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Abstract

Large Language Models (LLMs) have shown
promise in automated code generation but
typically excel only in simpler tasks such
as generating standalone code units. How-
ever, real-world software development often
involves complex code repositories with com-
plex dependencies and extensive documenta-
tion. To enable LLMs to handle these real-
world repo-level code generation, we present
CODEAGENT, a novel LLM-based agent frame-
work that employs external tools for effec-
tive repo-level code generation. CODEAGENT
integrates five programming tools, enabling
interaction with software artifacts for infor-
mation retrieval, code implementation, and
code testing. We implement four agent strate-
gies to optimize these tools’ usage. To the
best of our knowledge, CODEAGENT is the
first agent framework specifically for repo-
level code generation. In order to measure
the effectiveness of our method at the repos-
itory level, we design a repo-level benchmark
CODEAGENTBENCH. The performance on
this benchmark shows a significant improve-
ment brought by our method, with improve-
ments in pass rate ranging from 2.0 to 15.8.
Further tests on the HumanEval benchmark
confirm CODEAGENT’s adaptability and effi-
cacy across various code generation tasks. No-
tably, CODEAGENT outperforms commercial
products like GitHub Copilot, showcasing su-
perior accuracy and efficiency. These results
demonstrate CODEAGENT’s robust capabilities
in code generation, highlighting its potential
for real-world repo-level coding challenges.

1 Introduction

Code generation automatically generates programs
for the natural language (NL) requirement. Recent
years have seen a trend in tackling code generation
tasks with large language models (LLMs), such

*The two authors share equal contribution.
†Corresponding authors.

as Code Llama (Rozière et al., 2023), StarCoder
(Li et al., 2023), and DeepSeekCoder (DeepSeek,
2023). Many efforts have been performed (Zhang
et al., 2023b; Luo et al., 2023; Zheng et al., 2023)
and shown impressive code generation abilities.

Despite achieving satisfactory performances,
these studies mainly focus on simple generation
scenarios including statement-level and function-
level code generation. Statement-level code gener-
ation (Iyer et al., 2018; Athiwaratkun et al., 2022)
aims to output statement-specific source codes.
Function-level code generation (Chen et al., 2021;
Austin et al., 2021; Hendrycks et al., 2021) pre-
dicts independent code that only invokes built-in
functions and APIs from third-party libraries. For
both scenarios, the length of the generated code
is rather short, and they only generate standalone
code units. However, more than 70% functions in
the open-source projects are non-standalone (Yu
et al., 2023). Developers typically write programs
based on specific code environments, generally re-
ferring to code repositories. These repo-level code
snippets usually have intricate contextual depen-
dencies, which is too complex for existing LLMs
to handle and generate (Li et al., 2024).

To enhance the efficacy of LLMs in repo-level
code generation tasks, we draw inspiration from
human programming practices. Developers typi-
cally employ a variety of tools to aid in complex
programming. For instance, they might utilize
search engines to explore key concepts or static
analysis tools to identify pre-existing functions or
classes. These tools are instrumental in the de-
velopment of code projects. Embracing this idea,
we propose a novel LLM-based agent framework
CODEAGENT that leverages external tools to help
LLMs in repo-level code generation. With five
programming tools, CODEAGENT is capable of
interacting with the software artifacts, including
retrieving useful information, finding existing code
symbols in the repository, and handling essential
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code testing. To guide LLMs to efficiently use
tools, we draw on four agent strategies covering Re-
Act, Tool-Planning, OpenAIFunc, and Rule-based
form. Based on agent strategies, LLMs can auto-
matically select suitable tools for each repo-level
task, finally providing a comprehensive response.

In order to measure the effectiveness of our
method at the code repository, we manually con-
struct CODEAGENTBENCH, a benchmark specifi-
cally for repo-level code generation with a total
of 101 functions and classes sourced from real
code projects. It provides rich information about
the repository, such as documentation and con-
textual dependency, to help LLMs better under-
stand it. We further conduct extensive experi-
ments for evaluation. We apply CODEAGENT

to nine powerful open-source and closed-source
LLMs with parameter sizes ranging from 13B to
175B to show the universality. Compared to di-
rectly generating from LLMs, experimental results
on CODEAGENTBENCH reveal that CODEAGENT

achieves significant improvements ranging from
2.0 to an extraordinary 15.8 across various LLMs.
Further evaluations on well-known function-level
benchmark HumanEval (Chen et al., 2021) confirm
CODEAGENT’s versatility in diverse code genera-
tion tasks. Remarkably, when compared to com-
mercial products like GitHub Copilot (Dakhel et al.,
2023), CODEAGENT stands out, demonstrating su-
perior accuracy. These findings highlight the robust
practical capabilities of CODEAGENT in the code
generation community, underscoring its potential
to evolve real-world repo-level coding challenges.
We summarize our main contributions:

• We make an attempt to investigate repo-level
code generation, which has crucial worth for
understanding LLMs’ performance in practi-
cal code generation scenarios.

• We propose CODEAGENT, an LLM-based
agent framework for repo-level code gener-
ation. It develops five external programming
tools to help LLMs complete the whole gen-
eration process and draw on four agent strate-
gies to automatically optimize tools’ usage.

• We construct CODEAGENTBENCH, a repo-
level code generation benchmark, which has
high-quality code repositories and covers di-
verse topics.

• Experimental results on nine LLMs show

CODEAGENT’s versatility and effectiveness
in diverse code generation tasks, highlight-
ing its potential for resolving real-world repo-
level coding challenges.

2 Background

2.1 LLMs and Agents for Code Generation
LLMs have shown impressive capabilities in code
generation since they have billions of parameters
trained on a large amount of corpus with different
training objectives. Recently, OpenAI 1 proposes
GPT-3.5 and GPT-4 series models (e.g., ChatGPT
(Chat, 2022)), which have shown strong generation
abilities in coding. There are also various open-
soured work, such as CodeGen (Nijkamp et al.,
2022), StarCoder (Li et al., 2023), Code Llama
(Rozière et al., 2023), WizardCoder (Luo et al.,
2023) and DeepSeekCoder (DeepSeek, 2023).

Recent research has also increasingly shown that
LLMs can be instrumental in developing AI agents
(Palo et al., 2023; Wang et al., 2023a; Xi et al.,
2023; Shen et al., 2023; Patil et al., 2023; Qin et al.,
2023). Examples such as ToolFormer (Schick et al.,
2023), Auto-GPT (AutoGPT, 2023), BabyAGI
(BabyAGI, 2023), KwaiAgents (Pan et al., 2023)
and ToolCoder (Zhang et al., 2023a) demonstrate
LLMs’ proficiency in tool utilization for complex
tasks. Some studies such as self-edit (Zhang et al.,
2023b) and self-debug (Chen et al., 2023) have
demonstrated that code models possess the capabil-
ity for multi-round interaction and repair. Nowa-
days, some work has also demonstrated the effec-
tiveness of agent systems in complex code program-
ming tasks, such as OpenDevin (OpenDevin, 2024),
SWE-Agent (Yang et al., 2024). In this paper, we
select GPT-4 (GPT-4, 2023), GPT-3.5 (GPT-3.5,
2023), and other powerful LLMs to design cod-
ing agent systems for real-world repo-level code
generation.

2.2 Code Generation Tasks
Existing code generation tasks mainly focus
on generating standalone code units, including
statement-level (Yin et al., 2018) and function-level
generation (Hendrycks et al., 2021; Chen et al.,
2021). The generated programs are usually short
and are independent of other codes. However, in
software development, programmers mainly work
within a code environment. They extend their func-
tionalities based on the foundational code frame-

1https://openai.com/
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work. Inspired by this, some studies (Yu et al.,
2023; Liao et al., 2023) introduce intricate pro-
gramming tasks that are based on particular code
environments such as projects and code reposito-
ries. Nevertheless, these studies only provide lim-
ited constraint information to LLMs, containing the
requirements, signature information, and restricted
code dependencies, leading to a difference in pro-
gramming information needs from humans. Some
work targets real-world GitHub issues for code
model to resolve, such as SWE-bench (Jimenez
et al., 2023). To get closer to realistic programming
scenarios, we formalize the repo-level code genera-
tion task and propose CODEAGENT to help LLMs
handle this complex task. We construct a repo-level
code generation benchmark CODEAGENTBENCH

to evaluate our method and provide an analysis of
benchmarks commonly used for these generation
tasks in Table 7. Compared with existing code gen-
eration tasks, repo-level code generation is more
consistent in real-world programming scenarios,
fostering the evolvement of the code generation
community.

3 Repo-level Code Generation Task

To fill the gap between existing code generation
tasks and practical coding scenarios, we formalize
the repo-level code generation task. Since a code
repository generally contains intricate invocation
relationships, only with a deep understanding of
the code repository can LLMs generate satisfying
programs that not only adhere to requirements but
also seamlessly integrate with the current reposi-
tory. Given a code repository, the repo-level code
generation task aims to generate code based on all
the software artifacts included in the repository,
encompassing the documentation, code depen-
dency, runtime environment, which form the task
input. Here we give a detailed description of its
composition format. Figure 1 shows an illustration
of the repo-level code generation task.

Documentation It describes the generation tar-
gets and is the main input component of repo-level
code generation. The documentation provides ad-
ditional supporting information beyond the NL re-
quirements. It contains class-level (class name, sig-
nature, and member function) and function-level
(functional description, and params description) in-
formation of targets. Typically, the correctness of
generated programs is verified with the test suite.
The generated programs must conform to the inter-

face (e.g., the input parameters). Thus, the docu-
mentation also provides the type and interpretation
of input parameters and output values. In addi-
tion, considering that requirements usually contain
domain-specific terminologies, the documentation
explains these terms as well, such as mathematical
theorems. As shown in Figure 1, documentation of
the project contains rich information, where differ-
ent elements are highlighted with diverse colors.

Contextual Dependency A key distinction of
our new task from other independent code genera-
tion tasks is its inclusion of contextual dependen-
cies. This aspect is crucial, as classes or functions
typically interact with other code segments within
the repository, such as import statements or other
user-defined classes and functions. These interac-
tions may occur within the same file or across mul-
tiple files. For instance, to implement the Random-
Forest class in Figure 1, it is necessary to utilize
the bootstrap_sample function from rf.py and the
DecisionTree class from dt.py, demonstrating the
intricate code contextual dependencies involved.

Runtime Environment Different from natu-
ral language, program language is executable.
Whether programs return target results after execu-
tion is a crucial manner to verify the correctness
of generated programs. Developers typically de-
pend on the execution feedback to correct errors
in programs. The runtime environment provides
all configurations needed to run the code repos-
itory and offers convenient interaction to ensure
an all-sided evaluation of LLMs’ performance on
repo-level code generation.

4 CODEAGENT Method

We introduce a novel LLM-based agent framework
CODEAGENT that leverages external tools to en-
hance the problem-solving abilities of LLMs in
intricate repo-level code generation. CODEAGENT

seamlessly pauses generation whenever tools are
called and resumes generation by integrating their
outputs. These tools can assist LLMs with the
entire code generation process, including informa-
tion retrieval, code implementation, and code test-
ing as shown in Table 1, thus interacting with the
software artifacts (Section 4.1). Providing LLMs
with access to tools, CODEAGENT explores four
agent strategies to optimize these tools’ usage (Sec-
tion 4.2). Figure 2 illustrates the overview of our
CODEAGENT.
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"RandomForest"
**************
class numpy_ml.trees.RandomForest(n_trees, max_depth, n_feats, classifier=True, 
criterion='entropy’)

-[ Description ]-
  An ensemble (forest) of decision trees where each split is calculated using a random 
subset of the features in the input.
-[ Notes ]-
The RandomForest class, denoted as 𝓡𝓕, comprises 
ntrees decision trees. Each tree Ti is built on a bootstrapped sample from the training 
data 𝓓, with splits determined by a random subset of nfeats features.

Parameters:
      * **n_trees** (*int*) -- The number of individual 
decision trees to use within the ensemble.

…

predict(X)
Predict the target value for each entry in *X*.
Parameters:

…

Member Function

Theorem & Explanation

Functional Description

Class Name & Signature

Params Description

bandits

factorization

utils

trees

rf.py

dt.py

gbdt.py

import numpy as np
from .dt import DecisionTree
def bootstrap_sample(X, Y): 

N, M = X.shape
idxs = np.random.choice(N, N, 

replace=True) 
return X[idxs], Y[idxs]

…

import numpy as np
class Node: 

…
class DecisionTree:

…

trees/rf.py

trees/dt.py

(Python Environment) >>>
Python 3.9.7
Successfully installed numpy, scipy, …

class RandomForest: 
def __init__(self, n_trees, max_depth, n_feats, 

classifier=True, criterion="entropy"): 
self.trees = [] 
…

def fit(self, X, Y): 
self.trees = [] 
for _ in range(self.n_trees): 

X_samp, Y_samp = bootstrap_sample(X, Y) 
tree = DecisionTree(

n_feats=self.n_feats, 
max_depth=self.max_depth

) 
…

Input Documentation

Input Code Dependency

Input Runtime Environment

Output Code

Figure 1: An illustrative example of the repo-level code generation. The task input contains complex descriptions,
code dependencies, and runtime environment, which is more realistic than the existing benchmark.

<Input Documentation> + <Tool Descriptions> + …

ReAct, OpenAIFunc*
Thought: … I should search 

“random forest” …
Action: WebSearch(“random forest”)

Tool output: …

Tool-Planning
Step 1. Seach the concept …
Step 2. Define the class …

(For each step, choose a tool 
to help complete that step.)

Rule-based Tool Usage
Step 1. website search

<Thought> + <Action>

3. SymbolSearch

2. DocSearch

…

4. FormatCheck 5. PythonREPL

interact

…

Website Search

Code Navigation

Code Interpreter

Documentation

Code Dependency

Runtime 
Environment

Code Repo

Programming Tools

…

Agent Strategy
LLMs

Figure 2: Left: Overview of CODEAGENT. With
our designed programming tools and agent strategies,
LLMs interact with code repositories and generate repo-
level code. Right: Illustration of agent strategies in
CODEAGENT. "OpenAIFunc" is similar to "ReAct" in
the interaction mode, with some differences in the con-
tent generated by LLMs and the format of tool callings.

4.1 Designed Programming Tools

Given a requirement, developers usually first gather
relevant knowledge, then find and modify exist-
ing programs to meet the requirement, and finally
verify programs with the assistance of tools. To
mimic this process, we develop several program-
ming tools that are specifically designed for LLMs.
CODEAGENT incorporates these external tools
from three perspectives: information retrieval, code
implementation, and code testing, which are com-
monly used by programmers in their daily work.

Tool Domain Tool Name Usage Pattern

Information
Retrieval

Website Search WebSearch(input_query)

Documentation Reading DocSearch(input_name)

Code
Implementation Code Symbol Navigation SymbolSearch(module_path

or input_name)

Code Testing Format Checker FormatCheck()

Code Interpreter PythonREPL(input_code)

Table 1: Programming tool statistics in CODEAGENT

4.1.1 Information Retrieval Tools

Information retrieval tools are responsible for ana-
lyzing repositories and collecting resources, which
is pivotal in understanding the problem domain.
We develop popular website search and documen-
tation reading as information retrieval tools.

Website Search Programmers often share solu-
tions for various programming problems on web-
sites where search engines consider them as knowl-
edge resources. When encountering similar prob-
lems, developers only submit a question query
to a search engine. The engine can provide use-
ful programming suggestions. Inspired by this,
CODEAGENT uses a popular search engine Duck-
DuckGo2 to choose the most relevant websites, and
then apply LLMs to summarize the website con-
tent as the final tool output 3. In the process, we
block websites that may lead to data leakage. The
usage pattern of this tool is formatted as: Web-
Search(input_query), which will return the format-
ted content searched from websites.

2https://duckduckgo.com/
3We choose DuckDuckGo because it provides a cheaper

and more convenient API than other search engines such as
Google and Bing.
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Documentation Reading Besides gathering in-
formation from websites, we also retrieve relevant
knowledge from the documentation of the repos-
itory. To achieve this, CODEAGENT leverages
BM25 (Robertson et al., 2009) as the documen-
tation reading tool. Given a class name or function
name, it can retrieve correlative content from the
documentation as its output. If the result is too long,
the tool will use the LLM to summarize it and then
provide it to LLMs for code generation. This tool
is designed in the format: DocSearch(input_name).

4.1.2 Code Implementation Tools
Code implementation tools aim to provide relevant
code items (i.e., pre-defined symbol names and
code snippets) in the code repository. LLMs mod-
ify and integrate these items into the generation
process. It not only expedites the development pro-
cess but also encourages code reuse. We build a
code symbol navigation tool to help LLMs imple-
ment code snippets.

Code Symbol Navigation We use tree-sitter 4

to design the code symbol navigation tool. This
tool explores code items from two types. The first
type is oriented to the file or module-oriented pars-
ing, where the tool performs static analysis of a file
or module and provides symbol names defined in
it, encompassing global variables, function names,
and class names. The other type is the class or
function symbol navigation. Given a class or func-
tion name, the tool finds its definition from the
code repository. Combining the two types, this tool
can traverse predefined source code within a repos-
itory, empowering LLMs to understand intricate
dependencies and reuse codes. This tool is de-
signed in the format: SymbolSearch(module_path
or input_name). The tool will detect what the in-
put is and return the corresponding results (e.g.,
all defined symbols in the given file path or the
implementation code corresponding to the given
symbol name). When no parameters are provided,
the default value is the path of the current file.

4.1.3 Code Testing Tools
After acquiring generated codes, we design code
testing tools to format and test them, enhancing
their correctness and readability.

Format Checker The tool is built to check the
format correctness of generated codes. Specifically,

4https://tree-sitter.github.io/tree-sitter/

we develop Black 5 as the format checker. It can
check format errors such as indentation misalign-
ment and missing keywords. Subsequently, it tries
to rectify these errors and reorganizes code state-
ments, enhancing the correctness and readability of
generated codes. The usage pattern of this tool is:
FormatCheck(), which will automatically format
the most recently generated code and return the
formatted version.

Code Interpreter The tool focuses on examining
the syntax and function of programs. It furnishes
a runtime environment so that LLMs can debug
generated codes with execution feedback. The tool
requires LLMs to provide a program to be executed,
and then runs the code in the repository environ-
ment. Meanwhile, LLMs generate some test cases
to verify whether the output of the generated code
meets the expected results. When occurring errors,
this tool will offer error information to facilitate
LLMs to fix bugs until programs are error-free,
which has been proven to be effective by many
existing works (Chen et al., 2022; Zhang et al.,
2023b) to correct output programs. The runtime
environment is prepared for each task, as described
in Section B.1.1. This tool is designed in the for-
mat: PythonREPL(input_code), and the tool will
return the executed result of the input code.

4.2 Agent Strategy
To guide LLMs to leverage these powerful tools
properly, we develop four agent strategies for
repo-level code generation, including ReAct, Tool-
Planning, OpenAIFunc, and Rule-based Tool Us-
age. The interaction between LLMs and external
tools is based on LangChain 6.

ReAct This strategy (Yao et al., 2022) prompts
LLMs to generate reasoning traces and task-related
actions in an interlaced fashion. Based on actions,
ReAct selects the proper external tools and invokes
them by providing input. The strategy then treats
the output of tools as additional knowledge and
decides whether to generate a final code or invoke
other tools for further processing.

Tool-Planning We propose a variant, i.e., Tool-
Planning, of Planning strategy (Wang et al., 2023b)
that makes a plan before solving problems and has
shown effectiveness in many studies (Zhang et al.,
2022; Jiang et al., 2023). Different from Planning,

5https://github.com/psf/black
6https://python.langchain.com
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our strategy can invoke proper tools based on the
plan. Specifically, Tool-Planning first makes a plan
to divide an entire task into several subtasks and
then performs subtasks according to the plan. For
complex subtasks, it will automatically choose an
appropriate tool to assist LLMs in code generation.

OpenAIFunc Recently, some models (e.g., GPT-
3.5 (GPT-3.5, 2023) and GPT-4 (GPT-4, 2023))
have the function-calling ability provided by Ope-
nAI (OpenAIFunc, 2023). The interaction mode is
similar to that of "ReAct", with some differences
in the content generated by LLMs and the format
of calling external tools.

Rule-based Tool Usage When faced with a com-
plex problem, programmers often first learn related
knowledge, then write programs, and check the
function of programs. Inspired by the workflow,
we propose a rule-based strategy.

This strategy defines the order of tool usage and
interlinks these tools by prompts. I) LLMs leverage
website search to gather useful online information;
II) LLMs then use documentation reading tool to
search relevant classes and functions; III) Code
symbol navigation is required to select and view
the source codes of related classes and functions.
Based on the above information, LLMs generate
programs; IV) Subsequently, LLMs invoke the for-
mat checker to check the syntax and format of gen-
erated programs; V) Finally, LLMs use the code
interpreter to evaluate the functional correctness
of programs. Based on the feedback information,
LLMs fix errors within programs. For each part,
LLMs will autonomously cycle through the use of
tools until it decides to move on to the next part or
the cycle reaches its limit number (e.g., 3).

5 Experiment

We perform extensive experiments to answer
three research questions: (1) How much can
CODEAGENT improve the advanced code gener-
ation LLMs on repo-level code generation (Sec-
tion 5.2); (2) What is the improvement of our
CODEAGENT on classical code generation such
as HumanEval (Section 5.3); (3) To what extent
do our selected tools in the agent system help for
repo-level coding (Section 5.4).

5.1 Experimental Setup

Benchmarks To evaluate our method on repo-
level code generation, we follow the format de-

Name Domain Samples # Line # DEP

numpyml-easy Machine Learning 22 10.9 0.3
numpyml-hard Machine Learning 35 85.4 2.6
container Data Structure 4 130.3 8.0
micawber Information Extraction 7 19.7 4.3
tinydb Database 21 36.7 2.7
websockets Networking 12 91.6 7.5

Total 101 57.0 3.1

Table 2: Statistics of CODEAGENTBENCH. # Line:
average lines of code. # DEP: average number of code
dependencies.

scribed in Section 3 and construct a new benchmark
CODEAGENTBENCH. To make CODEAGENT-
BENCH diverse, we select five prevalent topics
judged by ten developers and choose repositories
with high stars from GitHub. The selected topics
contain machine learning, data structure, informa-
tion extraction, database, and networking. To en-
sure the quality, we only select repositories that
use pytest 7 and unittest8 as the test framework
and its documentation is generated by Sphinx9 tool.
For writing standards of these test cases, since we
opted for projects utilizing the pytest and unittest
frameworks, these frameworks ensure consistency
in these testing codes. (for example, the pytest
framework requires all test functions to have "test_"
as a prefix in their function names and provides uni-
form guidelines for test assertions). We also filter
out complex repositories that are hard to deploy
and test. Then, we extract all functions and classes
in code repositories and arrange two participants to
sequentially execute them. Our construction costs
approximately 600 person-hours. Each participant
possesses 2-5 years of Python programming expe-
rience. Finally, we get 101 functions and classes
collected from real code projects in Python. The
statistics of CODEAGENTBENCH are shown in Ta-
ble 2.

The final CODEAGENTBENCH contains 101
samples, and for each task, LLMs are provided with
documentation containing the requirements needed
to be implemented, along with a set of tools we
designed, as well as full access permissions to code
files in the repository. We use the self-contained
test suite in each code repository to evaluate the
correctness of generated programs.

In addition, to evaluate the generalization abil-
ity of CODEAGENT, we also perform experiments
on function-level code generation. In this paper,

7https://docs.pytest.org/
8https://docs.python.org/3/library/unittest.html
9https://www.sphinx-doc.org/
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from typing import List
def has_close_elements(numbers: List[float], threshold: float) -> bool:

""" Check if in given list of numbers, are any two numbers closer to each other 
than given threshold. >>> has_close_elements([1.0, 2.0, 3.0], 0.5) False >>> 
has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3) True """

Function Signature & Description

def has_close_elements(numbers: List[float], threshold: float):
for idx, elem in enumerate(numbers): 

…
return False

Output Code

Input Description

Figure 3: An illustrative example of existing benchmark
HumanEval.

we use a widely-used function-level benchmark
HumanEval (Chen et al., 2021). It contains 164
programming problems with the function signature,
docstring, body, and unit tests. In Figure 3, we give
an illustrative example of HumanEval.

Base LLMs We apply CODEAGENT to nine most
powerful LLMs, including GPT-3-davinci (GPT-
3, 2022), GPT-3.5-turbo (GPT-3.5, 2023), GPT-
4-turbo (GPT-4, 2023), Claude-2 (Claude, 2023),
Llama2-70B-chat (Llama, 2023), Code Llama-34B
(Rozière et al., 2023), WizardCoder-34B (Luo
et al., 2023), DeepSeek-33B (DeepSeek, 2023) and
Vicuna-13B (Chiang et al., 2023). Additional de-
scriptions are provided as a part of Table 3.

Metrics Following previous works (Zan et al.,
2022; Zheng et al., 2023), we use the pass rate as
the metric, where we treat the generated program
correctly only if its output is consistent with all
ground truths of the test suite. Specifically, we are
mainly concerned with Pass@1 (Chen et al., 2021),
which is a representative of the Pass@k family,
because in real-world scenarios, we usually only
consider the single generated code.

5.2 Repo-level Coding Performance
In our experiments, we utilized our specially
designed repo-level benchmark, CODEAGENT-
BENCH, to assess the efficacy of CODEAGENT

in enhancing the performance of nine prominent
code LLMs. The results are presented in Table 3.

Our proposed CODEAGENTBENCH proves to
be substantially more challenging than existing
benchmarks, as evidenced by the relatively lower
pass rates. On all base LLMs with various sizes,
CODEAGENT consistently delivers significant per-
formance improvements. Specifically, for GPT-4
model (GPT-4, 2023), we observe a maximum in-
crease of 15.8, equating to a 72.7% relative en-
hancement over the baseline, i.e., NoAgent. The

improvements of other LLMs range from 2.0 to
an impressive 15.8, underscoring the effectiveness
of our proposed approach. This demonstrates that
the tools integrated within CODEAGENT provide
useful information, aiding LLMs in producing ac-
curate code solutions and effectively tackling com-
plex repo-level coding challenges.

Across different LLMs, a notable trend is that
more advanced LLMs exhibit greater improve-
ments with the application of CODEAGENT. How-
ever, for Vicuna-13B model (Chiang et al., 2023),
performance on CODEAGENTBENCH is notably
poor, showing no appreciable enhancement with
the agent strategy. In contrast, the improvement
is quite pronounced for other high-capacity LLMs.
Furthermore, we find that different agent strate-
gies yield varying levels of enhancement. Among
these strategies, Rule-based and ReAct strategies
are more effective, whereas Tool-Plannig strategy
appears less suited for the task.

5.3 Function-level Coding Performance
We further apply our CODEAGENT to function-
level code generation with the well-known Hu-
manEval benchmark (Chen et al., 2021). We adapt
our approach to this scenario by omitting the docu-
mentation reading tool and code symbol navigation.
The adjustment is necessitated as these tools are not
applicable to the standalone code generation task.
For this task, we strategically selected a range of
representative LLMs for evaluation, constrained by
our available resources and computational capacity.
The pass rate results are detailed in Table 4.

The results once again highlight the efficacy of
CODEAGENT in enhancing the performance of
code LLMs across all metrics. Notably, the maxi-
mum improvements observed for each model span
from 6.1 to 9.7 on Pass@1. These findings un-
derscore the versatility and effectiveness of our
CODEAGENT in augmenting the capabilities of
LLMs across a variety of code generation tasks.

5.4 Ablation Study
To investigate the influence of tools incorporated in
CODEAGENT, we conduct an ablation study focus-
ing on tool utilization in repo-level code generation.
We choose GPT-3.5-turbo with ReAct as the base
model, named GPT-3.5-ReAct. We meticulously
track the usage frequency of each tool during code
generation processes, with the statistics presented
in Table 5 under the column # Usage. Subsequently,
we exclude one tool at a time from our approach,
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Models Scales NoAgent Rule-based ReAct Tool-Planning OpenAIFunc

Closed source LLM
GPT-3-davinci (GPT-3, 2022) 175B 16.8 24.8 ( ↑ 7.9) 22.8 ( ↑ 5.9) 18.8 ( ↑ 2.1) -
GPT-3.5-turbo (GPT-3.5, 2023) - 19.8 31.7 ( ↑ 11.9) 30.7 ( ↑ 10.8) 21.8 ( ↑ 2.0) 28.7 ( ↑ 8.9)
GPT-4-turbo (GPT-4, 2023) - 21.8 37.6 ( ↑ 15.8) 34.7 ( ↑ 12.9) 25.7 ( ↑ 4.0) 34.7 ( ↑ 12.9)
Claude-2 (Claude, 2023) - 8.9 10.9 ( ↑ 2.0) 9.9 ( ↑ 1.0) 9.9 ( ↑ 1.0) -

Open source LLM
Llama2-70B-chat (Llama, 2023) 70B 10.9 12.9 ( ↑ 2.0) 11.9 ( ↑ 1.1) 11.9 ( ↑ 1.1) -
Code Llama-34B (Rozière et al., 2023) 34B 2.0 5.0 ( ↑ 3.0) 4.0 ( ↑ 2.0) 4.0 ( ↑ 2.0) -
WizardCoder-34B (Luo et al., 2023) 34B 2.0 6.9 ( ↑ 5.0) 5.0 ( ↑ 2.7) 4.0 ( ↑ 2.0) -
DeepSeek-33B (DeepSeek, 2023) 33B 13.9 24.8 ( ↑ 10.9) 20.8 ( ↑ 6.9) 15.8 ( ↑ 2.0) -
Vicuna-13B (Chiang et al., 2023) 13B 1.0 1.0 0.0 0.0 -

Table 3: The Pass@1 results of different agent strategies on CODEAGENTBENCH. “NoAgent” refers to the baseline
where LLMs generate code solely based on the provided documentation.

Models NoAgent Rule-based ReAct Plan OpenAIFunc

GPT-3.5-turbo (GPT-3.5, 2023) 72.6 82.3 ( ↑ 9.7) 79.3 ( ↑ 6.7) 73.8 ( ↑ 1.2) 81.1 ( ↑ 8.5)
CodeLLaMA-34B (Rozière et al., 2023) 51.8 59.7 ( ↑ 7.9) 58.2 ( ↑ 6.4) 54.1 ( ↑ 2.3) -
WizardCoder-34B (Luo et al., 2023) 73.2 79.4 ( ↑ 6.2) 77.6 ( ↑ 4.4) 75.6 ( ↑ 2.4) -
DeepSeek-33B (DeepSeek, 2023) 78.7 84.8 ( ↑ 6.1) 83.5 ( ↑ 4.8) 81.1 ( ↑ 2.4) -

Table 4: The Pass@1 results of different agent strategies on the HumanEval benchmark.

# Usage Ablation Result

GPT-3.5-ReAct - 30.7

Website Search 0.30 27.7 ( ↓ 3.0)
Documentation Reading 0.84 26.7 ( ↓ 4.0)
Code Symbol Navigation 2.45 22.8 ( ↓ 7.9)
Format Check 0.17 29.7 ( ↓ 1.0)
Code Interpreter 0.22 29.7 ( ↓ 1.0)

GPT-3.5-NoAgent - 19.8

Table 5: Average tool usage number and ablation result
on CODEAGENTBENCH for GPT-3.5-ReAct.

allowing us to isolate and understand the individ-
ual contribution of each tool. The performances
of these ablation scenarios are shown in Table 5,
categorized under the column Ablation Result.

Our findings reveal that the code symbol naviga-
tion tool is particularly pivotal in our agent system.
On average, CODEAGENT utilizes this tool approx-
imately 2.45 times per code generation, a frequency
higher than the counterpart of other tools. Notably,
the performance significantly declines when this
tool is omitted, underscoring its critical role in en-
hancing the effectiveness of our approach. Further-
more, the ablation results confirm that each tool
in our agent system contributes positively to the
overall improvement. This evidence not only val-
idates the effectiveness of our strategy design but
also highlights the utility of programming tools in
addressing the repo-level coding task.

NumpyML-easy NumpyML-hard

Our Agent
GPT-3.5 14 3
GPT-4 17 5

IDE Product
GitHub Copilot 7 1
Amazon CodeWhisperer 5 0

Agent Product
AutoGPT (with GPT-4) 2 0

Table 6: Performance compared with commercial pro-
gramming products (the number of solved problems).

6 Discussion

6.1 Compared with Commercial Products

Nowadays, a lot of mature commercial products
are available to support complex code generation
tasks. It is essential to compare CODEAGENT with
these established products. We categorize them
into two distinct groups: (1) IDE Products are
AI-powered autocomplete-style suggestion tools
integrated within IDE software. Notable examples
are GitHub Copilot (Copilot, 2023) and Amazon
CodeWhisperer (CodeWhisperer, 2023). (2) Agent
Products encompass autonomous agents driven by
GPT-4 (GPT-4, 2023). They are capable of execut-
ing a variety of tasks, including coding, such as
well-known AutoGPT (AutoGPT, 2023).

Considering that IDE products are primarily de-
signed as completion systems, we limit human in-
teractions to less than three times per task to ensure
a fair comparison. The evaluation is conducted on
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the numpyml subset of CODEAGENTBENCH man-
ually by an experienced Python developer. Table 6
shows the number of solved problems on different
products and our CODEAGENT.

The results demonstrate that CODEAGENT

works better than existing products on complex
coding scenarios. In addition, despite both
CODEAGENT and AutoGPT being agent-based
approaches, CODEAGENT exhibits numerous op-
timizations tailored for repo-level coding tasks,
thereby making it better than AutoGPT in the task.
Compared to IDE products that can also analyze
complex code dependencies, our method benefits
from the flexibility inherent in the agent system,
resulting in a substantial lead over IDE products.

6.2 Qualitative Analysis
We explore generated cases to assess CODEAGENT

(e.g., GPT-3.5-ReAct) and the baseline model (e.g.,
GPT-3.5-NoAgent). The comparative analysis is
shown in Figure 4 and Figure 5.

CODEAGENT typically begins with examin-
ing the code dependencies in the repository, sub-
sequently refining its code generation strategy
through a step-by-step process known as “chain-
of-thought”. As in Figure 4, the input documen-
tation specifies the need for a class with member
functions set_params and summary. CODEAGENT,
assisting with the symbol navigation tool, finds the
base class and identifies the member function _ker-
nel as a key component for implementation. This
is reflected in the generated thought process:

"The set_params and summary methods
can be inherited from the base class
without modifications ... The ‘_kernel’
method needs to be overridden ..."

(Generated by CODEAGENT-GPT-3.5-ReAct)

On the contrary, GPT-3.5-NoAgent lacks access to
detailed information on code structures, resulting
in incorrect code solutions, as depicted in Figure 5.

7 Conclusion

We formalize the repo-level code generation task to
evolve real-world coding challenges. To enhance
LLMs to handle repo-level code generation, we
propose CODEAGENT, a novel LLM-based agent
framework. CODEAGENT develops five program-
ming tools, enabling LLMs to interact with soft-
ware artifacts, and designs four agent strategies to
optimize tools’ usage. To evaluate the effectiveness

of our CODEAGENT, we construct CODEAGENT-
BENCH, a new benchmark for repo-level code gen-
eration that includes rich information about the
code repository. Experiments on nine LLMs show
that CODEAGENT achieves a significant improve-
ment on diverse programming tasks, highlighting
its potential in real-world coding challenges.
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Limitation

Although our work is a very early exploration of
this area, there are several limitations on our work
that we aim to address as quickly as possible:

Firstly, we propose a new task format for
the repo-level code generation task and release
CODEAGENTBENCH. Our preliminary experi-
ments prove that the impact of LLMs’ memoriza-
tion on pre-training data is slight for fair evaluation.
However, it still needs further experiments to elimi-
nate this hidden danger. We will follow the relevant
research to further understand its influence on our
proposed benchmark.

Secondly, we only incorporate simple tools to
CODEAGENT. Some advanced programming tools
are not explored. The limitation may restrict the
agent’s ability in some challenging scenarios.

Thirdly, in Section 6.1, the comparison with
commercial products is not rigorous since exper-
iments are done manually. We will study how to
evaluate IDE products more standardly.

Finally, since LLMs are very sensitive to input
prompts, it is very important to optimize prompts in
the agent system. We will continue to explore better
agent strategies based on the current approach.

Ethics Consideration

CodeAgent and its benchmark are inspired and
collected from real-world code repositories. We
manually check all samples in our benchmark. We
ensure all samples do not contain private informa-
tion or offensive content. Throughout our experi-
ments, we diligently annotated the sources of all
used data, ensuring compliance with the respective
license specifications.
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A Details of Case Study

Here we show the illustration of the case study
for CODEAGENT (GPT-3.5-ReAct) and GPT-3.5-
NoAgent in Figures 4 and 5.

We can find a distinct operational pattern in
CODEAGENT in Figure 4. Through meticulous
analysis, CODEAGENT leverages code symbol nav-
igation tool to scrutinize information within the
‘utils.kernels’ module, where the target class for
implementation resides. Our custom-designed tool
proficiently navigates to the module, offering in-
sights into its contents, including package details,
defined functions and classes, through a static anal-
ysis process. Importantly, CODEAGENT discovers
a crucial class named ‘KernelBase’ and obtains
detailed information about it with another use of
the tool. Within ‘KernelBase’, there is an abstract
method named ‘_kernel’ that needs to be imple-
mented. CODEAGENT recognizes this method as
essential for the development process, highlight-
ing its importance. Compared with the NoAgent
in Figure 5, our approach accurately captures this
content hidden in the complex information in the
code repository, and precisely implements the final
code.

We also notice that during the third tool invoca-
tion, CODEAGENT calls the code interpreter tool
and execute a piece of code that appears insignifi-
cant. We have observed similar situations in other
cases as well. We attribute this to LLMs still lack-
ing proficient mastery of some complex program-
ming tools. This insight directs our future research
towards enhancing LLMs’ ability to more effec-
tively use complex programming tools.

B Details of CODEAGENTBENCH

In this section, we introduce the details of our
CODEAGENTBENCH benchmark. We describe its
composition format (Section B.1), the construction
process (Section 5.1), and provide a detailed com-
parison with existing benchmarks (Section B.2).

B.1 Benchmark Composition
Code repository contains intricate invocation re-
lationships. Only with a deep understanding of
code repository can LLMs generate satisfying pro-
grams that not only adhere to requirements but
also seamlessly integrate with the current reposi-
tory. Inspired by this, each task of our benchmark
provides rich information, encompassing the docu-
mentation, code dependency, runtime environment,

self-contained test suite, and canonical solution,
which form the input and output.

B.1.1 Benchmark Input
Documentation Documentations are the main in-
put component of our benchmark and describe the
generation targets. We follow the code documen-
tation format used in a popular documentation cre-
ation tool Sphinx 10. Figure 1 illustrates an example
of documentation in CODEAGENTBENCH, where
different elements are highlighted with diverse col-
ors. When accomplishing a new task, our prepared
documentation can provide LLMs with all-sided
details that need to be considered to ensure that
the generation target has been well-defined and
constrained.

Contextual Dependency Contextual depen-
dency is an important role in our benchmark. To
accurately identify these dependencies, we devel-
oped a static analysis tool using tree-sitter 11. Our
designed tool allows us to extract all user-defined
elements (such as class names, function names,
constants, and global variables) and public library
names from each file. These elements are then
stored in a knowledge base. For any given function,
we use this knowledge base to locate its source file,
parse the file to identify all user-defined symbols
and public libraries, and finally determine its con-
textual dependencies by exact matching of symbol
names and scopes. On average, each sample in
CODEAGENTBENCH involves around 3.1 code de-
pendencies, thereby closely simulating real-world
programming conditions. Detailed information is
shown in Table 2.

Runtime Environment Developers often use
feedback from running programs to find and fix
mistakes. In CODEAGENTBENCH, we build a
sandbox environment for each task. The sandbox
environment provides all configurations needed to
run the repository and offers convenient interaction
to ensure an all-sided evaluation of LLMs’ perfor-
mance on repo-level code generation.

B.1.2 Benchmark Ground-truth Output
Canonical Solution We use the answers included
in the repository as the initial solutions and invite
three participants to manually refine them. The
first participant checks surface errors of solutions
based on the repository information. The second

10https://www.sphinx-doc.org/
11https://tree-sitter.github.io/tree-sitter/
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Input
"PolynomialKernel"
******************
class numpy_ml.utils.kernels.PolynomialKernel(d=3, gamma=None, c0=1)

The degree-*d* polynomial kernel.

-[ Notes ]-
For input vectors \mathbf{x} and \mathbf{y}, the polynomial kernel is:
k(\mathbf{x}, \mathbf{y}) = (\gamma \mathbf{x}^\top \mathbf{y} + c_0)^d
In contrast to the linear kernel, the polynomial kernel also computes similarities *across* dimensions of the **x** and **y** vectors, allowing it to account for interactions between features.
As an instance of the dot product family of kernels, the polynomial kernel is invariant to a rotation of the coordinates about the origin, but *not* to translations.

Parameters:
* **d** (*int*) -- Degree of the polynomial kernel. Default is 3.
* **gamma** (*float** or **None*) -- A scaling parameter for the dot product between *x* and *y*, determining the amount of smoothing/resonlution of the kernel. Larger values result in
greater smoothing. If None, defaults to 1 / *C*. Sometimes referred to as the kernel bandwidth. Default is None.
* **c0** (*float*) -- Parameter trading off the influence of higher-order versus lower-order terms in the polynomial. If *c0* = 0, the kernel is said to be homogenous. Default is 1.

set_params(summary_dict)
Set the model parameters and hyperparameters using the settings in *summary_dict*.
Parameters:

**summary_dict** (*dict*) -- A dictionary with keys 'parameters' and 'hyperparameters', structured as would be returned by the "summary()" method. If a particular (hyper)parameter is not 
included in this dict, the current value will be used.

Returns:
**new_kernel** (Kernel instance) -- A kernel with parameters and hyperparameters adjusted to those specified in *summary_dict*.

summary()
Return the dictionary of model parameters, hyperparameters, and ID

Tool-1 (Code Symbol Navigation)
SymbolSearch(numpy_ml.utils.kernels)
=> 
import_package_or_function: re, np, ABC, abc, abstractmethod 
mannual_defined_function: pairwise_l2_distances, kernel_checks 
mannual_defined_class: LinearKernel, KernelInitializer, KernelBase, RBFKernel

Tool-2 (Code Symbol Navigation)
SymbolSearch(KernelBase)
=> 
The code is:
```python
class KernelBase(ABC):
    def __init__(self):

…
    @abstractmethod
    def _kernel(self, X, Y):

…
    def __call__(self, X, Y=None):

…
    def __str__(self):

…
    def summary(self):

…
    def set_params(self, summary_dict):

…
```

Tool-3 (Code Interpreter)
PythonREPL(……)
=> 
The output is empty.

The input code:
import numpy as np
from numpy_ml.utils.kernels import KernelBase 

CodeAgent (GPT-3.5-ReAct) Output
Let's continue with the implementation of the PolynomialKernel class. The kernel function for this class involves a dot product of the input vectors, raised to a specified degree, and optionally 
scaled and shifted. This can be implemented using numpy's dot product function and basic arithmetic operations.

The set_params and summary methods can be inherited from the base class without modifications, as they should work the same for any kernel. The `_kernel` method needs to be overridden 
to implement the polynomial kernel function.

Here is the completed implementation:

```python
class PolynomialKernel(KernelBase):

def __init__(self, d=3, gamma=None, c0=1):
super().__init__()
self.parameters = {"d": d, "c0": c0, "gamma": gamma if gamma is not None else 1.0}
self.hyperparameters = {"id": "PolynomialKernel"}

def _kernel(self, X, Y):
gamma = self.parameters["gamma"]
c0 = self.parameters["c0"]
d = self.parameters["d"]
result = (gamma * np.dot(X, Y.T) + c0) ** d
return result

```

In this class, the `__init__` method sets up the degree, gamma, and c0 parameters, with defaults as specified. If gamma is not provided (None), it's default value is set to 1.

The `_kernel` method implements the polynomial kernel function. It first retrieves the parameters from the class' attribute `parameters`. It then computes the polynomial kernel function as 
`(gamma * dot_product(X, Y) + c0) ** d` and returns the result. Note that `np.dot(X, Y.T)` is used to compute the dot product of X and Y. The transpose of Y (`Y.T`) is used since in numpy, the dot 
function computes dot product along the last axis of the input arrays, so we need to make sure the vectors in X and Y align correctly.

Figure 4: Case study of our proposed CODEAGENT (GPT-3.5-ReAct) on CODEAGENTBENCH. We omit some
input prompts and LLM’s thoughts for viewing convenience.

person runs the solutions to identify and fix execu-
tion bugs. The last participant is responsible for
executing solutions with the test suite, aiming to
ensure its functional correctness. Through the it-
erative process, we can ensure the robustness and
reliability of solutions as much as possible.

B.1.3 Benchmark Evaluation

Self-Contained Test Suite To evaluate the cor-
rectness of generated programs, CODEAGENT-
BENCH furnishes a self-contained test suite for
each task. We first analyze and extract test cases
contained in the repository. We then invite two
participants to manually add test cases to enhance
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GPT-3.5-NoAgent Output
Here is the implementation of the `PolynomialKernel` class in the `numpy_ml.utils.kernels` module:

```python
class PolynomialKernel:
    def __init__(self, d=3, gamma=None, c0=1):
        self.d = d
        self.gamma = gamma
        self.c0 = c0

    def set_params(self, summary_dict):
        if 'parameters' in summary_dict:
            self.d = summary_dict['parameters'].get('d', self.d)
            self.gamma = summary_dict['parameters'].get('gamma', self.gamma)
            self.c0 = summary_dict['parameters'].get('c0', self.c0)
        if 'hyperparameters' in summary_dict:
            self.d = summary_dict['hyperparameters'].get('d', self.d)
            self.gamma = summary_dict['hyperparameters'].get('gamma', self.gamma)
            self.c0 = summary_dict['hyperparameters'].get('c0', self.c0)

    def summary(self):
        return {
            'parameters': {'d': self.d, 'gamma': self.gamma, 'c0': self.c0},
            'hyperparameters': {'d': self.d, 'gamma': self.gamma, 'c0': self.c0},
            'ID': id(self)
        }
```

Note that the `PolynomialKernel` class has three parameters in its constructor: `d`, `gamma`, and `c0`. The `set_params` method allows updating the parameters of the kernel using a dictionary, 
and the `summary` method returns a dictionary containing the current parameters, hyperparameters, and the ID of the kernel instance. ...

Figure 5: Case study of the baseline GPT-3.5-NoAgent on CODEAGENTBENCH. Compared with Figure 4, GPT-
3.5-NoAgent generates the incorrect programs.

its coverage as much as possible. In CODEAGENT-
BENCH, each task has at least one unit test case.
Whereafter, another participant manually checks
the correctness of the test suite. Given a new task,
we run the corresponding unit test code to verify
the generated programs based on our sandbox envi-
ronment. We treat the generated program correctly
only if its output aligns with all ground truths of
the test suite. For fairness, LLMs can not access
the test suite during code generation.

B.2 Compared with Existing Benchmarks
We perform a detailed analysis of existing code gen-
eration benchmarks in Table 7. Compared to the
previous benchmarks, our CODEAGENTBENCH

has two main advantages. On the one hand, it
is closer to real-world code generation scenarios.
On the other hand, CODEAGENTBENCH provides
pretty complex information that is related to the
code repository, including documentation, contex-
tual dependency, runtime environments, and test
suites.
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Benchmark Language Source Task Samples # Tests # Line # Tokens # Input

CoNaLA (Yin et al., 2018) Python Stack Overflow Statement-level 500 ✖ 1 4.6 NL

Concode (Iyer et al., 2018) Java Github Function-level 2000 ✖ - 26.3 NL

APPS (Hendrycks et al., 2021) Python Contest Sites Competitive 5000 ✔ 21.4 58 NL + IO

HumanEval (Chen et al., 2021) Python Manual Function-level 164 ✔ 11.5 24.4 NL + SIG + IO

MBXP (Athiwaratkun et al., 2022) Multilingual Manual Function-level 974 ✔ 6.8 24.2 NL

InterCode (Yang et al., 2023) SQL, Bash Manual Function-level 200, 1034 ✔ - - NL + ENV

CodeContests (Li et al., 2022) Python, C++ Contest Sites Competitive 165 ✔ 59.8 184.8 NL + IO

ClassEval (Du et al., 2023) Python Manual Class-level 100 ✔ 45.7 123.7 NL + CLA

CoderEval (Yu et al., 2023) Python, Java Github Project-level 230 ✔ 30.0 108.2 NL + SIG

RepoEval (Liao et al., 2023) Python Github Repository-level 383 ✖ - - NL + SIG

CODEAGENTBENCH Python Github Repository-level 101 ✔ 57.0 477.6
Software Artifacts

(NL + DOC
+ DEP + ENV)

Table 7: The statistics of existing widely-used code generation benchmarks. # Tests: whether a benchmark has the
test suite. # Line: average lines of code. # Tokens: average number of tokens. # Input: Input information of LLMs.
NL: Natural language requirement. IO: Input and output pairs. SIG: Function signature. CLA: Class skeleton as
described in Section 2.2. ENV: Runtime environment. DOC: Code documentation. DEP: Code dependency.
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