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Abstract

Large autoregressive generative models have
emerged as the cornerstone for achieving the
highest performance across several Natural
Language Processing tasks. However, the urge
to attain superior results has, at times, led
to the premature replacement of carefully de-
signed task-specific approaches without exhaus-
tive experimentation. The Coreference Res-
olution task is no exception; all recent state-
of-the-art solutions adopt large generative au-
toregressive models that outperform encoder-
based discriminative systems. In this work,
we challenge this recent trend by introducing
Maverick, a carefully designed – yet simple
– pipeline, which enables running a state-of-
the-art Coreference Resolution system within
the constraints of an academic budget, outper-
forming models with up to 13 billion param-
eters with as few as 500 million parameters.
Maverick achieves state-of-the-art performance
on the CoNLL-2012 benchmark, training with
up to 0.006x the memory resources and ob-
taining a 170x faster inference compared to
previous state-of-the-art systems. We exten-
sively validate the robustness of the Maver-
ick framework with an array of diverse ex-
periments, reporting improvements over prior
systems in data-scarce, long-document, and
out-of-domain settings. We release our code
and models for research purposes at https:

//github.com/SapienzaNLP/maverick-coref.

1 Introduction

As one of the core tasks in Natural Language Pro-
cessing, Coreference Resolution aims to identify
and group expressions (called mentions) that refer
to the same entity (Karttunen, 1969). Given its
crucial role in various downstream tasks, such as
Knowledge Graph Construction (Li et al., 2020),
Entity Linking (Kundu et al., 2018; Agarwal et al.,
2022), Question Answering (Dhingra et al., 2018;
Dasigi et al., 2019; Bhattacharjee et al., 2020;
Chen and Durrett, 2021), Machine Translation

(Stojanovski and Fraser, 2018; Voita et al., 2018;
Ohtani et al., 2019; Yehudai et al., 2023) and Text
Summarization (Falke et al., 2017; Pasunuru et al.,
2021; Liu et al., 2021), inter alia, there is a press-
ing need for both high performance and efficiency.
However, recent works in Coreference Resolution
either explore methods to obtain reasonable per-
formance optimizing time and memory efficiency
(Kirstain et al., 2021; Dobrovolskii, 2021; Otmaz-
gin et al., 2022), or strive to improve benchmark
scores regardless of the increased computational
demand (Bohnet et al., 2023; Zhang et al., 2023).

Efficient solutions usually rely on discriminative
formulations, frequently employing the mention-
antecedent classification method proposed by Lee
et al. (2017). These approaches leverage relatively
small encoder-only transformer architectures (Joshi
et al., 2020; Beltagy et al., 2020) to encode docu-
ments and build on top of them task-specific net-
works that ensure high speed and efficiency. On
the other hand, performance-centered solutions
are nowadays dominated by general-purpose large
Sequence-to-Sequence models (Liu et al., 2022;
Zhang et al., 2023). A notable example of this
formulation, and currently the state of the art in
Coreference Resolution, is Bohnet et al. (2023),
which proposes a transition-based system that incre-
mentally builds clusters of mentions by generating
coreference links sentence by sentence in an autore-
gressive fashion. Although Sequence-to-Sequence
solutions achieve remarkable performance, their
autoregressive nature and the size of the underly-
ing language models (up to 13B parameters) make
them dramatically slower and memory-demanding
compared to traditional encoder-only approaches.
This not only makes their usage for downstream ap-
plications impractical, but also poses a significant
barrier to their accessibility for a large number of
users operating within an academic budget.

In this work we argue that discriminative
encoder-only approaches for Coreference Reso-
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lution have not yet expressed their full potential
and have been discarded too early in the urge to
achieve state-of-the-art performance. In proposing
Maverick, we strike an optimal balance between
high performance and efficiency, a combination
that was missing in previous systems. Our frame-
work enables an encoder-only model to achieve top-
tier performance while keeping the overall model
size less than one-twentieth of the current state-
of-the-art system, and training it with academic
resources. Moreover, when further reducing the
size of the underlying transformer encoder, Maver-
ick performs in the same ballpark as encoder-only
efficiency-driven solutions while improving speed
and memory consumption. Finally, we propose a
novel incremental Coreference Resolution method
that, integrated into the Maverick framework, re-
sults in a robust architecture for out-of-domain,
data-scarce, and long-document settings.

2 Related Work

We now introduce well-established approaches to
neural Coreference Resolution. Specifically, we
first delve into the details of traditional discrimi-
native solutions, including their incremental varia-
tions, and then present the recent paradigm shift for
approaches based on large generative architectures.

2.1 Discriminative models

Discriminative approaches tackle the Coreference
Resolution task as a classification problem, usu-
ally employing encoder-only architectures. The
pioneering works of Lee et al. (2017, 2018) intro-
duced the first end-to-end discriminative system for
Coreference Resolution, the Coarse-to-Fine model.
First, it involves a mention extraction step, in which
the spans most likely to be coreference mentions
are identified. This is followed by a mention-
antecedent classification step where, for each ex-
tracted mention, the model searches for its most
probable antecedent (i.e., the extracted span that ap-
pears before in the text). This pipeline, composed
of mention extraction and mention-antecedent clas-
sification steps, has been adopted with minor modi-
fications in many subsequent works, that we refer
to as Coarse-to-Fine models.

Coarse-to-Fine Models Among the works that
build upon the Coarse-to-Fine formulation, Lee
et al. (2018), Joshi et al. (2019) and Joshi et al.
(2020) experimented with changing the underlying
document encoder, utilizing ELMo (Peters et al.,

2018), BERT (Devlin et al., 2019) and SpanBERT
(Joshi et al., 2020), respectively, achieving remark-
able score improvements on the English OntoNotes
(Pradhan et al., 2012). Similarly, Kirstain et al.
(2021) introduced s2e-coref that reduces the high
memory footprint of SpanBERT by leveraging the
LongFormer (Beltagy et al., 2020) sparse-attention
mechanism. Based on the same architecture, Ot-
mazgin et al. (2023) analyzed the impact of hav-
ing multiple experts score different linguistically
motivated categories (e.g., pronouns-nouns, nouns-
nouns, etc.). While the foregoing works have
been able to modernize the original Coarse-to-
Fine formulation, training their architectures on
the OntoNotes dataset still requires a considerable
amount of memory.1 This occurs because they rely
on the traditional Coarse-to-Fine pipeline that, as
we cover in Section 3.1, has a large memory over-
head and is based on manually-set thresholds to
regulate memory usage.

Incremental Models Discriminative systems
also include incremental techniques. Incremen-
tal Coreference Resolution has a strong cognitive
grounding: research on the “garden-path” effect
shows that humans resolve referring expressions
incrementally (Altmann and Steedman, 1988).

A seminal work that proposed an automatic in-
cremental system was that of Webster and Curran
(2014), which introduced a clustering approach
based on the shift-reduce paradigm. In this formula-
tion, for each mention, a classifier decides whether
to SHIFT it into a singleton (i.e., single mention
cluster) or to REDUCE it within an existing cluster.
The same approach has recently been reintroduced
in ICoref (Xia et al., 2020) and longdoc (Toshniwal
et al., 2021), which adopted SpanBERT and Long-
Former, respectively. In these works the mention
extraction step is identical to that of Coarse-to-Fine
models. On the other hand, the mention clustering
step is performed by using a linear classifier that
scores each mention against a vector representa-
tion of previously built clusters, in an incremental
fashion. This method ensures constant memory us-
age since cluster representations are updated with
a learnable function. In Section 3.2 we present
a novel performance-driven incremental method
that obtains superior performance and generaliza-
tion capabilities, in which we adopt a lightweight
transformer architecture that retains the mention
representations.

1Training those models requires at least 32G of VRAM.
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2.2 Sequence-to-Sequence models

Recent state-of-the-art Coreference Resolution sys-
tems all employ autoregressive generative ap-
proaches. However, an early example of Sequence-
to-Sequence model, TANL (Paolini et al., 2021),
failed to achieve competitive performance on
OntoNotes. The first system to show that the au-
toregressive formulation was competitive was ASP
(Liu et al., 2022), which outperformed encoder-
only discriminative approaches. ASP is an autore-
gressive pointer-based model that generates actions
for mention extraction (bracket pairing) and then
conditions the next step to generate coreference
links. Notably, the breakthrough achieved by ASP
is not only due to its formulation but also to its us-
age of large generative models. Indeed, the success
of their approach is strictly correlated with the un-
derlying model size, since, when using models with
a comparable number of parameters, the perfor-
mance is significantly lower than encoder-only ap-
proaches. The same occurs in Zhang et al. (2023),
a fully-seq2seq approach where a model learns to
generate a formatted sequence encoding corefer-
ence notation, in which they report a strong positive
correlation between performance and model sizes.

Finally, the current state-of-the-art system on
the OntoNotes benchmark is held by Link-Append
(Bohnet et al., 2023), a transition-based system that
incrementally builds clusters exploiting a multi-
pass Sequence-to-Sequence architecture. This ap-
proach incrementally maps the mentions in previ-
ously coreference-annotated sentences to system
actions for the current sentence, using the same
shift-reduce incremental paradigm presented in
Section 2.1. This method obtains state-of-the-art
performance at the cost of using a 13B-parameter
model and processing one sentence at a time, drasti-
cally increasing the need for computational power.
While the foregoing models ensure superior per-
formance compared to previous discriminative ap-
proaches, using them for inference is out of reach
for many users, not to mention the exorbitant cost
of training them from scratch.

3 Methodology

In this section, we present the Maverick frame-
work: we propose replacing the preprocessing and
training strategy of Coarse-to-Fine models with a
novel pipeline that improves the training and infer-
ence efficiency of Coreference Resolution systems.
Furthermore, with the Maverick Pipeline, we elim-

inate the dependency on long-standing manually-
set hyperparameters that regulate memory usage.
Finally, building on top of our pipeline, we pro-
pose three models that adopt a mention-antecedent
classification technique, namely Mavericks2e and
Maverickmes, and a system that is based upon a
novel incremental formulation, Maverickincr.

3.1 Maverick Pipeline
The Maverick Pipeline combines i) a novel mention
extraction method, ii) an efficient mention regular-
ization technique, and iii) a new mention pruning
strategy.

Mention Extraction When it comes to extract-
ing mentions from a document D, there are differ-
ent strategies to model the probability that a span
contains a mention. Several previous works follow
the Coarse-to-Fine formulation presented in Sec-
tion 2.1, which consists of scoring all the possible
spans in D. This entails a quadratic computational
cost in relation to the input length, which they miti-
gate by introducing several pruning techniques.

In this work, we employ a different strategy. We
extract coreference mentions by first identifying
all the possible starts of a mention, and then, for
each start, extracting its possible end. To extract
start indices, we first compute the hidden represen-
tation (x1, . . . , xn) of the tokens (t1, . . . , tn) ∈ D
using a transformer encoder, and then use a fully-
connected layer F to compute the probability for
each ti being the start of a mention as:

Fstart(x) = W ′
start(GeLU(Wstartx))

pstart(ti) = σ(Fstart(xi))

with W ′
start,Wstart being the learnable parameters,

and σ the sigmoid function. For each start of a men-
tion ts, i.e., those tokens having pstart(ts) > 0.5,
we then compute the probability of its subsequent
tokens tj , with s ≤ j, to be the end of a mention
that starts with ts. We follow the same process
as that of the mention start classification, but we
condition the prediction on the starting token by
concatenating the start, xs, and end, xj , hidden
representations before the linear classifier:

Fend(x, x
′) = W ′

end(GeLU(Wend[x, x
′]))

pend(tj |ts) = σ(Fend(xs, xj))

with W ′
end, Wend being learnable parameters. This

formulation handles overlapping mentions since,
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for each start ts, we can find multiple ends te (i.e.,
those that have pend(tj |ts) > 0.5).

Previous works already adopted a linear layer to
compute start and end mention scores for each pos-
sible mention, i.e., s2e-coref (Kirstain et al., 2021),
and LingMess (Otmazgin et al., 2023). However,
our mention extraction technique differs from pre-
vious approaches since i) we produce two proba-
bilities (0 < p < 1) instead of two unbounded
scores and ii) we use the computed start probability
to filter out possible mentions, which reduces by a
factor of 9 the number of mentions considered com-
pared to existing Coarse-to-Fine systems (Table 1,
first row).

Mention Regularization To further reduce the
computation demand of this process, in the Mav-
erick Pipeline we use the end-of-sentence (EOS)
mention regularization strategy: after extracting
the span start, we consider only the tokens up to
the nearest EOS as possible mention end candi-
dates.2 Since annotated mentions never span across
sentences, EOS mention regularization prunes the
number of mentions considered without any loss of
information. While this heuristic was initially in-
troduced in the implementation of Lee et al. (2018),
all the recent Coarse-to-Fine have abandoned it in
favor of the maximum span-length regularization,
which is a manually-set hyperparameter that reg-
ulates a threshold to filter out spans that exceed a
certain length. This implies a large overhead of
unnecessary computations and introduces a struc-
tural bias that does not consider long mentions that
exceed a fixed length.3 In our work, we not only
reintroduce the EOS mention regularization, but
we also study its contribution in terms of efficiency,
as reported in Table 1, second row.

Mention Pruning After the mention extraction
step, as a result of the Maverick Pipeline, we con-
sider an 18x lower number of candidate mentions
for the successive mention clustering phase (Table
1). This step consists of computing, for each men-
tion, the probability of all its antecedents being in
the same cluster, incurring a quadratic computa-
tional cost. Within the Coarse-to-Fine formulation,
this high computational cost is mitigated by con-
sidering only the top k mentions according to their
probability score, where k is a manually set hyper-

2We note that all the well-established Coreference Reso-
lution datasets are sentence-split.

3The max-length regularization filters out 196 correctly
annotated spans when training on OntoNotes.

Coarse-to-Fine Maverick ∆

Ment. Extraction Enumeration (i) Start-End
183,577 20,565 -8,92x

(+) Regularization (+) Span-length (ii) (+) EOS
14,265 777 -18,3x

Ment. Clustering Top-k (iii) Pred-only
29,334 2,713 -10,81x

Table 1: Comparison between the Coarse-to-Fine
pipeline and the Maverick Pipeline in terms of the av-
erage number of mentions considered in the mention
extraction step (top) and the average number of mention
pairs considered in the mention clustering step (bottom).
The statistics are computed on the OntoNotes devset,
and refer to the hyperparameters proposed in Lee et al.
(2018), which were unchanged by subsequent Coarse-
to-Fine works, i.e., span-len = 30, top-k = 0.4.

parameter. Since after our mention extraction step
we obtain probabilities for a very concise number
of mentions, we consider only mentions classified
as probable candidates (i.e., those with pend > 0.5
and pstart > 0.5), reducing the number of mention
pairs considered by a factor of 10. In Table 1, we
compare the previous Coarse-to-Fine formulation
with the new Maverick Pipeline.

3.2 Mention Clustering
As a result of the Maverick Pipeline, we obtain a
set of candidate mentions M = (m1,m2, . . . ,ml),
for which we propose three different clustering
techniques: Mavericks2e and Maverickmes, which
use two well-established Coarse-to-Fine mention-
antecedent techniques, and Maverickincr, which
adopts a novel incremental technique that lever-
ages a light transformer architecture.

Mention-Antecedent models The first proposed
model, Mavericks2e, adopts an equivalent mention
clustering strategy to Kirstain et al. (2021): given
a mention mi = (xs, xe) and its antecedent mj =
(xs′ , xe′), with their start and end token hidden
states, we use two fully-connected layers to model
their corresponding representations:

Fs(x) = W ′
s(GeLU(Wsx))

Fe(x) = W ′
e(GeLU(Wex))

we then calculate their probability to be in the same
cluster as:

pc(mi,mj) = σ(Fs(xs) ·Wss · Fs(xs′)+

Fe(xe) ·Wee · Fe(xe′)+

Fs(xs) ·Wse · Fe(xe′)+

Fe(xe) ·Wes · Fs(xs′))
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with Wss,Wee,Wse,Wes being four learnable ma-
trices and Ws,W

′
s,We,W

′
e the learnable parame-

ters of the two fully-connected layers.
A similar formulation is adopted in Maverickmes,

where, instead of using only one generic mention-
pair scorer, we use 6 different scorers that handle
linguistically motivated categories, as introduced
by Otmazgin et al. (2023). We detect which cate-
gory k a pair of mentions mi and mj belongs to
(e.g., if mi is a pronoun and mj is a proper noun,
the category will be PRONOUN-ENTITY) and use
a category-specific scorer to compute pc. A com-
plete description of the process along with the list
of categories can be found in Appendix A.

Incremental model Finally, we introduce a novel
incremental approach to tackle the mention clus-
tering step, namely Maverickincr, which follows
the standard shift-reduce paradigm introduced in
Section 2.1. Differently from the previous neu-
ral incremental techniques (i.e., ICoref (Xia et al.,
2020) and longdoc (Toshniwal et al., 2021)) which
use a linear classifier to obtain the clustering prob-
ability between each mention and a fixed length
vector representation of previously built clusters,
Maverickincr leverages a lightweight transformer
model to attend to previous clusters, for which
we retain the mentions’ hidden representations.
Specifically, we compute the hidden representa-
tions (h1, . . . , hl) for all the candidate mentions
in M using a fully-connected layer on top of the
concatenation of their start and end token repre-
sentations. We first assign the first mention m1

to the first cluster c1 = (m1). Then, for each
mention mi ∈ M at step i we obtain the proba-
bility of mi being in a certain cluster cj by encod-
ing hi with all the representations of the mentions
contained in the cluster cj using a transformer ar-
chitecture. We use the first special token ([CLS])
of a single-layer transformer architecture T to ob-
tain the score S(mi, cj) of mi being in the cluster
cj = (mf , . . . ,mg) with f ≤ g < i as:

S(mi, cj) = Wc ·(ReLU(TCLS(hi, hf , . . . , hg)))

Finally, we compute the probability of mi belong-
ing to cj as:

pc(mi ∈ cj |cj = (mf , . . . ,mg)) = σ(S(mi, cj))

We calculate this probability for each cluster cj up
to step i. We assign the mention mi to the most
probable cluster cj having pc(mi ∈ cj) > 0.5 if

one exists, or we create a new singleton cluster
containing mi.

As we show in Sections 5.3 and 5.5, this formu-
lation obtains better results than previous incremen-
tal methods, and is beneficial when dealing with
long-document and out-of-domain settings.

3.3 Training
To train a Maverick model, we optimize the sum of
three binary cross-entropy losses:

Lcoref = Lstart + Lend + Lclust

Our loss formulation differs from previous
transformer-based Coarse-to-Fine approaches,
which adopt the marginal log-likelihood to opti-
mize the mention to antecedent score (Lee et al.,
2018; Kirstain et al., 2021). Since their formulation
“makes learning slow and ineffective, especially for
mention detection” (Zhang et al., 2018), we directly
optimize both mention extraction and mention clus-
tering with a multitask approach. Lstart and Lend

are the start loss and end loss, respectively, of the
mention extraction step, and are defined as:

Lstart =
N∑

i=1

−(yi log(pstart(ti))+

(1− yi) log(1− pstart(ti)))

Lend =

S∑

s=1

Es∑

j=1

−(yi log(pend(tj |ts))+

(1− yi) log(1− pend(tj |ts)))
where N is the sequence length, S is the number of
starts, Es is the number of possible ends for a start
s and pstart(ti) and pend(tj |ts) are those defined
in Section 3.1.

Finally, Lclust is the loss for the mention clus-
tering step. Since we experiment with two dif-
ferent mention clustering formulations, we use a
different loss for each clustering technique, namely
Lant
clust for the mention-antecedent models, i.e.,

Mavericks2e and Maverickmes, and Lincr
clust for the

incremental model, i.e., Maverickincr :

Lant
clust =

|M |∑

i=1

|M |∑

j=1

−(yi log(pc(mi|mj))+

(1− yi) log(1− pc(mi|mj)))

Lincr
clust =

|M |∑

i=1

(

Ci∑

j=1

−(yi log(pc(mi ∈ cj))+

(1− yi) log(1− pc(mi ∈ cj))))
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Dataset # Train # Dev # Test Tokens Mentions % Sing
OntoNotes 2802 343 348 467 56 0
LitBank 80 10 10 2105 291 19.8
PreCo 36120 500 500 337 105 52.0
GAP - - 2000 95 3 -
WikiCoref - - 30 1996 230 0

Table 2: Dataset statistics: number of documents in each
dataset split, average number of words and mentions per
document, and singletons percentage.

where |M | is the number of extracted mentions,
Ci is the set of clusters created up to step i, and
pc(mi|mj) and pc(mi ∈ cj) are defined in Section
3.2.

All the models we introduce are trained using
teacher forcing. In particular, in the mention token
end classification step, we use gold start indices
to condition the end tokens prediction, and, for
the mention clustering step, we consider only gold
mention indices. For Maverickincr, at each iteration,
we compare each mention only to previous gold
clusters.

4 Experiments Setup

4.1 Datasets
We train and evaluate all the comparison systems
on three Coreference Resolution datasets:

OntoNotes (Pradhan et al., 2012), proposed in
the CoNLL-2012 shared task, is the de facto stan-
dard dataset used to benchmark Coreference Reso-
lution systems. It consists of documents that span
seven distinct genres, including full-length docu-
ments (broadcast news, newswire, magazines, we-
blogs, and Testaments) and multiple speaker tran-
scripts (broadcast and telephone conversations).

LitBank (Bamman et al., 2020) contains 100 lit-
erary documents typically used to evaluate long-
document Coreference Resolution.

PreCo (Chen et al., 2018) is a large-scale dataset
that includes reading comprehension tests for mid-
dle school and high school students.

Notably, both LitBank and PreCo have differ-
ent annotation guidelines compared to OntoNotes,
and provide annotation for singletons (i.e., single-
mention clusters). Furthermore, we evaluate mod-
els trained on OntoNotes on three out-of-domain
datasets:

• GAP (Webster et al., 2018) contains sentences
in which, given a pronoun, the model has to
choose between two candidate mentions.

• LitBankns and PreCons, the datasets’ test-set
where we filter out singleton annotations.

• WikiCoref (Ghaddar and Langlais, 2016),
which contains Wikipedia texts, including doc-
uments with up to 9,869 tokens.

The statistics of the datasets used are shown in
Table 2.

4.2 Comparison Systems

Discriminative Among the discriminative sys-
tems, we consider c2f-coref (Joshi et al., 2020) and
s2e-coref (Kirstain et al., 2021), which build upon
the Coarse-to-Fine formulation and adopt different
document encoders. We also report the results of
LingMess (Otmazgin et al., 2023), which is the pre-
vious best encoder-only solution, and f-coref (Ot-
mazgin et al., 2022), which is a distilled version of
LingMess. Furthermore, we include CorefQA (Wu
et al., 2020), which casts Coreference as extractive
Question Answering, and wl-coref (Dobrovolskii,
2021), which first predicts coreference links be-
tween words, then extracts mentions spans. Finally,
we report the results of incremental systems, such
as ICoref (Xia et al., 2020) and longdoc (Toshniwal
et al., 2021).

Sequence-to-Sequence We compare our models
with TANL (Paolini et al., 2021) and ASP (Liu
et al., 2022), which frame Coreference Resolu-
tion as an autoregressive structured prediction. We
also include Link-Append (Bohnet et al., 2023), a
transition-based system that builds clusters with a
multi-pass Sequence-to-Sequence architecture. Fi-
nally, we report the results of seq2seq (Zhang et al.,
2023), a model that learns to generate a sequence
with Coreference Resolution labels.

4.3 Maverick Setup

All Maverick models use DeBERTa-v3 (He et al.,
2023) as the document encoder. We use DeBERTa
because it can model very long input texts effec-
tively (He et al., 2021).4 Moreover, compared to the
LongFormer, which was previously adopted by sev-
eral token-level systems, DeBERTa ensures a larger
input max sequence length (e.g., DeBERTalarge
can handle sequences up to 24,528 tokens while
LongFormer only 4096) and has shown better per-
formances empirically in our experiments on the
OntoNotes dataset. On the other hand, using

4This is because its attention mechanism enables its input
length to grow linearly with the number of its layers.
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DeBERTa to encode long documents is compu-
tationally expensive because its attention mecha-
nism incurs a quadratic computational complexity.
Whereas this further increases the computational
cost of traditional Coarse-to-Fine systems, the Mav-
erick Pipeline enables us to train models that lever-
age DeBERTalarge on the OntoNotes dataset, with-
out any performance-lowering pruning heuristic.
To train our models we use Adafactor (Shazeer and
Stern, 2018) as our optimizer, with a learning rate
of 3e-4 for the linear layers, and 2e-5 for the pre-
trained encoder. We perform all our experiments
within an academic budget, i.e., a single RTX 4090,
which has 24GB of VRAM. We report more train-
ing details in Appendix B.

5 Results

5.1 English OntoNotes

We report in Table 3 the average CoNLL-F1 score
of the comparison systems trained on the English
OntoNotes, along with their underlying pre-trained
language models and total parameters. Compared
to previous discriminative systems, we report gains
of +2.2 CoNLL-F1 points over LingMess, the best
encoder-only model. Interestingly, we even out-
perform CorefQA, which uses additional Question
Answering training data.

Concerning Sequence-to-Sequence approaches,
we report extensive improvements over systems
with a similar amount of parameters compared to
our large models (500M): we obtain +3.4 points
compared to ASP (770M), and the gap is even
wider when taking into consideration Link-Append
(3B) and seq2seq (770M), with +6.4 and +5.6,
respectively. Most importantly, Maverick mod-
els surpass the performance of all Sequence-to-
Sequence transformers even when they have sev-
eral billions of parameters. Among our proposed
methods, Maverickmes shows the best performance,
setting a new state of the art with a score of 83.6
CoNLL-F1 points on the OntoNotes benchmark.
More detailed results, including a table with MUC,
B3, and CEAFϕ4 scores and a qualitative error anal-
ysis, can be found in Appendix C.

5.2 PreCo and LitBank

We further validate the robustness of the Mav-
erick framework by training and evaluating sys-
tems on the PreCo and LitBank datasets. As re-
ported in Table 4, our models show superior per-
formance when dealing with long documents in a

data-scarce setting such as the one LitBank poses.
On this dataset, Maverickincr achieves a new state-
of-the-art score of 78.3, and gains +1.0 CoNLL-
F1 points compared with seq2seq. On PreCo,
Maverickincr outperforms longdoc, but seq2seq still
shows slightly better performance. This is mainly
due to the high presence of singletons in PreCo
(52% of all the clusters). Our systems, using a
mention extraction technique that favors precision
rather than recall, are penalized compared to high
recall systems such as seq2seq.5 Among our sys-
tems, Maverickincr, leveraging its hybrid architec-
ture, performs better on both PreCo and LitBank.

5.3 Out-of-Domain Evaluation

In Table 5, we report the performance of Maver-
ick systems along with LingMess, the best encoder-
only model, when dealing with out-of-domain texts,
that is, when they are trained on OntoNotes and
tested on other datasets. First of all, we report
considerable improvements on the GAP test set,
obtaining a +1.2 F1 score compared to the previous
state of the art. We also test models on WikiCoref,
PreCons and LitBankns (Section 4.1). However,
since the span annotation guidelines of these cor-
pora differ from the ones used in OntoNotes, in
Table 5 we also report the performance using gold
mentions, i.e., skipping the mention extraction step
(gold column).6 On the WikiCoref benchmark, we
achieve a new state-of-the-art score of 67.2 CoNLL-
F1, with an improvement of +4.2 points over the
previous best score obtained by LingMess. On
the same dataset, when using pre-identified men-
tions the gap increases to +5.8 CoNLL-F1 points
(76.6 vs 82.4). In the same setting, our models
obtain up to +7.3 and +10.1 CoNLL-F1 points on
Precons and LitBankns, respectively, compared to
LingMess. These results suggest that the Maver-
ick training strategy makes this model more suit-
able when dealing with pre-identified mentions
and out-of-domain texts. This further increases
the potential benefits that Maverick systems can
bring to many downstream applications that ex-
ploit coreference as an intermediate layer, such
as Entity Linking (Rosales-Méndez et al., 2020)
and Relation Extraction (Xiong et al., 2023; Zeng

5Precision and Recall scores are reported in Appendix C.
6We do not include autoregressive models because none

of the original articles report scores on out-of-domain datasets.
We also could not test those models because they do not pro-
vide the code to perform mention clustering alone, and per-
forming it with such approaches is not as straightforward as
in encoder-only models.
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Model LM Avg. F1 Params Training Inference
Time Hardware Time Mem.

Discriminative
c2f-coref (Joshi et al., 2020) SpanBERTlarge 79.6 370M - 1x32G 50s 11.9
ICoref (Xia et al., 2020) SpanBERTlarge 79.4 377M 40h 1x1080TI-12G 38s 2.9
CorefQA (Wu et al., 2020) SpanBERTlarge 83.1* 740M - 1xTPUv3-128G - -
s2e-coref (Kirstain et al., 2021) LongFormerlarge 80.3 494M - 1x32G 17s 3.9
longdoc (Toshniwal et al., 2021) LongFormerlarge 79.6 471M 16h 1xA6000-48G 25s 2.1
wl-coref (Dobrovolskii, 2021) RoBERTalarge 81.0 360M 5h 1xRTX8000-48G 11s 2.3
f-coref (Otmazgin et al., 2022) DistilRoBERTa 78.5* 91M - 1xV100-32G 3s 1.0
LingMess (Otmazgin et al., 2023) LongFormerlarge 81.4 590M 23h 1xV100-32G 20s 4.8

Sequence-to-Sequence

ASP (Liu et al., 2022) FLAN-T5L 80.2 770M - 1xA100-40G - -
FLAN-T5xxl 82.5 11B 45h 6xA100-80G 20m -

Link-Append (Bohnet et al., 2023) mT5xl 78.0d 3B - 128xTPUv4-32G - -
mT5xxl 83.3 13B 48h 128xTPUv4-32G 30m -

seq2seq (Zhang et al., 2023) T5-large 77.2d 770M - 8xA100-40G - -
T0-11B 83.2 11B - 8xA100-80G 40m -

Ours (Discriminative)

Mavericks2e
DeBERTabase 81.1 192M 7h 1xRTX4090-24G 6s 1.8
DeBERTalarge 83.4 449M 14h 1xRTX4090-24G 13s 4.0

Maverickincr
DeBERTabase 81.0 197M 21h 1xRTX4090-24G 22s 1.8
DeBERTalarge 83.5 452M 29h 1xRTX4090-24G 29s 3.4

Maverickmes
DeBERTabase 81.4 223M 7h 1xRTX4090-24G 6s 1.9
DeBERTalarge 83.6 504M 14h 1xRTX4090-24G 14s 4.0

Table 3: Results on the OntoNotes benchmark. We report the Avg. CoNLL-F1 score, the number of parameters, the
training time, and the hardware used to train each model. Inference time (sec) and memory (GiB) were calculated on
an RTX4090. For Sequence-to-Sequence models we include statistics that are reported in the original papers, since
we could not run models locally. (*) indicates models trained on additional resources. (d) indicates scores obtained
on the dev set, however, Maverick systems always perform better on the dev than on the test sets. Missing values (-)
are not reported in the original paper, and it is not feasible to reproduce them using our limited hardware resources.

Model PreCo LitBank
longdoc (Toshniwal et al., 2021) 87.8 77.2
seq2seq (Zhang et al., 2023) 88.5 77.3
Mavericks2e 87.2 77.6
Maverickincr 88.0 78.3
Maverickmes 87.4 78.0

Table 4: Results of the compared systems on the PreCo
and LitBank test-sets in terms of CoNLL-F1 score.

et al., 2023), where the mentions are already iden-
tified. Among our models, on LitBankns and Wiki-
Coref, Maverickincr outperforms Maverickmes and
Mavericks2e, confirming the superior capabilities of
the incremental formulation in the long-document
setting. Finally, we highlight that the performance
gap between using gold mentions and performing
full Coreference Resolution is wider when tested
on out-of-domain datasets (on average +17%) com-
pared to testing it directly on OntoNotes (83.6 vs
93.6, +10%).7 This result, obtained on three dif-
ferent out-of-domain datasets, suggests that the
difference in annotation guidelines considerably
contribute to lower the OOD performances (-7%).

7An evaluation of the proposed Maverick models in terms
of mention extraction and mention clustering using gold men-
tions scores can be found in Appendix C.

Model GAP WikiCoref PreCons LitBankns

sys. gold sys. gold sys. gold
LingMess 89.6 63.0 76.6 65.1 80.6 64.4 73.9
Mavericks2e 91.1 67.2 81.5 67.2 87.9 64.8 83.1
Maverickincr 91.2 66.8 82.4 66.1 86.5 65.4 84.0
Maverickmes 91.1 66.8 82.1 66.1 86.9 65.1 82.8

Table 5: Comparison between LingMess and Maver-
ick systems on GAP, WikiCoref, PreCons LitBankns.
We report scores using systems prediction (sys.) or pass-
ing gold mentions (gold).

5.4 Speed and Memory Usage
In Table 3, we include details regarding the train-
ing time and the hardware used by each com-
parison system, along with the measurement of
the inference time and peak memory usage on
OntoNotes the validation set. Compared to Coarse-
to-Fine models, which require 32GB of VRAM, we
can train Maverick systems under 18GB. At infer-
ence time both Maverickmes and Mavericks2e, ex-
ploiting DeBERTalarge, achieve competitive speed
and memory consumption compared to wl-coref
and s2e-coref. Furthermore, when adopting
DeBERTabase, Maverickmes proves to be the most
efficient approach8 among those directly trained

8In terms of inference peak memory usage and speed.

13387



Model LM Score
Mavericks2e

Mavericks2e DeBERTabase 81.0
s2e-coreft DeBERTabase 78.3
Mavericks2e LongFormerlarge 80.6
s2e-coref LongFormerlarge 80.3

Maverickmes
Maverickmes DeBERTabase 81.4
LingMesst DeBERTabase 78.6
Maverickmes LongFormerlarge 81.0
LingMess LongFormerlarge 81.4

Maverickincr
Maverickincr DeBERTalarge 83.5
Maverickprev-incr DeBERTalarge 79.6

Table 6: Comparison between Maverick models and pre-
vious techniques. LingMesst and s2e-coreft are trained
using their official scripts. We use DeBERTabase be-
cause the DeBERTalarge could not fit our hardware when
training comparison systems.

on OntoNotes, while, at the same time, attaining
performances that are equal to the previous best
encoder-only system, LingMess. The only system
that shows better inference speed is f-coref, but at
the cost of lower performance (-3.0).

Compared to the previous Sequence-to-
Sequence state-of-the-art approach, Link-Append,
we train our models with 175x less memory
requirements. Comparing inference time is more
complicated, since we could not run models on our
memory-constrained budget. For this reason, we
report the inference times from the original articles,
and hence times achieved with their high-resource
settings. Interestingly, we report as much as
170x faster inference compared to seq2seq, which
exploits parallel inference on multiple GPUs, and
85x faster when compared to the more efficient
ASP. Among Maverick models, Maverickincr is
notably slower both in inference and training time,
as it incrementally builds clusters using multiple
steps.

5.5 Maverick Ablation

In Table 6, we compare Mavericks2e and
Maverickmes models with s2e-coref and LingMess,
respectively, using different pre-trained encoders.
Interestingly, when using DeBERTa, Maverick sys-
tems not only achieve better speed and memory
efficiency, but also obtain higher performance
compared to the previous systems. When using
the LongFormer, instead, their scores are in the
same ballpark, showing empirically that the Mav-
erick training procedure better exploits the ca-

pabilities of DeBERTa. To test the benefits of
our novel incremental formulation, Maverickincr,
we also implement a Maverick model with the
previously adopted incremental method used in
longdoc and ICoref (Section 2.1), which we call
Maverickprev-incr. Compared to the previous for-
mulation we report an increase in score of +3.9
CoNLL-F1 points. The improvement demonstrates
that exploiting a transformer architecture to attend
to all the previously clustered mentions is benefi-
cial, and enables the future usage of hybrid archi-
tectures when needed.

As a further analysis of whether the efficiency
improvements of our systems stem from using De-
BERTa or are attributable to the Maverick Pipeline,
we compared the speed and memory occupation
of a Maverick system using as underlying encoder
either DeBERTalarge or LongFormerlarge. Our ex-
periments show that using DeBERTa leads to an in-
crease of +77% of memory space and +23% of time
to complete an epoch when training on OntoNotes.
An equivalent measurement, attributable to the
quadratic memory attention mechanism of De-
BERTa, was observed for the inference time and
memory occupation on the OntoNotes test set.
These results highlight the efficiency contribution
of the Maverick Pipeline, which is agnostic to the
document encoder and can be applied to future
coreference systems to ensure higher efficiency.

6 Conclusion

In this work, we challenged the recent trends of
adopting large autoregressive generative models to
solve the Coreference Resolution task. To do so,
we proposed Maverick, a new framework that en-
ables fast and memory-efficient Coreference Reso-
lution while obtaining state-of-the-art results. This
demonstrates that the large computational overhead
required by Sequence-to-Sequence approaches is
unnecessary. Indeed, in our experiments Maver-
ick systems demonstrated that they can outperform
large generative models and improve the speed
and memory usage of previous best-performing
encoder-only approaches. Furthermore, we intro-
duced Maverickincr, a robust multi-step incremental
technique that obtains higher performance in the
out-of-domain and long-document setting. By re-
leasing our systems, we make state-of-the-art mod-
els usable by a larger portion of users in different
scenarios and potentially improve downstream ap-
plications.
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7 Limitations

Our experiments were limited by our resource set-
ting i.e., a single RTX 4090. For this reason, we
could not run Maverick using larger encoders, and
could not properly test Sequence-to-Sequence mod-
els as we did with encoder-only models. Neverthe-
less, we believe this limitation is a common sce-
nario in many real-world applications that would
benefit substantially from our system. We also
did not test our formulation on multiple languages,
but note that both the methodology behind Mav-
erick and our novel incremental formulation are
language agnostic, and thus could be applied to any
language.
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A Multi-Expert Scorers

In Maverickmes, the final coreference score between
two spans is calculated using 6 linguistically moti-
vated multi-expert scorers. This approach was in-
troduced by Otmazgin et al. (2023), which demon-
strated that linguistic knowledge and symbolic com-
putation can still be used to improve results on the
OntoNotes benchmark. In Maverickmes we adopt
this approach on top of the Maverick Pipeline. We
use the same set of categories, namely:

1. PRON-PRON-C. Compatible pronouns based
on their attributes, such as gender or number
(e.g. (I, I), (I, my) (she, her)).

2. PRON-PRON-NC, Incompatible pronouns
(e.g. (I, he), (She, my), (his, her)).

3. ENT-PRON. Pronoun and non-pronoun (e.g.
(George, he), (CNN, it), (Tom Cruise, his)).

4. MATCH. Non-pronoun spans with the same
content words (e.g. Italy, Italy).

5. CONTAINS. One contains the other (e.g.
(Barack Obama, Obama)).

6. OTHER. The Other pairs.

To detect pronouns we use string match with a full
list of English pronouns.

To perform mention clustering, we dedicate a
mention-pair scorer for each of those categories.

Specifically, for the mention mi = (xs, xe) and its
antecedent mj = (xs′ , xe′), with their start and end
token hidden states, we first detect their category
kg using pattern matching on their spans of texts.
Then we compute their start and end representa-
tions, using the specific fully-connected layers for
the category kg:

F
kg
s (x) = W ′

kg,s(GeLU(Wkg,sx))

F
kg
e (x) = W ′

kg,e(GeLU(Wkg,ex))

The probability p
kg
c of mi and mj is then calculated

as:

p
kg
c (mi,mj) = σ(F

kg
s (xs) ·Wss · F kg

s (xs′)+

F
kg
e (xe) ·Wee · F kg

e (xe′)+

F
kg
s (xs) ·Wse · F kg

e (xe′)+

F
kg
e (xe) ·Wes · F kg

s (xs′))

With Wss,Wee,Wse,Wes being four learnable ma-
trices and W ′

kg,e
,W ′

kg,s
,Wkg,e ,W

′
kg,s

the learnable
parameters of the two fully-connected layers. In
this way, each mention-pair scorer learns to model
the probability for its specific linguistic categories.

B Training details

B.1 Datasets
We report technical details of the adopted datasets.

• OntoNotes contains several items of metadata
information for each document, such as genre,
speakers, and constituent graphs. Following
previous works, we incorporate the speaker’s
name into the text whenever there is a change
in speakers for datasets that include this meta-
data.

• LitBank contains 100 literary documents and
is available in 10 different cross-validation
folds. Our train, dev, and test splits refer to
the first cross-validation fold, LB0. We report
comparison systems results on the same splits.
Since training DeBERTalarge is particularly
computationally expensive, as introduced in
Section 4.3, we train on LitBank by splitting
in half each LitBank training document.

• The authors of PreCo have not released their
official test set. To evaluate our models con-
sistently with previous approaches, we use
the official ’dev’ split as our test set and re-
tain the last 500 training examples for model
validation.
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Model LM MUC B3 CEAFϕ4 Avg.
P R F1 P R F1 P R F1 F1

Discriminative
e2e-coref (Lee et al., 2017) - 78.4 73.4 75.8 68.6 61.8 65.0 62.7 59.0 60.8 67.2
c2f-coref (Lee et al., 2018) ELMo 81.4 79.5 80.4 72.2 69.5 70.8 68.2 67.1 67.6 73.0
c2f-coref (Joshi et al., 2019) BERTlarge 84.7 82.4 83.5 76.5 74.0 75.3 74.1 69.8 71.9 76.9
c2f-coref (Joshi et al., 2020) SpanBERTlarge 85.8 84.8 85.3 78.3 77.9 78.1 76.4 74.2 75.3 79.6
ICoref (Xia et al., 2020) SpanBERTlarge 85.7 84.8 85.3 78.1 77.5 77.8 76.3 74.1 75.2 79.4
CorefQA (Wu et al., 2020) SpanBERTlarge 88.6 87.4 88.0 82.4 82.0 82.2 79.9 78.3 79.1 83.1*
longdoc (Toshniwal et al., 2021) LongFormerlarge 85.5 85.1 85.3 78.7 77.3 78.0 74.2 76.5 75.3 79.6
s2e-coref Kirstain et al. (2021) LongFormerlarge 86.5 85.1 85.8 80.3 77.9 79.1 76.8 75.4 76.1 80.3
wl-coref (Dobrovolskii, 2021) RoBERTalarge 84.9 87.9 86.3 77.4 82.6 79.9 76.1 77.1 76.6 81.0
f-coref (Otmazgin et al., 2022) DistilRoberta 85.0 83.9 84.4 77.6 75.5 76.6 74.7 74.3 74.5 78.5*
LingMess (Otmazgin et al., 2023) LongFormerlarge 88.1 85.1 86.6 82.7 78.3 80.5 78.5 76.0 77.3 81.4

Sequence-to-Sequence
TANL (Paolini et al., 2021) T5base - - 81.0 - - 69.0 - - 68.4 72.8
ASP (Liu et al., 2022) FLAN-T5XXL 86.1 88.4 87.2 80.2 83.2 81.7 78.9 78.3 78.6 82.5
Link-Append (Bohnet et al., 2023) mT5XXL 87.4 88.3 87.8 81.8 83.4 82.6 79.1 79.9 79.5 83.3
seq2seq (Zhang et al., 2023) T0XXL 86.1 89.2 87.6 80.6 84.3 82.4 78.9 80.1 79.5 83.2

Ours (Discriminative)
Mavericks2e DeBERTalarge 87.1 88.6 87.9 81.7 83.8 82.7 80.8 78.7 79.7 83.4
Maverickincr DeBERTalarge 87.6 88.1 87.9 82.7 82.6 82.7 80.3 79.3 79.8 83.5
Maverickmes DeBERTalarge 87.5 88.5 88.0 82.2 83.5 82.8 80.4 79.3 79.9 83.6

Table 7: Results on the OntoNotes test set. The average CoNLL-F1 score of MUC, B3, and CEAFϕ4 is the main
evaluation criterion. ∗ marks models using additional/different training data.

B.2 Setup

All our experiments are developed using the
Pytorch-Lightning framework.9 For each Maver-
ick model, we load the pre-trained weights for the
base10 and large11 version of DeBERTa−v3 from
the Huggingface Transformers library (Wolf et al.,
2020). We accumulate gradients every 4 steps and
use a gradient clipping value of 1.0. We adopt a
linear learning rate scheduler a warm-up of 10% of
the total steps check validation scores every 50% of
the total number of steps per epoch. We select our
model upon validation of Avg. CoNLL-f1 score
and use patience of 20.

C Additional Results

In Table 7 we report the performance of models
according to the standard Coreference Resolution
metrics: MUC (Vilain et al., 1995), B3(Bagga
and Baldwin, 1998), CEAFϕ4 (Luo, 2005) and
AVG CoNLL-F1. Scores for Maverick models are
computed using the official CoNLL coreference
scorer.12

9
https://lightning.ai

10
https://huggingface.co/microsoft/deberta-v3-base

11
https://huggingface.co/microsoft/deberta-v3-large

12
https://conll.github.io/reference-coreference-scorers

System Ment. Clustering Ment. Extraction
Mavericks2e 89.4 93.5
Maverickincr 89.2 94.2
Maverickmes 89.6 93.7

Table 8: Mention extraction (F1) and mention clustering
(CoNLL-F1) scores on the OntoNotes validation set.

C.1 Error Analysis
To better understand the quality of Maverick pre-
dictions, we conduct an error analysis on our best
system trained on OntoNotes, Maverickmes. In Ta-
ble 8, we report the score of performing only men-
tion extraction (F1) or mention clustering with gold
mention (CoNLL-F1) with our systems. Our results
highlight that our models have strong capabilities
of clustering pre-identified mentions, but limited
performance in the identification of correct spans.
We investigated this phenomenon by conducting a
qualitative evaluation of the outputs of our best sys-
tem, Maverickmes, and found out that OntoNotes
contains several annotation errors. We report exam-
ples of errors in Table 9. The main inconsistency
we found in the gold test set is that many docu-
ments have incomplete annotations, which directly
correlates with the mention extraction error.
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Type Text
Ex. 1
Gold Nine people were injured in Gaza when gunmen [opened]1[fire]2on an Israeli bus.

The passengers were off - duty Israeli security workers.
Witnesses say [the shots]2came from [the Palestinian international airport]3.
Israeli Prime Minister Ehud Barak [closed]4down [the two - year - old airport]3in response to [the incident]1.
[Palestinians]5criticized [the move]4.
[hey]5regard [the airport]3as a symbol of emerging statehood.

Output [Nine people]1were injured in Gaza when gunmen opened fire on an Israeli bus.
[The passengers]1were off - duty Israeli security workers.
Witnesses say the shots came from [the Palestinian international airport]2.
Israeli Prime Minister Ehud Barak [closed]3down [the two - year - old airport]2in response to the incident.
[Palestinians]4criticized [the move]3.
[They]4regard [the airport]2as a symbol of emerging statehood.

Ex. 2
Gold [Mr. Seelenfreund]1is [executive vice president and chief financial officer of [McKesson]3]2-

and will continue in [those roles]2.
[PCS]4also named Rex R. Malson, 57, executive vice president at McKesson,-
as a director, filling the seat vacated by Mr. Field.
Messrs. Malson and Seelenfreund are directors of [McKesson, which has an 86% stake in [PCS]4]3.

Output [Mr. Seelenfreund]1is [executive vice president and chief financial officer of [McKesson]3]2
and will continue in [those roles]2.
[PCS]4also named [Rex R. Malson, 57, executive vice president at [McKesson]3,]5-
as a director, filling the seat vacated by Mr. Field.
Messrs. [Malson]5and [Seelenfreund]1are directors of [McKesson, which has an 86 % stake in [PCS]4]3.

Ex. 3
Gold The Second U.S. Circuit Court of Appeals opinion in the Arcadian Phosphate case -

did not repudiate the position [Pennzoil Co.]1took in [its]1dispute with [Texaco]2, -
contrary to your Sept. 8 article “ Court Backs [Texaco]2’s View in [Pennzoil]1Case – Too Late. ”
The fundamental rule of contract law applied to [both cases]3was that courts will not enforce -
[agreements to [which]4the parties did not intend to be bound]4.
In the Pennzoil / Texaco litigation, [the courts]5found [Pennzoil]1and Getty Oil intended to be bound;
in Arcadian Phosphates [they]5found there was no intention to be bound.

Output The Second U.S. Circuit Court of Appeals opinion in [the Arcadian Phosphate case]1
- did not repudiate the position [Pennzoil Co.]2took in [[[its]2dispute with [Texaco]4]3, -
contrary to your Sept. 8 article “ Court Backs [Texaco ’s]4View in [[Pennzoil]2Case]3]3– Too Late . ”
[[The fundamental rule of contract law]5applied to both cases]5was that courts will not enforce -
agreements to which the parties did not intend to be bound.
In [the [Pennzoil]2 / [Texaco]4litigation]3, [the courts]6found [Pennzoil]2and Getty Oil intended to be bound;
in [Arcadian Phosphates]1[they]6found there was no intention to be bound.

Ex. 4
Gold ... [Harry]1has avoided all that by living in a Long Island suburb with [his]1wife,

who ’s so addicted to soap operas and mystery novels
she barely seems to notice when [her husband[disappears for drug - seeking forays into Manhattan.

Output ... [Harry]1has avoided all that by living in a Long Island suburb with [[his]1wife,
who ’s so addicted to soap operas and mystery novels
[she]2barely seems to notice when [[her]2husband]1disappears for drug - seeking forays into Manhattan]2.

Table 9: OntoNotes test set annotation errors examples.
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