representation via early
fusion before feeding them into the first dense layer.
These audio and text features are fused to create
a 1536-dimensional combined feature vector. For
input features Faudio and Ftext, both of shape [D],
fusion (concatenation) operation combines these
two vectors along the feature dimension to produce

Ffused:
Ffused = [Faudio;Ftext]

resulting in Ffused of shape [2D]. We then com-
pute mean and standard deviation statistics on these
merged features and normalize them to ensure that
they are on a consistent scale for model training.

Then, the model leverages a sophisticated
arrangement of Long Short-Term Memory
(LSTM) (Hochreiter and Schmidhuber, 1997)
layers followed by fully connected (dense)
layers to effectively capture both the temporal
dynamics and complex relationships inherent in
emotional expression data. The model’s core
is a sequence of five LSTM layers with 512
hidden units each, configured to process the input
data in a sequence-first manner. This design
choice allows the network to maintain a rich
contextual understanding of the input features,
which is crucial for accurate emotion prediction.
To mitigate overfitting, a dropout rate of 0.5 is
applied within the recurrent layers. Following the
recurrent layers, the model includes three dense
layers. The first two layers have 256 and 128 units,
respectively, and use ReLU activation functions
to introduce non-linearity. They also incorporate
dropout for regularization. The final dense layer
is designed to produce continuous output values
for each emotion dimension, aligning with the
number of output emotion dimensions (e.g., 3
for valence, arousal, and dominance), and uses a
linear activation function. A dropout rate of 0.5
is applied between these dense layers to improve
regularization, which is consistent with the dropout
strategy used in the LSTM layers.

The concordance correlation coefficient (CCC)
has become the standard evaluation metric for di-
mensional emotion. We implement a customized
loss function that optimizes for evaluation and
model selection for CCC. For two random vari-
ables X and Y , CCC and CCCLoss L are defined
as

CCC =
2ρσxσy

σ2
x + σ2

y + (µx − µy)2
(1)

L = 1− CCC (2)

The ρ in this equation is the Pearson correlation
coefficient between the predicted and actual values,
σ and µ are standard deviations and mean, respec-
tively. CCC measures how well the two variables
(actual values and predicted values) are aligned.
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Methods CCC
V A D

w2v2-b + BERT-b 0.516 0.490 0.494
w2v2-b + BERT-l 0.498 0.431 0.483
w2v2-l + BERT-b 0.551 0.528 0.550
w2v2-l + BERT-l 0.525 0.571 0.510
w2v2-b + BERT-b + L 0.632 0.653 0.569
w2v2-b + BERT-l + L 0.657 0.640 0.571
w2v2-l + BERT-b + L 0.620 0.545 0.633
w2v2-l + BERT-l + L 0.617 0.561 0.621

Table 3: Performance of different Transformer-based
architectures trained and evaluated on the MSP-
PODCAST dataset.

5 Experiments and Results

5.1 Datasets

We have trained our model to predict emotions
in three dimensions (valence, arousal, and domi-
nance) using the MSP-PODCAST (version 1.11)
dataset (Lotfian and Busso, 2017). The original
valence, arousal, and dominance labels range from
1 to 7, which we have normalized to a range of 0 to
1. We have used the official partition of the dataset
for training, validation, and testing. Our test data
is test-1, and we have 84,030 recordings for train-
ing, 19,815 recordings for validation, and 30,647
recordings for testing. To demonstrate the effec-
tiveness of our model, we have evaluated cross-
domain results on both the IEMOCAP and MERSA
datasets. We have preprocessed both datasets’ au-
dio files and emotional labels to the same scale as
the MSP-PODCAST. We have obtained required li-
censes and signed forms for using MSP-PODCAST
and IEMOCAP datasets. The MERSA dataset has
also been fully anonymized to remove any identity-
related information.

5.2 Experimental Settings

The model was developed and executed on Google
Colab Pro using an NVIDIA A100 GPU with driver
version 533.104.05, CUDA version 12.2, system
RAM of 83.5 GB, and GPU RAM of 40 GB. For
efficient batch processing during the training phase,
the model was trained with a batch size of 8 for
20 epochs. The implementation was carried out in
the PyTorch framework, utilizing the Adam opti-
mizer (Kingma and Ba, 2014) with an initial learn-
ing rate of 1× 10−4. Performance assessment was
conducted on the IEMOCAP and MERSA datasets
using 5-fold and 10-fold cross-validation, respec-
tively.

We were inspired by the research of (Wang et al.,

2021) and evaluated two variants of each foun-
dation model for feature extraction. The mod-
els we evaluated were: wav2vec 2.0-base-960 h
(w2v2-b)1, wav2vec 2.0 large (w2v2-l)2, BERT-
base (BERT-b)3, and BERT-Large (BERT-l)4, with
and without the LSTM layer.

5.3 Results and Discussion

Table 3 compares the performance of different pre-
trained models for predicting emotions in the con-
text of the MSP-PODCAST dataset. Each model
underwent training and evaluation using this spe-
cific dataset.

The combination of wav2vec 2.0 base, BERT
base, and LSTM layers performed the best of all the
pre-trained model configurations evaluated, achiev-
ing the highest CCC scores. Specifically, this
model configuration achieved a CCC of 0.632 for
valence and 0.653 for arousal, indicating its robust
predictive capability for these emotional dimen-
sions. However, a few other variants performed
better than this configuration for the dominance
dimension.

One consistent observation across the evalua-
tions was that models incorporating LSTM layers
performed better than those lacking this architec-
ture across all three emotional dimensions. This
outcome suggests that LSTM layers effectively im-
prove model performance for dimensional emo-
tion predictions. Another interesting trend was
observed among models without LSTM layers. In
these cases, the w2v2-l variant consistently pro-
duced more accurate predictions than the w2v2-
b variant despite both models incorporating the
BERT base. Notably, the w2v2-l led to a 7.75%
improvement in arousal prediction accuracy, the
most pronounced enhancement across the emo-
tional dimensions assessed. These findings indi-
cate that while LSTM layers significantly improve
valence predictions, the wav2vec large variant no-
tably boosts arousal prediction accuracy.

Table 4 outlines the results of cross-domain eval-
uations, highlighting the performance of baseline
models across different datasets. Our model exhib-
ited competitive performance in predicting arousal

1https://huggingface.co/facebook/
wav2vec2-base-960h.

2https://huggingface.co/facebook/
wav2vec2-large.

3https://huggingface.co/google-bert/
bert-base-uncased.

4https://huggingface.co/google-bert/
bert-large-uncased.
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Dataset Method Modality CCC
V A D

IEMOCAP

Two-stage SVM (Atmaja and Akagi, 2021) a + t 0.595 0.601 0.499
Dimensional MTL (Atmaja and Akagi, 2020) a + t 0.446 0.594 0.486

Multi-stage fusion (Triantafyllopoulos et al., 2023) a + t 0.714 0.639 0.575
RL-BERT+CNN (Srinivasan et al., 2022) a + t 0.582 0.667 0.545
Contrastive Unsupervised (Li et al., 2021) a 0.752 0.752 0.691

Pre-trained Transformer (Wagner et al., 2023) a 0.478 0.663 0.518
w2v2-b + BERT-b + L a + t 0.625 0.661 0.570

MSP-PODCAST

Multi-stage fusion (Triantafyllopoulos et al., 2023) a + t 0.714 0.639 0.575
RL-BERT+CNN (Srinivasan et al., 2022) a + t 0.582 0.667 0.545
Contrastive Unsupervised (Li et al., 2021) a 0.752 0.752 0.691

Pre-trained Transformer (Wagner et al., 2023) a 0.638 0.745 0.655
w2v2-b + BERT-b + L a + t 0.632 0.653 0.569

MERSA w2v2-b + BERT-b + L a + t 0.641 0.593 0.575

Table 4: A comparison between our top-performing model (highlighted) and other baseline models using various
benchmarks.

(CCC of 0.653) and dominance (CCC of 0.569)
within the MSP-PODCAST dataset, coming sec-
ond only to the outcomes reported in (Li et al.,
2021).

Following established experimental protocols,
we subjected our model to cross-domain assess-
ments using the IEMOCAP and MERSA datasets
to validate our evaluation further. The results,
shown in Table 4, demonstrate the effectiveness
of the w2v-BERT-l-L model configuration. When
evaluated against the IEMOCAP dataset, the model
achieved CCC scores of 0.625 for valence, 0.661
for arousal, and 0.570 for dominance. This cross-
domain analysis highlights the effectiveness and
applicability of our model across diverse emotional
datasets.

In this work, we only utilized audio and text
data, excluding the physiological data from the
150 participants. Generally, our physiological data
covers exercise, cardiovascular, and sleep metrics,
each requiring different integration strategies for
emotion recognition. For example, (Sarkar and
Etemad, 2020) processed unlabeled ECG data us-
ing a self-supervised approach to learn generalized
features and then used a separate network to clas-
sify emotions based on these representations with
minimal labels. There are existing multimodal ap-
proaches that integrate physiological data with au-
dio or text for emotion recognition (Katada et al.,
2022; Chen et al., 2023). In future work, we plan
to explore effective feature extraction methods and
fusion strategies to integrate the physiological data
we have collected, allowing us to investigate pat-
terns of emotional changes in greater detail.

6 Conclusions

This paper introduces the MERSA dataset, one
of the most comprehensive collections for multi-
modal emotion recognition and sentiment analysis.
It comprises 21,384 sentences spoken by 150 real-
world individuals, including both natural responses
and scripted monologues. Out of these, 10,629
sentences involve self-assessments of the speakers’
emotional states, which we have labeled with di-
mensional tags for valence, arousal, and dominance
and sentiment tags for positive, negative, and neu-
tral emotions. Additionally, the dataset contains
significant physiological data that can be used for
SER and other relevant studies. Although we have
not utilized physiological cues in this study, we
intend to use them in future studies to gain more
insights into emotion recognition. The dataset and
the best-performing model are currently available
upon request, and we expect it to be a valuable
resource for the community to pursue various NLP
research initiatives. 5

Transformers have significantly impacted vari-
ous artificial intelligence tasks, including Speech
Emotion Recognition (SER). Our research has val-
idated their effectiveness by analyzing and eval-
uating popular transformer-based speech models
for recognizing emotions in multiple dimensions.
Built upon the MSP-PODCAST dataset, our model
achieved competitive performance by recognizing
valence with a CCC score of 0.683 and 0.590 on
arousal and dominance, respectively. To further
verify the effectiveness of our approach, we have
evaluated its performance on the IEMOCAP and
MERSA datasets, and it has also achieved compet-
itive results.

5https://github.com/FIU-MOSAIC/MERSA_SER.
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7 Limitations

There are limitations to both the dataset and the
proposed model. The dataset’s annotations rely
on self-reported assessments, often considered the
most accurate reflection of subjects’ genuine emo-
tions in the natural environment. However, like
external expert annotations, they are not free from
biases. Although we implemented a web dashboard
for monitoring survey submission status, minimum
wearable usage, and distribution of responses to
the EMAs to improve data quality and mitigate the
risk of deliberate misleading labeling, the risk can-
not be entirely eliminated, potentially undermining
the dataset’s reliability and integrity. While most
similar datasets in this field lack demographic in-
formation, MERSA includes such data, providing
valuable insights. However, its demographic range
is limited, as most participants are college students.
This demographic homogeneity might limit the
dataset’s generalizability to broader populations.
Nonetheless, we hope that including age informa-
tion for each participant enhances the dataset’s ap-
plicability for related NLP and healthcare tasks,
such as depression detection.

Our model was developed and evaluated using
diverse datasets that varied in their collection, an-
notation, and processing methodologies. While
this diversity is enriching, it could introduce biases,
and our preprocessing workflow may only apply
to datasets with both audio and text available. Our
model relies on audio signals and textual transcripts
to predict dimensional labels, which may be less
suitable for real-time applications requiring swift
analysis and response, unlike some audio-based
SER frameworks.
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