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Abstract

Simultaneous Machine Translation (SiMT)
aims to yield a real-time partial translation
with a monotonically growing source-side
context. However, there is a counterintuitive
phenomenon about the context usage between
training and inference: e.g., in wait-k inference,
model consistently trained with wait-k is much
worse than that model inconsistently trained
with wait-k′ (k′ ̸= k) in terms of translation
quality. To this end, we first investigate the
underlying reasons behind this phenomenon
and uncover the following two factors: 1) the
limited correlation between translation quality
and training loss; 2) exposure bias between
training and inference. Based on both reasons,
we then propose an effective training approach
called context consistency training accordingly,
which encourages consistent context usage
between training and inference by optimizing
translation quality and latency as bi-objectives
and exposing the predictions to the model
during the training. The experiments on
three language pairs demonstrate that our
SiMT system encouraging context consistency
outperforms existing SiMT systems with
context inconsistency for the first time. 1

1 Introduction

Simultaneous machine translation (SiMT) (Cho
and Esipova, 2016; Gu et al., 2017; Ma et al.,
2019) aims to generate a partial translation while
incrementally receiving a prefix of a source
sentence. SiMT plays an very improtant role in
many real-world scenarios such as multilateral
organizations and international summits (Ma et al.,
2019). A good SiMT system should not only have
low latency in the generation process but also yield
a translation with high quality. Hence, there has
recently been witnessed a surge of interest in the
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Figure 1: Counterintuitive phenomenon on the context
usage between training and inference: in wait-1
inference (k = 1), model trained with k′=9 (denoted by
“ctx incons") outperforms the model trained with k′=1
(denoted by “ctx cons") in terms of BLEU, even though
the former model (trained by k′=9) induces a mismatch
on context usage between training and inference.

research about SiMT (Elbayad et al., 2020; Ma
et al., 2020; Zhang and Feng, 2021, 2022).

In this paper, we shed light on a counterintuitive
phenomenon on the context usage between training
and inference in SiMT: in wait-k inference,
model consistently trained with wait-k is worse
than that model inconsistently trained with wait-
k′ (k′ ̸=k) in terms of BLEU scores (Papineni
et al., 2002), as shown in Figure 1. This
phenomenon was first observed by Ma et al.
(2019) yet without explanations. Subsequently,
such context inconsistency training becomes a
standard practice (Elbayad et al., 2020; Zhang
and Feng, 2021, 2022), even if this phenomenon
is counterintuitive due to the mismatch between
training and inference on the usage of partial
source-side context.

To investigate the reasons behind the above coun-
terintuitive phenomenon, we conduct experiments
from two perspectives: calculating the correlation
between BLEU scores and cross-entropy loss, as
well as evaluating the translation quality under
the prefix-constrained decoding setting. Our
empirical experiments demonstrate two reasons
that are responsible for the phenomenon: 1) the
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limited correlation between translation quality and
training loss; 2) exposure bias between training
and inference. Moreover, based on our findings,
this paper proposes an effective training approach
called context consistency training. Its key idea
is to make the context usage consistent between
training and inference by optimizing translation
quality and latency as bi-objectives and exposing
the model to its own predictions during the training
stage. Particularly, this approach is general to
be applied to most SiMT systems. Experiments
conducted across various benchmarks demonstrate
that the proposed context consistency training
towards bi-objectives achieves substantial gains
over the original consistency training based on
cross-entropy. Our main contributions are:

• This paper sheds light on a counterintuitive
phenomenon about context usage between
training and inference in SiMT and provides
comprehensive explanations.

• Based on our findings, this paper proposes
a simple yet effective context consistency
training method, which breaks through the
standard practice of inconsistent training.

• Experimental results demonstrate that our
SiMT system encouraging context consistency
outperforms the existing systems with context
inconsistency for the first time.

2 Rethinking Counterintuitive
Phenomenon on Context Usage

2.1 Counterintuitive Phenomenon

Counterintuitive Phenomenon on Valid Set. In
wait-k systems, the counterintuitive phenomenon
of the context usage between training and inference
was first observed by Ma et al. (2019) yet without
explanations: in wait-k inference, model trained
consistently with the same wait-k setting is worse
than the model trained with the wait-k′ setting
(k′ ̸= k) in terms of translation quality, as
illustrated in Table 1.2 For example, the BLEU
scores obtained by the model trained with wait-9
surpasses the model trained with wait-1 by a large
margin with wait-1 inference. As a result, it has
become a standard practice to utilize inconsistent
context for training, and this practice is widely
followed by (Elbayad et al., 2020; Zhang and Feng,

2To clarify, this observation specifically pertains to the
lower triangle of the table.

2021; Zhang et al., 2022; Guo et al., 2023), even
if this phenomenon is counterintuitive due to the
mismatch between training and inference on the
usage of source-side context.

Train
Inference

k=1 k=3 k=5 k=7 k=9

k′=1 19.10 18.06 17.42 16.94 16.80
k′=3 19.29 23.76 24.97 25.00 24.40
k′=5 20.33 24.89 26.36 26.93 27.27
k′=7 20.48 24.60 26.46 27.26 27.81
k′=9 21.42 24.82 26.92 27.84 28.63

Table 1: Evaluation by BLEU scores on the valid set of
the WMT15 De-En task for wait-k policy . Bold: best
in a column. Underline: training context is consistent
with inference context. (§4 provides detailed settings.)

Counterintuitive Phenomenon on Training
Subset. One might hypothesize that this phe-
nomenon is attributed to the generation issue from
training data to valid data. To verify this hypothesis,
we conduct similar experiments on a subset of
the training data. We sample examples from the
training data as a training subset with the same size
as the valid set. Table 2 depicts that the situation
on the training subset is almost similar to that on
the valid set except for k = 3, where the optimal
k′ = 9 for the training subset rather than k′ = 5
as for the valid set. This shows that generalization
from training data to valid data is not the main
reason for this counterintuitive phenomenon and it
is non-trivial to analyze its reasons.

Train
Inference

k=1 k=3 k=5 k=7 k=9

k′=1 21.42 21.21 21.00 20.25 19.67
k′=3 22.07 25.51 26.73 26.69 26.33
k′=5 22.53 25.55 27.27 28.06 28.07
k′=7 23.15 25.73 27.20 28.34 28.63
k′=9 23.22 26.21 27.52 28.66 29.33

Table 2: Evaluation by BLEU scores on the training
subset of the WMT15 De-En task for wait-k policy.

2.2 Reasons of Counterintuitive Phenomenon
Correlation between BLEU and Cross-entropy
Loss in SiMT. Firstly, we explore the correlation
between translation quality (e.g., BLEU scores)
and training loss (e.g., cross-entropy). Specifically,
we measure both the training loss and translation
quality of each sample and calculate their
absolute Pearson Correlation in the training subset.
However, training loss is measured at the word
level, while translation quality for a sentence is
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measured at the sentence level. To bridge this
disparity, we compute the average training loss
for each word within a sentence, thus representing
it as sentence-level training loss.

k 1 3 5 7 9 ∞
Entire 0.62 0.70 0.73 0.74 0.75 0.75
Low 0.68 0.73 0.74 0.75 0.76 0.75
High 0.27 0.44 0.51 0.56 0.60 0.64

Table 3: Correlation between BLEU scores and cross-
entropy loss on three subsets from the training subset of
WMT15 De-En for wait-k policy, where k=∞ means
Full-sentence MT. Entire denotes the entire training
subset, Low consists of those samples whose cross-
entropy loss is lower than the averaged loss, High
consists of those samples whose loss is higher than
the averaged loss.

Table 3 presents the results of the correlation
between BLEU scores and cross-entropy loss in
the wait-k policy. We reveal the following insights.
1) In the wait-k policy, especially when k is smaller,
the correlation is lower than that in Full-sentence
MT. 2) When evaluating samples with high cross-
entropy loss, we observe a weaker correlation
(between training loss and BLEU) compared to
that with low training loss. This observation is
not difficult to understand: taking a two-class
classification task as an example, if the cross-
entropy loss of an example is very high (e,g., the
loss is − log 0.2), then the model can not predict
the correct label for this example even if its loss
is improved to − log 0.4, because the probability
of the ground-truth label is 0.4, which is less
than 0.5. This suggests that the reason for the
counterintuitive phenomenon on context usage
is attributed to the relatively high cross-entropy
loss for SiMT 3, leading to the weak correlation
between cross-entropy loss and BLEU scores.

Effects of Exposure Bias on the Models
Trained Consistently and Inconsistently. Since
the SiMT model is typically trained by cross-
entropy loss, it suffers from the well-known
exposure bias, i.e., during training, the model
is only exposed to the training data distribution,
instead of its predictions. Therefore, we focuses
on studying the effects of exposure bias on the
model trained with consistent context as well as
the model trained with inconsistent context. To

3Compared with full-sentence MT, SiMT uses less source-
side context, which essentially results in a higher cross-entropy
loss.

control the extent of exposure bias during the
inference, we measure translation quality by BLEU
scores for both models (e.g., the former wait-
1 inference model is trained with wait-1 setting
and the latter wait-1 inference model is trained
with wait-9 setting) under the prefix-constrained
decoding setting (Wuebker et al., 2016), where
each model requires to predict the suffix for a given
gold prefix. Under this setting, as the gold prefix
gets shorter, more predicted tokens are used as the
context during the prefix-decoding stage and the
exposure bias is more severe.

0 5 10 15 20
The length of gold prefix

24

25

26

27

28

BL
EU

Consistency: Wait-1
Inconsistency: Wait-9

Figure 2: BLEU scores comparison between context
consistency and context inconsistency under the prefix-
constrained decoding setting. The x-axis denotes the
number of tokens for the gold prefix.

The results as presented in Figure 2 are averaged
from a subset of 400 sentence pairs in the train set,
all having the same number of tokens in the target
(20 target tokens). It is evident that as the gold
prefix becomes shorter (i.e., exposure bias is more
severe), the performance of the consistent model
significantly deteriorates while the inconsistent
model’s performance remains relatively better;
however, when the number of tokens in the gold
prefix is larger than 10 (i.e., exposure bias is less
severe), the consistent model performs better. This
finding reveals that one of the underlying causes
of the counterintuitive phenomenon is attributed
to exposure bias (Ranzato et al., 2016; Bengio
et al., 2015; Zhang et al., 2019).

2.3 Counterintuitive Phenomenon Depends on
Evaluation Metrics

The above reasons motivate us to study the
counterintuitive phenomenon by using the cross-
entropy loss for evaluation, in addition to BLEU
as before, because training and inference criteria
are the same, and there is no exposure bias issue
in this case. We evaluate cross-entropy loss for
the wait-k inference while models trained with
wait-k′ settings on the valid set and training
subset, as illustrated in Table 4. On the valid
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Valid set Training subset

k=1 k=3 k=5 k=7 k=9 k=1 k=3 k=5 k=7 k=9

k′=1 5.78 5.26 5.00 4.87 4.81 5.43 5.11 4.95 4.87 4.83
k′=3 5.78 5.12 4.79 4.61 4.53 5.48 5.03 4.83 4.73 4.67
k′=5 5.81 5.10 4.73 4.53 4.42 5.54 5.06 4.81 4.69 4.61
k′=7 5.86 5.12 4.72 4.50 4.38 5.60 5.09 4.82 4.67 4.59
k′=9 5.91 5.14 4.72 4.49 4.36 5.65 5.12 4.84 4.68 4.58

Table 4: Evaluation by cross-entropy loss on valid set
and training subset of WMT15 De-En for wait-k policy
(k=∗ and k′=∗ refer to the inference and the training,
respectively).

set, we almost notice a diagonal trend, indicating
the superiority of the consistent model. On the
training subset, we observe a similar diagonal
trend, indicating the counterintuitive phenomenon
disappears in terms of cross-entropy loss as the
evaluation metric. These observation suggests
that the counterintuitive phenomenon of context
usage between training and inference depends
on evaluation metrics, and it might be helpful
to address this phenomenon by encouraging
the consistent criterion between training and
inference.

3 Context Consistency Training for SiMT

Previous findings have shown that: 1) it is
helpful to address the counterintuitive phenomenon
by encouraging the consistent criterion between
training and inference; 2) exposure bias is a reason
for the counterintuitive phenomenon. To address
the counterintuitive phenomenon and make the
consistent model successful, we propose a simple
yet effective training approach, called context
consistency training for SiMT, which not only
incorporates the evaluation metric (e.g., BLEU,
COMET and ChrF) for SiMT as training objectives
(§3.1) but also allows the model to expose its
predictions during training (§3.2).

3.1 Bi-Objectives Optimization for SiMT

In SiMT, the evaluation metrics of models are
translation quality and latency. Therefore, we
intend to leverage both of these metrics as bi-
objectives in our proposed method. Specifically,
BLEU (or COMET or ChrF) score is taken as an
example to measure the translation quality of SiMT
models. Average Lagging (AL) (Ma et al., 2019) is
used as the Latency measurement. AL quantifies
the number of tokens of hypotheses that fall behind

the ideal policy and is calculated as:

ALg(x,u) =
1

τ

τ∑

i=1

g(i,u)− i− 1

|u|/|x| , (1)

where τ = argmaxi {i | g(i,u)= |x|}, x is the
source sentence, u is the hypothesis sentence, and
g (i) is the number of waited source tokens before
translating ui and thus it is dependent on u<i,
and its detailed definition depends on different
read/write policies.

Formally, the SiMT model parametrized by θ
can be defined as follows:

pg(u|x; θ) =
∏|u|

i=1 p(ui|x≤g(i,u), u<i), (2)

where u denotes a complete translation hypothesis
and u<i denotes its partial prefix with i tokens.

Inspired by Minimum Risk Training (MRT)
(Shen et al., 2016; Wieting et al., 2019), we directly
optimize the SiMT model towards its bi-objectives
(i.e., BLEU and Latency) as follows:

Lg =
∑

u∈U(x)

costg(x,y,u)
pg(u|x; θ)∑

u′∈U(x) pg(u
′|x; θ) ,

(3)
where U(x) is a set of candidate hypotheses, y is
the reference and costg(∗) is the bi-objectives:

costg(x,y,u) = γ · ALg(x,u)+

(1− γ) · (1− BLEU(y,u)). (4)

The hyperparameter γ is adjustable and allows us
to fine-tune for different latency requirements.

Remark. In Shen et al. (2016) and Wieting
et al. (2019)’s studies, the cost is directly defined
on a translation candidate u, and thus it is trivial
to calculate the cost for a given u. In comparision,
ALg(x,u) depends not only on u but also on
g(i,u) specified by the read/write policy used in
the our SiMT system. During the training, we
access the SiMT model to incrementally compute
the g(i,u) for all i and then compute ALg(x,u)
based on all g(i,u) for each candidate u generated
via decoding.

3.2 Generating n Candidates for Training
SiMT

Generally, SiMT is trained by using cross-entropy
loss, and its decoding does not consider multiple
candidates. To calculate the objective function
defined in eq. (3), our SiMT system generates a set
of candidates U via decoding which also allows the
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SiMT model to be exposed to the predictions and
thereby mitigates exposure bias during the training.
To this end, we try two different ways, including
Beam search and Sampling search (Holtzman
et al., 2020), to generate n-best candidates in SiMT.
Beam search is a maximization-based decoding
technique that optimizes output by favoring high-
probability tokens. Sampling search (Holtzman
et al., 2020) is a stochastic decoding approach that
samples from the top-p portion of the probability
distribution. In our experiments, we generate a set
of 5-best candidates in the beam search and select
0.8 for top-p in the sampling search.

Moreover, to calculate the ALg(x,u) of
candidates defined in Eq. (1) which is dependent on
the g(i), we maintain both model score pg as well
as g(i) (the number of waited source words before
translating ui) at each time-step i. Specifically,
during the decoding, the SiMT model uses the
value of g(i) to incrementally specify the source
context and produce the next predictive distribution
pg. From this predictive distribution pg, we select
the top n-best or sample n partial candidates along
with their respective g(i) values.

Following Edunov et al. (2018); Wieting et al.
(2019), we employ the two-step training paradigm
to train SiMT to speed up the training process:
we first train the SiMT model with the cross-
entropy loss, and then we fine-tune the model by
optimizing the bi-objectives (e.g., BLEU and AL)
with the generated n-best candidates in our context
consistency training. It is worth noting that n
candidates are generated during the training, but
the greedy search is only used in the inference.

4 Experiments

4.1 Dataset and System Settings

The proposed approach is evaluated on three widely
used benchmarks, including IWSLT14 German→
English (De-En), IWSLT15 Vietnamese→English
(Vi-En) and WMT15 German → English (De-
En). Experiments are conducted on SiMT systems
including two policies: The fixed read/write system
(wait-k policy); The adaptive read/write system
(wait-info policy) (Zhang et al., 2022).

Baselines. The conventional training approach
of SiMT systems is the context consistency
training based on cross-entropy Ma et al. (2019),
denoted Consistency-CE. In contrast, context
inconsistency training, also based on cross-entropy,
involves inconsistent context usage between

training and inference stages, called Inconsistency-
CE. Additionally, we implement a recently widely-
used special case of context inconsistency training
(Elbayad et al., 2020), termed Inconsistency-CE-
MP, which involves sampling different values of k
during the training.

Our Training Approaches. The proposed
SiMT systems follow the standard evaluation
paradigm (Ma et al., 2019) and report BLEU (Pa-
pineni et al., 2002) , ChrF (Popović, 2015) and
COMET (Rei et al., 2020) scores for translation
quality and Average Lagging (AL) (Ma et al.,
2019) for latency mentioned in §3.1. The
proposed context consistency training is based on
bi-objectives, called Consistency-Bi, and we also
implement the context consistency training based
on BLEU as the uni-objective, called Consistency-
Uni for further comparison. For generating n
candidates, we implement Beam search in most
cases, except the wait-k policy, for which we utilize
the Sampling search strategy. The implementation
of all systems is based on Transformer in the
Fairseq Library (Ott et al., 2019). Appendix A
provides detailed experimental settings.

4.2 Main Results
The results of BLEU scores are displayed in
Figures 3 and 4. The results of ChrF scores
are presented in Figures 5 and 6, while the
results of COMET scores are shown in Figures
7 and 8. The experimental results for both
metrics are comparable. Therefore, we will
discuss using the BLEU scores as an example
in this section. Within our proposed context
consistency training approach (Consistency-Bi),
all implemented SiMT systems (wait-k and wait-
info) exhibit significant improvements in both
translation quality and latency, as evidenced by
an increase in BLEU scores and a decrease in
AL across all the benchmarks. This reveals that
our proposed methods not only yield substantial
performance improvements but also demonstrate
strong generalization capabilities.

In contrast to the original consistency training
of the wait-k policy, our proposed Consistency-Bi
achieves over 5 BLEU improvement at low latency
(k=1) across all datasets. Specifically, our method
improves 2.68 BLEU on the IWSLT14 De-En task,
4.39 BLEU on the IWSLT15 Vi-En task, and 1.91
on the WMT15 De-En task, respectively (average
on all latency). Furthermore, compared with
inconsistency training, the proposed method also
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Figure 3: Translation quality (BLEU) v.s. latency (Average Lagging, AL) in Wait-k Policy. “‡/†” indicates
significant difference (p < 0.01/0.05) from Consistency-CE. Specifically, we take the compare-mt Library (Neubig
et al., 2019) to compute the significance testing results.
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Figure 4: Translation quality (BLEU) v.s. latency (Average Lagging, AL) in Wait-info Policy.

demonstrates significant improvements, especially
at low latency (k=1), achieving over 3 BLEU scores
increases. This suggests that incorporating our
proposed method enables a wait-k model trained
consistently under the same wait-k inference
setting to outperform an inconsistent one.

To evaluate whether our method could achieve
improvements with advanced adaptive SiMT
systems, we apply our proposed training method to
wait-info policy (Zhang et al., 2022). The results
are depicted in Figure 4. Similarly, in comparison
to the three baseline training methods, we observe
a significant enhancement in translation quality
across all latencies. However, in IWSLT15 Vi-En
and WMT15 De-En tasks, Inconsistency-CE and
Inconsistency-CE-MP are not significantly better
than Consistency-CE. This can be attributed to
the advanced policy, which makes more informed
read/write decisions based on information.

4.3 Ablation Study

Ablation Studies on Consistency-Bi and
Consistency-Uni. To validate the effectiveness
of Consistency-Bi, we perform the ablation
studies on Consistency-Bi (Both BLEU and AL)
and Consistency-Uni (BLEU only) in Figure
9. The experiments reveal that compared with

Consistency-Uni, Consistency-Bi not only results
in lower latency but also yields superior translation
quality, especially in low latency scenarios (k=1),
except for k=3, where Consistency-Uni is slightly
better than Consistency-Bi. It is largely attributed
to the latency as part of the training objectives.

Ablation studies on n-best candidates gener-
ations. We conduct the ablation studies on two
types of n-best generation methods (Beam search
and Sampling search) under both wait-k and wait-
info policies, as depicted in Figure 10. The results
reveal that under the wait-k policy, the performance
of Consistency-Bi using sampling search is slightly
superior to that using beam search. Conversely,
under the wait-info policy, employing beam search
yields slightly better results compared to sampling
search. These findings suggest the choice of
generation method is not notably sensitive.

Variation in hyperparameter γ. Fine-tuning
hyperparameter γ defined in (4) aims to achieve
a better trade-off between BLEU and latency in
our proposed Consistency-Bi. As illustrated in
Table 5, as γ increases, AL decreases while the
BLEU scoresimproves, reaching its peak at γ =
0.4. This indicates that our proposed method
can simultaneously optimize two objectives and
achieve a value that is relatively optimally balanced
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Figure 5: Translation quality (ChrF) v.s. latency (Average Lagging, AL) in Wait-k Policy.
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Figure 6: Translation quality (ChrF) v.s. latency (Average Lagging, AL) in Wait-info Policy.

between BLEU and AL, which can effectively
enhance both translation quality and latency.

γ 0.0 0.1 0.2 0.3 0.4 0.5 0.6

BLEU 23.5 23.37 23.08 23.56 24.21 21.09 17.74
AL 1.68 1.62 1.53 1.14 0.16 -1.48 -2.93

Table 5: Ablation studies on various γ in wait-1 training
with wait-1 inference of Consistency-Bi.

4.4 Analysis

Counterintuitive Phenomenon Mitigation. To
explore whether the counterintuitive phenomenon
described in §2.1 is alleviated, we conduct
experiments using models trained with wait-k′ but
tested with wait-k , as illustrated in Figure 11.
Figure 11(a) presents the results of the original
training method. Optimal results for inference
with k are generally achieved when k′=9, except
for k=3, where k′=5 yields the best. In contrast,
our proposed training method demonstrates that
the best results tested with wait-k closely match
with the diagonal line as depicted in Figure 11(b).
Specifically, when inference with k=1 and 9, the
best results match the models trained with the same
value of k′. For k=3, 5, and 7, although the best
results come from different models, the differences
are not significant. These findings suggest that

our method exhibits improved consistency between
training and inference compared with the origin.

Correlation between training loss and transla-
tion quality. We analyze the correlation between
BLEU scoresand training loss, similar to the
analysis described in §2.2. The results shown
in Figure 12 demonstrate that, compared with
Consistency-CE, proposed Consistency-Bi exhibits
a strong correlation between training loss and
translation quality, even when using a small k.

Exposure Bias. To assess whether our method
successfully mitigates exposure bias discussed in
§2.2, we conduct wait-1 decoding experiments
using both Consistency-CE and Consistency-Bi
under the prefix-constrained decoding setting
(Wuebker et al., 2016). The detailed experimental
settings are as described in §2.2. Figure 13 reveals
that as the number of gold prefixes decreases, the
performance of Consistency-Bi improves, while
the performance of Consistency-CE deteriorates.
This suggests that the proposed method effectively
mitigates exposure bias, enhancing the model’s
performance when relying on prediction rather than
on gold prefixes.

Training Efficiency. We demonstrate the
training efficiency of our proposed method and
the Consistency-CE Baseline in Table 6. All exper-
iments were performed on the NVIDIA GeForce
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Figure 7: Translation quality (COMET) v.s. latency (Average Lagging, AL) in Wait-k Policy.
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Figure 8: Translation quality (COMET) v.s. latency (Average Lagging, AL) in Wait-info Policy.
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Figure 9: Ablation studies between Consistency-Bi and
Consistency-Uni on WMT15 De-En test set of wait-k.

Init Wait-1 Wait-3 Wait-5 Wait-7 Wait-9 Total

Consistency-CE - 5.06 5.05 5.09 5.04 5.06 25.30
Consistency-Bi 5.06 1.60 1.76 1.59 1.54 1.62 13.17

Table 6: The total GPU time (GPU-Hours) required for
training each model in the wait-k system on the WMT15
De-En task.

RTX 4090. Initially, we train the SiMT models
utilizing the standard cross-entropy loss, followed
by fine-tuning during the context consistency
training phase. This stage necessitates training on
a limited number of updates, approximately 2000
steps, thereby reducing GPU time consumption.
In our scenario, "GPU-Hours" represents the
cumulative number of hours spent by all GPUs used
for training. For example, in Table 6, when the fine-
tuning for the initial model takes the Consistency-
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Figure 10: Ablation studies on n-best candidates
generations (Beam search and Sampling search) on the
valid set of WMT15 De-En.

Bi and wait-5 policy, the total training time "GPU-
Hours" is 1.59: fine-tuning of the initial model
takes 0.397 hours on the four NVIDIA GeForce
RTX 4090 GPUs, resulting in a total training time
of 1.59 GPU-Hours.

Case Studies. In addition, We provide an
example under the wait-3 policy in Table 7 to
validate the effectiveness of proposed method.

5 Related Work

Existing SiMT sudies can be mainly categorized
into two types (i.e., fixed or adaptive policy)
according the READ/WRITE policy.

As the fixed policy, Dalvi et al. (2018)
introduced STATIC-RW, and Ma et al. (2019)
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Ground Truth Target "and she ’s an optometrist in st. petersburg , and she plays with optics ."
Consistency-CE(Wait-3) Hypothesis "and it ’s an optical optical in st. petersburg , and it ’s playing with optics ."

Inconsistency-CE(Wait-9) Hypothesis "and it ’s an optimist in st. petersburg , and it plays with optics ."
Consistency-Bi(Wait-3) Hypothesis "and she ’s an optic woman st. petersburg , and she plays with optics ."

Table 7: Translation examples of inference with k = 3: Consistency-CE model outputs a repeated word "optical,"
leading to translation oscillation. In the Inconsistency-CE output, such errors are absent, resulting in a more coherent
translation. Moreover, both Consistency-CE and Inconsistency-CE still exhibit a gender error, translating "she" as
"it." Consistency-Bi further corrects this error.
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Figure 11: BLEU scores comparison between the
original and proposed training methods using wait-
k′ during training and wait-k during inference on the
WMT15 De-En valid set. The diagonal line indicates
consistency between training k′ and inference k.
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Figure 12: Comparison of correlation between
BLEU scoresand training loss (cross-entropy loss for
Consistency-CE and bi-objectives loss for Consistency-
Bi) on training subset of WMT15 De-En task.

proposed the wait-k policy. Building upon this,
Elbayad et al. (2020) enhanced the wait-k policy
by introducing the practice of sampling different
values of k during training. Additionally, Han et al.
(2020) incorporated meta-learning into the wait-k
policy, and Zhang et al. (2021) proposed future-
guided training for the wait-k policy.

Alternatively, many notable works develop an
adaptive policy for SiMT (Zheng et al., 2019;
Zhang et al., 2020; Wilken et al., 2020; Miao
et al., 2021; Zhang and Feng, 2022; Zhang et al.,
2022). For instance, Zheng et al. (2020) propose
the adaptive policy through a heuristic ensemble
of multiple wait-k models. Other studies (Zheng
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The length of gold prefix

24
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28

BL
EU

Consistency-CE
Consistency-Bi

Figure 13: BLEU scores comparison between original
Consistency-CE model and ours proposed Consistency-
Bi model for wait-1 decoding under the prefix-
constrained decoding setting.

et al., 2019; Arivazhagan et al., 2019; Ma et al.,
2020; Zhang and Zhang, 2020; Zhang et al., 2020)
resort to an adaptive policy controller to determine
the READ/WRITE action and then integrate the
controller into the SiMT model.

The above studies overlook the counterintuitive
phenomenon about the context usage between
training and inference, and our work thereby pro-
vides comprehensive analysis on this phenomenon
and propose an effective approach to address
this phenomenon, which is general enough to be
applied into both policies.

6 Conclusion

This paper pays attention to a counterintuitive
phenomenon in the context of usage between
training and inference in SiMT. Subsequently,
we conduct a comprehensive analysis and make
the noteworthy discovery that this phenomenon
primarily stems from the weak correlation between
translation quality and training loss as well as
exposure bias between training and inference.
Based on our findings, we propose a context
consistency training method that incorporates both
translation quality and latency as bi-objectives
and alleviates the exposure bias issue during the
training. Experiments verify the effectiveness
of the proposed approach, making the context-
consistent SiMT successful for the first time.
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Limitations

Our context consistency training approach neces-
sitates a search for an appropriate hyperparameter,
denoted as γ shown in Table 5, to strike a balance
between translation quality and latency. Further
research is required to establish an efficient method
for this purpose.
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A Detailed Experimental Settings

We conduct experiments on the following datasets,
which are the widely-used SiMT benchmarks.

IWSLT14 German→English (De→En) (Cet-
tolo et al., 2013) we train on 160K pairs,
develop on 7K held-out pairs, and test on TED
dev2010+tst2010-2013 (6,750 pairs). Following
the previous setting (Elbayad et al., 2020), all
data is tokenized and lower-cased and we segment
sequences using byte pair encoding (Sennrich et al.,
2016) with 10K merge operations. The resulting
vocabularies are of 8.8K and 6.6K types in German
and English respectively.

IWSLT154 Vietnamese → English
(Vi→En) (Luong and Manning, 2015) we
train on 133K pairs, develop on TED tst2012
(1,553 pairs), and test on TED tst2013 (1,268
pairs). The corpus is simply tokenized by
SentencePiece (Kudo and Richardson, 2018),
resulting in 16K and 8K word vocabularies in
English and Vietnamese respectively.

WMT155 German → English
(De→En) (Callison-Burch et al., 2009) is a
parallel corpus with 4.5M training pairs. We use
newstest2013 (3003 pairs) as the dev set and
newstest2015 (2169 pairs) as the test set. The
corpus is simply tokenized by SentencePiece
resulting in 32k shared word vocabularies.

The implementation of all systems is based on
Transformer (Vaswani et al., 2017) and adapted
from Fairseq Library (Ott et al., 2019). Follow-
ing Ma et al. (2019); Elbayad et al. (2020), we
apply Transformer-Small (4 heads) for IWSLT15
Vi-En and IWSLT14 De-En, Transformer-Base
(8 heads) for WMT15 De-En. To avoid the
recalculation of the encoder hidden states when
a new source token is read, unidirectional
encoder (Elbayad et al., 2020) is proposed to make
each source token only attend to its previous words.
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