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Abstract

Machine translation is used in e-commerce
to translate second-language queries into the
primary language of the store, to be matched
by the search system against the product cata-
log. However, many queries contain spelling
mistakes. We first present an analysis of the
spelling-robustness of a population of MT sys-
tems, quantifying how spelling variations af-
fect MT output, the list of returned products,
and ultimately user behavior. We then present
two sets of practical experiments illustrating
how spelling-robustness may be specifically
improved. For MT, reducing the number of
BPE operations significantly improves spelling-
robustness in six language pairs. In end-to-
end e-commerce, the inclusion of a dedicated
spelling correction model, and the augmenta-
tion of that model’s training data with language-
relevant phenomena, each improve robustness
and consistency of search results.

1 Introduction

In many e-commerce settings that support users
across multiple language backgrounds, machine
translation (MT) is used to translate search queries
from the user’s preferred language into the primary
language of the store in order to match those search
queries against the product catalog. Search queries,
however, are prone to spelling mistakes (e.g., typos
or misspelled words) or, more generally, spelling
variations (e.g., leaving out diacritics as shorthand
or due to keyboard limitations).

Robustness of MT systems in the face of such
“noisy” input has been a persistent focus of study
in both statistical and neural translation. However,
most work has considered only MT performance
in isolation: if standard MT metric scores and/or
robustness scores increase, then the MT system is
more robust and the improvement is successful.

We consider by contrast in this paper the multi-
lingual e-commerce setting: a specific application

of MT where the system’s output is not the end of
the story. Consider a product search system that
delivers search results based on a user’s input that
has first undergone MT. The quality of the search
results then partially depends on the MT system’s
robustness to misspellings or typographical prefer-
ences in the original input. An additional spelling
correction step can also precede MT to further mit-
igate the impacts of noisy input. We illustrate that
targeted improvements to the MT system and the
spelling correction system can improve the robust-
ness of the product search system as a whole to
spelling variations.

Our contributions in this paper are as follows:
Using test sets of rightly and wrongly spelled

search queries in multiple secondary languages,
along with targeted metrics of MT robustness and
search result difference (Section 3), we quantify
how the spelling-robustness of industrial-grade MT
systems impacts the e-commerce experience. We
show that MT can implicitly correct for spelling
errors up to half the time, that the properties of the
retrieval system also impact the search results, but
that correctly spelled queries still tend to lead to
better shopping outcomes (Section 4).

Via modeling experiments, we demonstrate that
MT’s spelling-robustness can be significantly im-
proved by reducing the number of BPE operations
(Section 5). We measure the effect of a dedicated
spelling correction model, and we improve its con-
tribution as well by augmenting its training data
with language-relevant phenomena such as missing
diacritics (Section 6).

2 Related Work

Our e-commerce scenario, where users’ search
queries are automatically translated to match the
language of the product catalog, is fundamentally
similar to the setups presented by Guha and Heger
(2014) and Yao et al. (2020), or the QT alternative
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studied by Saleh and Pecina (2020).
The most straightforward method of measuring

MT robustness is via standard reference-based met-
ric scores — such as BLEU (Papineni et al., 2002),
chrF (Popović, 2015), or TER (Snover et al., 2006)
— on a test set of interest. In this formulation,
robustness is judged by comparing the MT sys-
tem’s score when translating a damaged version
of the input against its score on the corresponding
“clean” text. The approach is popular for evaluating
both SMT and NMT performance in the face of
spelling errors (Bertoldi et al., 2010; Belinkov and
Bisk, 2018), social-media content (Vaibhav et al.,
2019), and non-parallel training data (Khayrallah
and Koehn, 2018). We follow Niu et al. (2020) in
dispreferring this approach.

Instead, researchers have proposed targeted ro-
bustness metrics that go beyond the standard scor-
ing of an MT output against a reference translation
(Michel et al., 2019; Niu et al., 2020; Bergmanis
et al., 2020). Our analyses use several of the same
metrics, though sometimes with minor differences
to accommodate our particular scenario. See Sec-
tion 3.2 for details.

Prior work has demonstrated how MT robust-
ness may be improved, either via data augmen-
tation that targets different kinds of spelling mis-
takes or “noise” (Heigold et al., 2018; Belinkov and
Bisk, 2018; Karpukhin et al., 2019; Vaibhav et al.,
2019; Bergmanis et al., 2020) or via specific model-
ing improvements (Bertoldi et al., 2010; Belinkov
and Bisk, 2018; Heigold et al., 2018; Michel et al.,
2019; Niu et al., 2020). The BPE-based case study
we present in Section 5 contributes to the modeling
line of work. Our work in Section 6 meanwhile
follows the data augmentation approach.

Of special note to Section 5, Post and Duh
(2019) tried adjusting the number of BPE opera-
tions, among other hyperparameters, in MT sys-
tems aimed at the translation of user-generated
texts. Their robustness application was there-
fore much more general than our present study
of spelling mistakes, and it was evaluated from the
point of view of overall MT performance only. Our
experiments are more narrowly focused, and our
evaluation more targeted.

3 General Setup

3.1 Test Sets

We sourced wrongly spelled search queries by tak-
ing a sample of historical traffic from each of 25

secondary languages supported by a multilingual
e-commerce store. Samples were biased towards
containing spelling mistakes according to in-house
automatic spelling correction models. (See Ap-
pendix A for construction details.) Note that these
wrongly spelled search queries consist of both un-
intentional and intentional misspellings, ranging
from typos or homophone replacement to “text-
speak” (as in Spanish q instead of que). Some
languages are represented more than once among
the 25 if they are supported as secondary languages
for multiple primary languages (such as English
queries to be translated into German vs. Japanese),
but we treat these as separate test sets: we expect
the distribution of queries to be different in each
case, and the MT models used are different as well.

From each traffic stream we selected 11,000
unique queries to send to human annotators. The
annotators were asked to perform three main tasks
for each query: first, to verify that it was in the ex-
pected secondary language and that the query’s in-
tent was understandable; second, to record whether
the query was misspelled or not; and third, to pro-
vide a correctly spelled version if necessary. The
result of this human annotation provided us with
a variable number of rightly and wrongly spelled
query pairs for each secondary traffic stream. Fi-
nal test set sizes range from 875 query pairs up
to 6,242, with an overall average of 3,432. See
Appendix A for the complete list.

3.2 Robustness Metrics

Formally, each entry in our test sets consists of
a rightly spelled input query xr and a wrongly
spelled version xw; we also assume their corre-
sponding machine translations yr and yw. Our goal
is to quantify the spelling-robustness of each MT
system in question.

Niu et al. (2020) define a reference-free Consis-
tency metric based on the harmonic mean of two
directional invocations of a standard MT metric.
(Bidirectionality ensures that the result of compar-
ing two translations is symmetric.) In the original
work, the authors base the Consistency score on
BLEU. We prefer chrF over BLEU throughout this
work; the use of chrF instead in Equation 1 is the
only change.1 Consistency, designed to evaluate

1We implement robustness metrics (and later evaluate MT
results) using chrF instead of BLEU for several reasons. First,
the average length of a search query in our test sets is 3.3 raw
words, making BLEU’s four-gram statistics sparse and unreli-
able even at the corpus level. Perhaps most importantly, the
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two output variants against each other, is an intu-
itive fit for our use case.

Consistency = 2 ⋅ chrF(yw, yr) ⋅ chrF(yr, yw)
chrF(yw, yr) + chrF(yr, yw)

(1)
Michel et al. (2019) introduce a measurement

that explicitly compares the effect of a noisy input–
output pair on the source versus target side, though
the metric still expects a reference translation. One
term quantifies the relative fraction of the MT met-
ric score lost by the noisy translation; it is then
added to a term measuring the similarity between
the clean versus noisy source side in order to form
an overall Success metric. In our reference-less
setting, we compute a Pseudo-Success metric by
replacing the reference with yr, which gives the
form in Equation 2.

Pseudo-Success =max (1 − chrF(yw, yr), 0)
+ chrF(xw, xr) (2)

The presence of the spelling mistake in the input
(i.e., having to translate xw instead of xr) is deemed
a successful adversarial attack if Success > 1.

Finally, we introduce our own simple MT ro-
bustness measure that tracks whether the two MT
outputs yw and yr are equal. This is a binary metric
(Equation 3) that we believe is particularly suitable
to our search-query use case: if the two MT out-
puts are equal, then the MT system has successfully
“corrected” or regularized out any downstream ef-
fect of the source-language spelling mistake.

Equal = (yw ?= yr) (3)

3.3 Product Search Metric
In multilingual e-commerce, a query and its corre-
sponding translation yield a set of product search
results. We represent these results as the ranked
list of the top 16 product IDs that would be dis-
played. Formally, we define Pr as this set of top
products as a function of the rightly-spelled query
xr, its translation yr, its input language ℓ, and the
e-commerce store s — and analogously for Pw:

Pr = Search(xr, yr, ℓ, s) (4a)

Pw = Search(xw, yw, ℓ, s) (4b)

years since 2020 have led to an increased consensus in the MT
field demonstrating chrF as a generally better lexical metric
(Kocmi et al., 2021; Freitag et al., 2022). Finally, we believe
that using chrF remains in keeping with the Consistency met-
ric’s original introduction and intent: Niu et al. (2020) note
that it could be based on “any quality measurement metric.”

To compare lists Pw and Pr, we use a variant
of the Normalized Discounted Cumulative Gain
(NDCG) score, which measures the quality of a
hypothesized ranked list against a gold-standard
reference list, with more weight assigned to the
higher positions than lower ones. In our setting, we
use Pr as the reference list and compute NDCG as

NDCG =
∑min(∣Pw∣,∣Pr∣)

i=1 (P (i)
w

?
∈ Pr)

log2(i + 1)
/∣Pr∣

∑
i=1

1

log2(i + 1) (5)

4 Analysis of MT Robustness

In this section we analyze the robustness of
production-grade MT systems to spelling varia-
tions in the input, as exemplified by our test sets.
Measures of MT robustness, difference in prod-
uct search results, and difference in user behaviors
track the effect of misspelled MT input through the
rest of the e-commerce experience.

4.1 Procedure

We translated our 25 sets of rightly and wrongly
spelled queries through two types of production-
grade MT systems: the publicly available Amazon
Translate service as of April 2023, and our own in-
house MT systems supporting secondary-language
search in e-commerce. Note that the former are
generic systems aimed at a wide variety of MT
applications, while the latter are trained specifically
for translating search queries.

Given the MT inputs and outputs, we computed
Consistency (Equation 1), Pseudo-Success (Equa-
tion 2), and Equal Output (Equation 3) for each
MT system. Applicable metrics use the definition
of chrF that is included with SacreBLEU 1.4.14
(Post, 2018). We also generated the top 16 search
results for each query and computed the NDCG
scores (Equation 5).

We apply no tokenization or normalization other
than lowercasing the strings: capitalization is not
a reliable signal when processing user-generated
search queries. Our chrF-based robustness scores
are aggregated from the segment level to the corpus
level by adding up the underlying sufficient statis-
tics (as in chrF itself) rather than by averaging the
segment-level scores. The corpus-level Equal Out-
put and NDCG scores are the mean values across
all queries in the test set.
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4.2 Misspelling’s Effect on MT Output

We computed scores for each of our population
of 50 MT systems according to each of the three
spelling-robustness metrics.

It is first worth noting the extent to which these
scores correlate with each other. For this we com-
puted the Pearson linear correlation coefficient (ρ)
for each pair of metrics. From most to least similar,
the correlation between Consistency and Pseudo-
Success is ρ = −0.78, between Consistency and
Equal Output ρ = 0.47, and between Pseudo-
Success and Equal Output ρ = −0.33. These three
metrics, therefore, each seem to have a somewhat
different view of spelling-robustness.2

The raw scores obtained by our 50 MT systems
on these three metrics are shown in Figure 1, in the
form of correlation plots depicting each possible
pair of metrics at a time.

The MT systems illustrate a widely varying de-
gree of robustness — a quantification that we do
not believe has been presented in prior work. It
is commonly assumed anecdotally that practical
MT systems do learn how to cope with “some”
degree of spelling variation, based on the range
of misspellings illustrated in the system’s training
data along with the model’s ability to generalize
from that training. Here we find that the capabil-
ity to produce the same output in the face of a
spelling error ranges from 0.3% of our test cases
up to 54.7%. Thus, spelling errors could be auto-
matically “erased” up to half the time — or perhaps
almost never.

Only seven of 50 MT systems score less than
1 on the Pseudo-Success metric when aggregated
over all the examples in the applicable test set. That
is, a spelling mistake still usually degrades the MT
output more than the input and thus constitutes a
“successful” attack.

4.3 Misspelling’s Effect on Search Results

The fact that yr and yw differ does not necessarily
mean that the search results will differ as well.
Ideally, the sophisticated processes of matching and

2We initially included a standard MT metric in our
reference-less scenario by computing the chrF of yw against
yr as a pseudo-reference. However, we found that these
“Pseudo-chrF” scores were numerically nearly identical to
the Consistency metric (ρ = 0.98). This makes sense: our
implementation of Consistency is simply the harmonic mean
of two chrF scores, and chrF is itself based on the harmonic
mean of character-level precision and recall. The choice of
which string is used as the “hypothesis” versus “reference”
has little impact.

ranking relevant products will be able to implicitly
“correct” or regularize translation variations where
the user’s shopping intent is still the same.

Indeed, there is much variation in the degree to
which robustness in the MT output predicts robust-
ness in the list of search results. Figure 2 illustrates
the relationship between NDCG and each of Equal
Output (ρ = 0.96), Consistency (ρ = 0.62), and
Pseudo-Success (ρ = −0.44).

At a high level, MT systems that are more robust
to spelling errors do tend to lead to search results
that are more similar to the equivalent correctly
spelled query, as we would expect. The search
system’s regularizing effect is however also clear.
There is some overlap in search results even for MT
systems whose output is almost always affected by
a spelling error. Systems with the lowest NDCG
scores interestingly tend to score near the middle
of the range on Consistency and Pseudo-Success,
which suggests that the spelling mistakes that most
disrupt MT are not necessarily the same as the ones
that most disrupt search.

4.4 Misspelling’s Effect on Shopping Success
Our final analysis examines the effect of the whole
misspelling–translation–search chain on online
shoppers’ experiences. We use customer behav-
ior as a proxy for shopping experience and investi-
gate if misspellings lead to changes in interaction
with search results. We searched our e-commerce
store logs for records containing any (xw, yw) or(xr, yr) pair from our test sets, along with whether
any of the following actions was associated with
each search: clicking on a result, adding a product
to the shopping cart, or reformulating the query.
These records are sourced over a one-year period
to avoid seasonal effects.

Since our original test sets (xw) were sourced
over a different time period and then manually cor-
rected, it is not guaranteed that the same queries
appear in the logs during the analysis period — or
that the machine translations made of them at dif-
ferent points throughout the year match the ones we
created at a single point in time. Our extracted cus-
tomer behavior data therefore tends to cover only a
small fraction of each test set. Further, 98% of the
data concerns rightly spelled queries, as spelling
mistakes are relatively rare in general and the exact
spelling mistakes of our test set even more so. To
mitigate noise, we included only those (xw, yw)
and (xr, yr) pairs that appeared at least five times
in the logs.
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Figure 1: Scores of spelling-robustness for a population of 50 MT systems according to robustness metrics Equal
Output, Consistency, and Pseudo-Success. Plots illustrate the correlation between each possible pair of metrics.
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Figure 2: The power of using an MT system’s spelling-robustness (Equal Output, Consistency, or Pseudo-Success)
to predict the ensuing divergence in search results (NDCG) is variable.

To measure the impact of misspellings on shop-
ping experience, we compared the rates of three
customer behaviors for each available xr and corre-
sponding xw — this shows, for example, how much
more likely customers are to click on a product af-
ter searching xr compared to xw. We average these
rates across all unique (xw, xr) pairs from our test
sets appearing in the logs in each secondary lan-
guage. We report in Table 1 only those secondary
languages for which there were at least 90 such
unique pairs.

We observed that, in most cases, shoppers are
more likely to interact with search results and less
likely to reformulate when the query was rightly
spelled compared to when the query was wrongly
spelled. For example, from the first row of Table 1,
the rate at which customers shopping in French
(with English as the primary language) clicked
on a search result from a rightly spelled query is
2.17% higher than from a wrongly spelled query,
and the rate at which customers reformulated their
rightly spelled queries is 3.20% lower than their
wrongly spelled queries. These results suggest that
rightly spelled queries tend to generate search re-
sults that encourage customer interaction and de-
crease the need for reformulating searches com-

Language Primary Click Add Reform

fr-CA en-CA 2.17 0.84 –3.20
cs-CZ de-DE –0.14 0.49 0.32
tr-TR de-DE 1.44 0.36 –2.86
pt-PT es-ES 2.08 1.80 –1.90
bn-IN en-IN 12.48 1.01 –5.59
mr-IN en-IN 7.07 0.93 –4.34
en-US ja-JP 6.59 2.50 –9.86
en-GB nl-NL 6.89 2.61 –10.82
es-MX en-US 3.30 0.16 –5.32
he-IL en-US 4.87 1.05 –10.89
ko-KR en-US 8.61 2.06 –6.60
pt-BR en-US 0.54 –0.10 –1.72
zh-TW en-US 2.16 0.61 –10.08

Table 1: Differences in average Click, Add, and Re-
form(ulation) rates between rightly spelled and wrongly
spelled queries from historical traffic data, in percentage
points, for select secondary languages (with correspond-
ing primary languages).
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pared to wrongly spelled queries — in other words,
misspellings indeed have an observable impact on
the e-commerce shopping experience.

5 Improving MT Robustness with BPE

Having seen how the innate spelling-robustness of
MT systems can vary widely, we now examine how
a system’s robustness can be explicitly improved.

Intuitively, an MT system may struggle to trans-
late a spelling mistake because the input looks un-
usual compared to the bulk of the model’s train-
ing data. Systems trained with byte-pair encoding
(BPE) require their inputs to be broken down into a
sequence of sub-word units that match the model’s
fixed vocabulary (Sennrich et al., 2016b). A fa-
miliar input word should be more often directly
contained in the model’s BPE vocabulary; a rare
(e.g., misspelled) word would need to be broken
down into a relatively larger number of sub-words.

Consider the English search query samsung
galaxy s21 and its misspelled counterpart samsung
gslaxy s21. Using the same BPE model, these two
strings are encoded as follows:

samsung galaxy s@@ 21

samsung gs@@ la@@ xy s@@ 21

The wrongly spelled query requires six tokens to
the rightly spelled query’s four.

We tested this intuition by building slates of MT
system variants that differ in the number of BPE it-
erations (“operations”) that were performed prior to
model training. As the number of BPE operations
— and thus the model’s vocabulary — becomes
smaller, rightly and wrongly spelled inputs should
be expressed in more and more similar ways. In the
limit, when the model vocabulary consists of single
characters only, there should be no difference in
the nature of sub-words needed to express the two
different types of query, and almost no difference
in the pre-processed query lengths.

5.1 Procedure
Our experimental MT systems are initially trained
on publicly available WMT corpora before being
fine-tuned on in-house data sets representing the
search-query domain. We began with the most
recently available WMT constrained training data
for six language pairs: 2013 for Spanish–English
(ES–EN); 2015 for French–English (FR–EN); 2020
for Tamil–English (TA–EN); and 2023 for Hebrew–
English (HE–EN), English–German (EN–DE), and

English–Japanese (EN–JA). These six cases were
chosen to illustrate a range of training data sizes,
language types, and directionality of English.

We limited data cleaning and corpus prepara-
tion steps since our focus is on comparing spelling-
robustness instead of building competition-winning
systems. Appendix B gives the details of compo-
nent corpora used, clean-up applied, and the final
training and dev set sizes for each language pair.

As our main experiment, we built a slate of sys-
tem variants for each language pair using 32,000,
16,000, 8,000, 4,000, 2,000, and 0 BPE operations.
Such diversity of vocabulary size leads to extreme
differences among the systems in the length of the
input/output strings for even the same line of origi-
nal training data. We also have a 150× difference
between the number of lines in the largest training
corpus (EN–DE, 83M) versus the smallest (TA–EN,
553k). To keep the systems’ training experiences
more on par, we made the following hyperparame-
ter adjustments:

• We scaled the maximum input length in pro-
portion with the effect that a lower number of
BPE operations had on the training data. In
the baseline, 32,000 BPE operations is paired
with a maximum input length of 100 tokens.
Other variants used cutoffs 109 for 16,000
BPE, 122 for 8,000 BPE, 139 for 4,000 BPE,
161 for 2,000 BPE, and 374 for 0 BPE.3

• Our default checkpoint interval was 4,000
batches. Because of differences in the amount
of training data, we increased the checkpoint
interval to 8,000 in HE–EN and EN–DE and
decreased it to 500 in TA–EN.

Remaining hyperparameters were set identically
across all MT systems; see Appendix C for the
complete configuration. Our models are Trans-
formers (Vaswani et al., 2017), generally following
the dimensions of Transformer-base except that we
used 20 encoder layers and only two decoder layers
(Hieber et al., 2020). All trainings were carried out
with the Sockeye 3 toolkit (Hieber et al., 2022).

The minority of our fine-tuning data consists of
human translations, while the larger part is made up
of originally monolingual search queries collected
in the target language and then automatically back-
translated (Sennrich et al., 2016a). (We use for

3Empirically, the maximum input length for 0 BPE systems
should have been 404, but we had to reduce the limit to 374 in
order to avoid running out of RAM on our hardware platform.
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back-translation a version of our base MT system
with 32,000 BPE operations, but trained in the re-
verse direction, for each language pair.) The same
fine-tuning training data was used for all the variant
systems within a given language pair. It amounts
to approximately 5.2 million lines for each pair
— larger than the base training data in the case of
TA–EN and EN–JA. Exact line counts are again in
Appendix B. The fine-tuning dev set is a sample of
4,000 human-translated search queries.

5.2 Results
Our goal in this case study is to verify two claims:
first, that varying of the number of BPE operations
does not meaningfully reduce an MT system’s gen-
eral quality; second, that it does significantly im-
prove the system’s spelling-robustness.

Results related to the first claim are presented
in column (a) of Table 2. Here we evaluate each
fine-tuned system on an in-domain test set of 4,000
human-translated search queries, using chrF as a
standard reference-based MT metric. We judge sta-
tistical significance relative to the baseline (32,000
BPE operations) according to paired bootstrap re-
sampling (Koehn, 2004), using 1,000 resampled
test sets equivalent in size to the original. Under
this formulation, we claim that a system is better
than the baseline (▲) if it scores higher on at least
95% of the resamples, that it is worse (▽) if the
baseline scores higher on at least 95% of the resam-
ples, and otherwise that it is equal (⇆).

While lowering the number of BPE operations
can affect an MT system’s general quality, we do
not observe a strong overall pattern predicting if or
in what direction it will do so — except on TA–EN,
where smaller vocabulary may be more appropri-
ate for modeling training data that is at least six
times smaller than any of the other language pairs.
Across all languages and variants, the change in
BPE operations improves over the baseline in nine
cases, regresses in eight, and does not statistically
differ in 13.

For our second claim, we turn to the metrics of
spelling-robustness previously defined in Section
3.2. For simplicity, we report only Equal Output
and Consistency; the statistical significance of the
Pseudo-Success scores is identical to Consistency
in all but one instance. Columns (b) and (c) in
Table 2 report the results.

Here we observe a much stronger pattern. Ac-
cording to Consistency, every variant system is
significantly more spelling-robust than the baseline

(a) (b) (c)
Lang BPE Ops chrF Equal Consist

ES–EN 32,000 67.4 0.211 0.724
16,000 67.9 ▲ 0.234 ▲ 0.738 ▲

8,000 67.1 ⇆ 0.237 ▲ 0.740 ▲
4,000 66.4 ▽ 0.227 ▲ 0.744 ▲
2,000 66.4 ▽ 0.236 ▲ 0.755 ▲

0 69.2 ▲ 0.299 ▲ 0.789 ▲

FR–EN 32,000 62.6 0.291 0.737
16,000 62.4 ⇆ 0.294 ⇆ 0.745 ▲

8,000 62.4 ⇆ 0.297 ⇆ 0.748 ▲
4,000 62.0 ▽ 0.307 ▲ 0.757 ▲
2,000 62.1 ▽ 0.330 ▲ 0.766 ▲

0 62.6 ⇆ 0.376 ▲ 0.803 ▲

HE–EN 32,000 70.7 0.279 0.711
16,000 70.7 ⇆ 0.287 ⇆ 0.717 ⇆

8,000 69.4 ▽ 0.271 ⇆ 0.708 ⇆
4,000 68.5 ▽ 0.270 ⇆ 0.706 ⇆
2,000 68.5 ▽ 0.281 ⇆ 0.718 ⇆

0 70.7 ⇆ 0.284 ⇆ 0.729 ▲

TA–EN 32,000 48.9 0.048 0.660
16,000 51.2 ▲ 0.056 ▲ 0.684 ▲

8,000 52.5 ▲ 0.068 ▲ 0.702 ▲
4,000 52.8 ▲ 0.062 ▲ 0.708 ▲
2,000 52.3 ▲ 0.067 ▲ 0.708 ▲

0 54.1 ▲ 0.096 ▲ 0.728 ▲

EN–DE 32,000 75.6 0.105 0.720
16,000 76.0 ▲ 0.122 ▲ 0.734 ▲

8,000 75.9 ⇆ 0.123 ▲ 0.736 ▲
4,000 75.9 ⇆ 0.130 ▲ 0.741 ▲
2,000 75.5 ⇆ 0.128 ▲ 0.747 ▲

0 75.2 ⇆ 0.144 ▲ 0.751 ▲

EN–JA 32,000 62.1 0.160 0.584
16,000 63.1 ▲ 0.176 ▲ 0.599 ▲

8,000 62.7 ⇆ 0.188 ▲ 0.599 ▲
4,000 62.6 ⇆ 0.182 ▲ 0.602 ▲
2,000 62.4 ⇆ 0.174 ▲ 0.603 ▲

0 59.3 ▽ 0.155 ⇆ 0.628 ▲

Table 2: chrF, Equal Output, and Consistency scores
for fine-tuned systems with varying numbers of BPE
operations. Symbols show whether each score is better
than (▲), worse than (▽), or tied with (⇆) the 32,000
baseline.

except for four of the five HE–EN cases. (A total
of eight experimental builds are statistically equiv-
alent according to Equal Output, including all five
in HE–EN.) Robustness improvements tend to con-
tinue as the number of BPE operations is increas-
ingly lowered: in a follow-up test, we computed
statistical significance of the remaining models rel-
ative to the already improved 16,000 BPE variants.
Fourteen of the smaller models remain significantly
better, while two are worse and eight are tied.

Except for the HE–EN setting, we consider these
results strong proof of the ability to intentionally
improve the spelling-robustness of an MT system
using simple hyperparameter settings.
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6 Improving Search Robustness with
Spelling Correction

While we can directly improve the robustness of
an MT system to misspelled queries, in an e-
commerce system, it is also possible to include
an explicit spelling correction step in order to mit-
igate downstream impacts. We now explore the
extent to which a spelling correction model can
retain the performance of MT and search systems.

6.1 Procedure

We experimented with spelling correction models
aimed at a Spanish-to-English search pipeline. The
primary training data, composed of pairs of input
queries and their target output forms, was again
sourced from customer traffic guided by in-house
spelling correction models, as well as from refor-
mulated queries filtered for those that are likely
to represent spelling corrections (similar to the ap-
proach taken by Hasan et al. (2015)). We extracted
183M pairs, with a mix of query pairs where the
input and output are the same (i.e., the input query
is already correct) and where the output is the cor-
rected form of the input.

Additionally, to investigate if a targeted improve-
ment to a spelling correction model can also im-
prove the robustness of the search system it belongs
to, we augment the primary training data with syn-
thetically misspelled queries targeting a specific
typographical phenomenon. In particular, diacritics
in Spanish tend to be omitted in informal contexts
(e.g., typing electronico instead of electrónico), so
we extract all target queries in the training data that
contain at least one letter with a diacritic and cre-
ate input queries by removing all diacritics from
the target queries. We then sampled 6.1M of these
synthetic query pairs (3.3% of the primary training
data size) to add to the training data. Dev sets of
50,000 query pairs were randomly sampled and
extracted from training sets.

We trained BART models (Lewis et al., 2020)
from scratch, one on the primary training data (our
baseline model) and one on the augmented training
data (our augmented model). Training was carried
out with the Fairseq toolkit (Ott et al., 2019). Hy-
perparameters were the same for both models; see
Appendix D for the complete list.

6.2 Results

The aim of the baseline spelling correction model
is to mitigate the impact that misspellings have

Test Set Model Equal Consist NDCG

wrongly spelled
none 0.211 0.724 0.401

base 0.563 0.859 0.746
aug 0.575 0.864 0.759

rightly spelled
none 1.000 1.000 1.000

base 0.776 0.939 0.992
aug 0.780 0.941 1.000

Table 3: Comparison of robustness metrics after trans-
lating wrongly and rightly spelled queries that were
run through no spelling correction model, our baseline
model, and our augmented model.

on both MT and search results, and the aim of
the augmented model is to build even further on
robustness. We first compared model performance
on spelling correction with our test set of wrongly
spelled Spanish queries (as described in Section
3.1), where a model output on a wrongly spelled
input is marked as correct only if it exactly matches
the target correction ignoring casing. We observed
an accuracy of 39.4% for the baseline model and
41.2% for the augmented model, showing a general
improvement in spelling correction ability after
adding targeted synthetic data to the training data.

We then used our fine-tuned ES–EN MT model
with 32,000 BPE operations (as described in Sec-
tion 5.1) to translate the test-set outputs of each
spelling correction model. We compared the im-
pact each model had on MT outputs with the Equal
Output and Consistency metrics, as well as the im-
pact each model had on search results with NDCG,
as described in Section 3.3. These results are given
in the top half of Table 3.

We found that the addition of a spelling correc-
tion model strongly mitigates the negative impact
that misspellings can have on MT and search re-
sults, as both the baseline and augmented models
showed a significant increase in all three metrics
compared to having no spelling correction model.
This result was not guaranteed a priori, given the
only moderate accuracy of the spelling models. We
also found that adding the synthetic training data
in the augmented model protected MT and search
results more than the baseline model.

A spelling correction model can also incorrectly
“correct” queries that are not misspelled, so intro-
ducing such a model may unintentionally have a
negative impact on queries that are already spelled
correctly. We thus ran the outputs of both spelling
correction models on our test set of rightly spelled
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queries through the same ES–EN MT model to
measure their impact (bottom half of Table 3).

Results show that the incorrect corrections of
both spelling correction models impact MT output,
as neither achieved all Equal Outputs or perfect
Consistency. However, we see that only the aug-
mented model was able to fully retain NDCG per-
formance. We note that because the query traffic
stream is typically composed of many more rightly
spelled queries than wrongly spelled queries, the
effects of a spelling correction model on rightly
spelled queries would be more pronounced online;
thus, mechanisms to limit the downstream impacts
of incorrect corrections through these targeted im-
provements is critical. Practical safeguards, such as
adjusting the classification threshold of the model
to have higher precision (at the cost of lower re-
call), can also be implemented to further decrease
the likelihood of incorrect corrections in an actual
deployment of such a model.

7 Conclusions

This work began by illustrating the surprising range
of spelling-robustness in a population of MT sys-
tems. We demonstrated the utility of three targeted
metrics for quantifying robustness, each offering
a somewhat different view of how MT output is
disrupted by the presence of spelling variations in
the input. We also related the disruption in MT to
the disruption in search results and user behavior
in a cross-lingual e-commerce setting.

We then showed through practical experiments
how reducing the number of BPE operations dur-
ing MT training significantly improves spelling-
robustness across five out of six language pairs
while having a less systematic effect on overall
translation quality. A second set of experiments
demonstrated how a dedicated spelling correction
model improves search robustness, furthered by a
targeted improvement to the model through data
augmentation.

8 Limitations

Our model-building experiments were focused only
on the domain of e-commerce search queries. The
successful results we report for improving the
spelling-robustness of MT systems (Section 5) and
the performance of spelling correction systems
(Section 6) may not transfer to general-purpose
models or to other domains.

Though our MT variants trained with 0 BPE

operations gave the most spelling-robust results
by a large margin (Table 2), we encountered sev-
eral practical difficulties during their training and
use. Because of the vastly increased input and
output lengths, this fairly naïve implementation of
character-based MT uses more RAM and is slower
to run than our other variants, which may negate
its benefits in certain use cases.

We did not compare our robustness-improving
technique against any other previously published
methods (Section 2) at the same time and under the
same conditions. Thus, while our improvements
in isolation remain valid, we do not know whether
they successfully “stack” with others to improve
robustness further still, or whether the use of one
technique materially affects the performance of
another.
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A Spelling Correction Test Sets

As introduced in Section 3.1, we biased our spelling
correction test sets towards search queries that an
existing model flagged as misspelled. This over-
sampling is because misspelled queries are overall
rather rare. However, the model’s judgment was
only used to help collect data and was never taken
as ground truth — all annotations for the correct
and incorrect spelling of queries in the test sets
were provided by humans.

For example, we used the in-house model to se-
lect a batch of raw search queries for which the
model believes 50% are correct and 50% contain
a misspelling. Human judges annotated the whole
batch, perhaps finding that 35% of the queries
in fact have spelling mistakes — including some
queries that the model judged as spelled correctly.
The test set used for our experiments then con-
sisted of only those human-identified and human-
corrected queries from the 35%. In this way, we
believe the biasing approach increases the size of
the test set — i.e. 35% of the batch instead of the
(say) 5% that might appear in a uniform sample —
without losing any part of the distribution of true
spelling errors.

Table 4 shows our complete list of test sets.
These consist of the human-verified rightly and
wrongly spelled query pairs in the relevant input
language, as described above, for later use in an
e-commerce experience where the queries will be
automatically translated into the primary language
of the product catalog. For example, one line of our
test set for Canadian French (fr-CA), for use against
a Canadian English (en-CA) catalog, consists of
the query pair (chaise bureau, chaise buraeu).

B MT System Data Preparation

The slates of MT system builds described in Sec-
tion 5 were based on the data resources released as
part of each of the following WMT shared tasks:

• 2013 (news) translation task for Spanish–
English (ES–EN)

• 2015 (news discussions) translation task for
French–English (FR–EN)
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Language Primary Queries

fr-CA en-CA 5,270

cs-CZ de-DE 2,853
en-GB 2,110
nl-NL 1,195
pl-PL 3,303
tr-TR 4,033

pt-PT es-ES 2,841

bn-IN en-IN 4,458
hi-IN 3,486
kn-IN 5,212
ml-IN 5,250
mr-IN 4,857
ta-IN 5,582
te-IN 6,242

en-US ja-JP 3,647
zh-CN 875

en-GB nl-NL 3,140

en-GB sv-SE 3,650

de-DE en-US 1,033
es-MX 5,076
he-IL 2,741
ko-KR 2,128
pt-BR 3,518
zh-CN 939
zh-TW 2,361

Table 4: Languages for which we created pairs of rightly
and wrongly spelled search queries, showing the sizes
of each test set after extraction, filtering, and human
annotation. Note that these test sets are monolingual.

• 2020 news translation task for Tamil–English
(TA–EN)

• 2023 general translation task for Hebrew–
English (HE–EN)

• 2023 general translation task for English–
German (EN–DE)

• 2023 general translation task for English–
Japanese (EN–JA)

We selected the following WMT corpora for our
initial MT training data. Most of the data sets
were merely unpacked (or extracted) and combined
together. We followed more substantial cleaning
procedures, however, for three types of corpora.
They are annotated with a * mark in the corpus lists
and described in more detail below.

• ES–EN: Common Crawl*, Europarl v7, News
Commentary v8, UN Docs

• FR–EN: Common Crawl*, Europarl v7, Giga-
FrEn v2*, News Commentary v10, UN Docs

• HE–EN: Bible, CCAligned*, ELRC
Wikipedia Health, GNOME, KDE4*, NeuLab
TED Talks, NLLB, OpenSubtitles*, PHP*,
QED, Tatoeba, TED 2020, WikiMatrix*,
Wikimedia, Wikipedia, XLEnt

• TA–EN: CUNI Parallel Train v2, MKB v0,
nlpcuom Corpus v1.0.3, nlpcuom Glossary
v1.0.3, PIB v0, PMIndia v1, Tanzil, Wikima-
trix v1*, Wikititles v2

• EN–DE: Common Crawl*, Europarl v10,
News Commentary v18, Paracrawl*, Tilde
Air Baltic, Tilde Czech Tourism, Tilde ECB
2017, Tilde EESC 2017, Tilde EMEA 2016,
Tilde Rapid 2016, Wikimatrix v1*, Wikititles
v3

• EN–JA: JESC Train, JParacrawl v3*, KFTT
v1 Train, News Commentary v18, TED, Wiki-
matrix v1*, Wikititles v3

(1) Wikimatrix corpora were distributed by
WMT already annotated with their language IDs
and margin (parallelism) scores, as per Schwenk
et al. (2021). We followed their Section 4.2 in fil-
tering these corpora, keeping only those lines that
were marked as being in the correct source and
target languages and that had margin scores of at
least 1.04.

(2) Common Crawl, Giga-FrEn, OpenSubtitles,
and Paracrawl are large noisy corpora; the smaller
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KDE4 and PHP corpora for HE–EN also appeared
noisy upon manual inspection. We adopted a some-
what simpler approach for cleaning these data sets,
consisting of running FastText language ID fol-
lowed by computing cosine distances between the
LASER segment embeddings of the source and tar-
get side of each line of data. We kept only those
lines that were detected to be in the correct source
and target languages and that had cosine similari-
ties of at least 0.8. The FastText language ID model
was lid.176.bin; the LASER embedding model
was bilstm.93langs.2018-12-26.pt. The EN–
DE Paracrawl corpus was so large that we only
attempted to clean its first 93 million lines.

(3) The JParacrawl corpus was distributed by
WMT already annotated with its Bicleaner scores,
as per Ramírez-Sánchez et al. (2020). We followed
their Section 3 in filtering this corpus, keeping only
those lines that had scores of at least 0.7.

All selected corpora were concatenated together
for each language pair. Their final combined line
counts are listed in Table 5. As part of system train-
ing, the combined training data was filtered — after
tokenization and BPE encoding in each system vari-
ant — to remove segment pairs consisting of too
many tokens on either side, containing tokens with
more than 100 characters, or where the length ratio
between source and target was too unbalanced.

Development sets were sourced from WMT as
well, typically from the same year that supplied the
training data. We used newstest2012 for ES–EN,
newsdiscussdev2015 for FR–EN, the concatenation
of Flores-200 dev and devtest for HE–EN, news-
dev2020 for TA–EN, reference A of wmttest2022
for EN–DE, and wmttest2022 for EN–JA.4 Table 5
gives the line counts for these corpora.

The training corpora and development sets that
we used during fine-tuning our MT systems to the
search query domain were previously described in
Section 5.1. Their line counts are included in Table
5 for reference.

C MT System Training Hyperparameters

Details of the hyperparameters we set while train-
ing our MT systems are given below. (Key values
configured directly as a result of our main BPE ex-
periments were already described in Section 5.1.)

We set an initial learning rate of 0.0002, used

4The 2023 test set references for HE–EN, EN–DE, and
EN–JA had not yet been released at the time we performed
this work.

Language Corpus Lines

ES–EN Base train (cleaned) 14,563,500
Base dev 3,003
Fine-tune train 5,422,787
Fine-tune dev 4,000

FR–EN Base train (cleaned) 34,502,802
Base dev 1,500
Fine-tune train 5,282,996
Fine-tune dev 4,000

HE–EN Base train (cleaned) 52,529,536
Base dev 3,009
Fine-tune train 5,146,637
Fine-tune dev 4,000

TA–EN Base train (cleaned) 552,752
Base dev 1,989
Fine-tune train 5,120,423
Fine-tune dev 4,000

EN–DE Base train (cleaned) 82,720,693
Base dev 2,420
Fine-tune train 5,274,628
Fine-tune dev 4,000

EN–JA Base train (cleaned) 3,482,748
Base dev 2,037
Fine-tune train 5,171,246
Fine-tune dev 4,000

Table 5: Line counts of our selected base training data,
base dev sets, fine-tuning training data, and fine-tuning
dev sets.
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Adam (Kingma and Ba, 2014), and decayed the rate
by a factor of 0.9 whenever training progressed 8
checkpoints without improving on the dev set.

Convergence during base training was defined
as 60 checkpoints without improvement on the dev
set, but after a minimum of one complete epoch
and within a maximum of 832,500 batches. After
convergence, the eight best checkpoints were av-
eraged together. Convergence during fine-tuning,
within the same min-epochs and max-batches lim-
its as used during the base training, was defined
as 10 checkpoints without improvement on the dev
set. Otherwise, the maximum input lengths per
BPE variant and the remaining hyperparameters
are identical to the base.

The complete set of common parameters pro-
vided to Sockeye 3’s train.py command for the
base training of all systems is listed in full below.

average-checkpoints True
batch-size 2048
batch-type word
decode-and-evaluate 500
decoder transformer
embed-dropout 0.0:0.0
encoder transformer
gradient-clipping-threshold -1
gradient-clipping-type abs
initial-learning-rate 0.0002
keep-initializations True
keep-last-params 200
label-smoothing 0.1
learning-rate-reduce-factor 0.9
learning-rate-reduce-num-not-improved 8
learning-rate-scheduler-type plateau-reduce
learning-rate-warmup 0
length-task-layers 2
length-task-type None
length-task-weight 0.0
max-num-checkpoint-not-improved 60
max-updates 832500
metric bleu
min-num-epochs 1
min-samples 0
min-updates 0
n 8
num-embed 512:512
num-layers 20:2
optimized-metric bleu
optimizer adam
seed 1
strategy best

transformer-attention-heads 8:8
transformer-dropout-act 0.1:0.1
transformer-dropout-attention 0.1:0.1
transformer-dropout-prepost 0.1:0.1
transformer-feed-forward-num-hidden 2048:2048
transformer-model-size 512:512
transformer-positional-embedding-type fixed
transformer-postprocess dr:dr
transformer-preprocess n:n
weight-tying-type src_trg_softmax

D Spelling Correction System Training
Hyperparameters

Details of the hyperparameters we set during the
training of our spelling correction systems (Section
6.1) are given below. Hyperparameters were the
same for both models.

We set an initial learning rate of 0.0001, used
Adam (Kingma and Ba, 2014) with betas 0.9 and
0.98, and set a dropout of 0.3. We set the BPE
vocab size to 32,000 and a maximum input length
of 4,000 tokens (from which Fairseq calculates the
batch size accordingly). Convergence was defined
as 5 epochs without improvement on respective dev
set, up to a maximum of 20 epochs. Only the best
checkpoint after convergence was retained.

The complete set of common parameters we
provided to Fairseq’s fairseq-train command
is listed in full below.

adam_betas (0.9,0.98)
arch bart_base
clip_norm 0.0
decoder_ffn_embed_dim 4096
decoder_layers 3
dropout 0.3
encoder_ffn_embed_dim 4096
encoder_layers 3
fp16 True
lr 0.0001
lr_scheduler inverse_sqrt
max_epoch 20
max_target_positions 128
max_tokens 4000
min_lr 1e-09
optimizer adam
patience 5
seed 1
share_all_embeddings True
update_freq 1
warmup_init_lr 1e-07
warmup_updates 4000
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